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Abstract. This paper studies sums of periodograms in a random field setting.
In a one dimensional or time series setting these can be studied using a method
of cumulants, as done by Drillinger. This method does not carry over well
to the random field case. Instead one should apply an argument as used by
Rosenblatt. In order to have asymptotically correct confidence intervals, one
needs to center these sums properly in the random field case.
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1. Introduction

Brillinger (1981) in his time series book, and Roseublaly {1985} have stud-
ied sums of periodograms. Brillinger’s method for a real time series is based on
cumulant calculations of finite Fourier transforms and the calculus of Leonov and
Shiryaev (1959) applied to second degree polynomials of the finite Fourier trans-
forms. The observed data sample size is T. These arc very nice as many compli-
cated calculations are easily bounded using spectral density approximations with
a O(T 1) error bound. Rosenblatt on the other hand studied real time serics, as
well as spatial time series, but approximated sums of periodograms by a quadratic
form in the original real time or spatial domain. The computations are not quite
as clean as the more restrictive Brillinger Fourier transform 1D cumulant calcula-
tions.

One problem that is addressed in this paper is the applicability of Brillinger’s
cumulant method to a spatial process, that is a 2D random field. See Section 2
for the example, where it is shown that the nice Fourier bounding method does
not work. The process is observed on a T x T lattice. Basically the failure of the
bounding method is due to the error term being of size O(T™1), and the rate of
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188 A. G. BENN AND R. J. KULPERGER

convergence for the sum of the periodograms being vT?2 = T, which is of the same
size. The big O term cannot be reduced to a little o.

A second issue involves a small but important refinement of Rosenblatt’s
result for sums of covariances in Z2 (Rosenblatt (1985)), coupled with a standard
time series trick of modifying the divisor or the number of terms in the numerator
of a lag covariance in time series, such as given in Brockwell and Davis ((1991),
Chapter 1}. This is useful for being able to use all the data for computing a sample
estimate In the time series setting one can nse

) 1y . .
éh) =~ S X~ X)(Xin — X)
i=1
as the sample covariance to study the distribution of the sample covariance. How-
ever in application one would typically use, for A > (,

1—h
- 1 ; r X r T
C(h) = E ii - (Az - X )(Ai-&-h - }&)

as the sample covariance. Asymptotically both are equivalent in a one dimensional
time series.

In a spatial setting, without the proper centering, a limiting normal distribu-
tion is still obtained, but one with non-zero mean. This would lead to incorrect
asymptotic confidence intervals. This problem is addressed in Section 4. This
problem does not come up with a 1D time series, since the size of the bias tends to
zero. In 2D however Lhe bias does notl converge 4o zero, so the proper centering is
needed. A similar result is discussed in Guyon (1982). The proper centering dis-
cussed here deals with centering the biased empirical covariances properly. Guyon
(19%2) deals with the problem by replacing the biased empirical covariances with
the unbiased covariance estimates. It should be noted that our solution allows
one to still make use of fast Fourler transform algorithm, while Guyon’'s solution
does not allow one to take advantage of the fast Fourler transforms. The use the
fast transforms is important in an image analysis problem with a typically large
sample size of T2 with 7' = 512.

2. Two-D example of Fourier and cumulant method

This section will give a summary of the Brillinger 1D proof, and the 2D
MA(2) example; actually an overview. The computational details are given in a
subsection. First a review of the 11 Brillinger proof is given.

2.1  The 1D Fourier method

Brillinger (1981, section 5.10) studies the estimation of the spectral measure,
obtaining the weak convergence to a Gaussian process. In the proof of his Theorem
5.10.1, he obtains the L-th cumulant of the normalized spectral measure, arguing
that it is (H(TU=£/2)) which tends to 0 for I > 3. The notation cum; means an
L-th cumulant.
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This term comes specifically from approximating a joint cumulant of

=1

d(’[‘)(/\) - Z eTY,

t=0
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curnz (d7 (A1), .. d" (AL))

- T—1
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= A ()\1 + -+ )\L)(‘ZTF)Lulf;_'J()\l, . ,/\Lfl) + O(f),

where u; = £; — 1z, and the function AlT) is given by
Tl

(2.1) AD(A) =Y e
=0

At the special frequencies of the form A;r = 2—;1, AT\ ) equals T if j =
O{mod 1), and 0 otherwise. This property of AT is a consequence of the oscil-
latory nature of the corplex exponential, thal is a Fourier property. The O(T')
term comes from bounding a sum of the form

T—1 T—1
E 6——1)\t < E ; |67“\t{ =T
t=0 t=0

That is at an appropriate stage onc bounds some complex exponentials by 1.
As an immediate consequence one obtains the cumulants of the normalized
finite Fourier transforis

(2.2) cumy (L2 (\y), ... T2 T L)
TLRAD (N + -+ ML) fr(A, .-, An) + O(T U H3),

Using (2.2) and the Leonov-Shiryaev calculus applied to periodograms
1T = @2r) 1T (A)d T (=), one can obtain the asymptotic normality of
the spectral measure, and similarly for weighted sums or periodograms.

For simplicity take the weights to be 1, that is consider

(2.3) Sp = Z I (1)
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where A, 7 = 2mt/T. Then an L-th camulant of Sy is
(2.4) cump(St) = Z Zcum IDN1) - I (g 1)

= z Z Z_: cum{P;)---cum(FPy)
P & i

where the outer sum in the last term is over all indecomposable partitions

(Brillinger (1981)) of the table
T —11

ty —tr.

The terms cum(F;) are the joint cumulants of the discrete or finite Fourier trans-
forms T-1/2dT)(X, p) for the t in the partition set P; in the indecomposable
partition.

For example, one of the indecomposable partitions is the case where there are

L partition sets each of size 2. For this partition set, the contribution to the sum
(2.4) is

Z .. .Zcumg(Pl) .+ -cums( Pr)
tr,

t)

=Ty " {AD o) (AT o(T)}
= T*LTb(T‘L) = O(T).

Therefore
cum {T7Y(S1 — E(S1))} = O(T'"2/2)

which tends to 0 for L > 3, where Sy is given by {2.3). The second cumulant can
be computed directly, thus vielding a normal limit for S,.

This proof is very nice, and simple, using to advantage Fourier approximations
to order (1) for cumulants of the finite Fourier transforms. Can one use such a
proof in a random field case by perhaps a more more careful use of the term giving
rise to O{T)?

2.2 The 2D MA(1) example

Let {e;; : 1,7 € Z*} be an iid mean 0 array, with all moments finite. For a
given set of non-zero numbers oy, p, a,b = —1, 0, 1, let X, ; = > g j-b€ap-
Then {X;; : 4,j € Z%} is a 1 dependent moving average process in Z2. This is
the example for this section. The dependence parameter is the matrix

-1 1.0 2511
A=1] an_ Gan ol
dq,-1 «_j10 G111
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This process satisfies the mixing conditions of Brillinger (1981}. For this

process, X;, ;, and X, ;. are independent if |2y — i3] > 2 or |j; — 9| > 2. We can
even simplify the dependence structure by taking

A:

oo o

1
1
0

o= O

This results in X, ;, and X;, ;, being independent for iy —is| > 1 or |j; —j2| > 1,
that is X is a 1 dependent process. For the rest of this section we will use a 1
dependent process indexed by Z2. The process above demonstrates the existence
of such a process.

The observed data from the process X is {X¢, 4, : 0 < #1,82 <7 — 1}. That
is the observation is on a T' x T reciangle, and the asymptotics are as I’ — oo.
The finite Fourier transforms are

d(\) = Zexp{“z (A BEX,

1=0

where the sum is over ¢ = (f),{2), 0 < #1,t» < T — 1, and the argument is
A = (A1, A2). It should be clear from the context when an argument is a vector.
Later as needed some of the vector arguments will be evaluated more explicitly.

The periodograms are given by I'T)(A) = |[dT)(A\)[2/(1?). Note that usually
there is a factor of (27)? in the denominator, but for notational convenience we
omit it. This is because the primary concern of this note is to study the usefulness
of the Fourier method of Brillinger {1981}, as described earlier, in the random field
case.

In a completely analogous manner to (2.2), one obtains

(25) cumL{T’ld(T)(Al), _1d(T)()\L)}

T-1

- T L Z Ze—'f.(/\ht]) —i()\L,tL) CumL{Xt“---thL}

=T L{/_\..T’g(f{)n + -+ A[,})f,[,()\l, C ,A[ﬁl) + O(T_l)}
where ATQ()\) = Arp:g((’yl,’yg)) = A(T}('yl)AT('yg) ab arguwent A = (-1, 2), and
where AT) is given by (2.1). The O(Z™!) comes about for the same reason as

before, that is by bounding the complex exponential terms by 1.
I'he periodogram sum is now of the form

T—1
P= 3 D)
t=1

where the sum is over t = (#;,8»), 1 <t, <T —1,and A7 = 27r(—51,1’f—2).
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By the Leonov and Shiryaev calculus of cumulants, one obtains the analogue
of (2.4).

T —_—
(2.6) cump,(St) :Z Z cum( I( (Aey1) - I(T)()‘tL,T))

-1
Z Z Z cum(Py) - - - cum(Fy)
P tr

where the sums are now over t; = {t;1,t;2), 1 < t;, < T — 1. Consider an
arbitrary partition. The number of partition scts is k. Only partition sets of size
2 or greater need to be considered, as the cumulant of partition set of size 1 equals
0. Thus the maximum of h is L. If any partition set is of size greater than 2, then
the mumber of partition sets is A < L. In this case the L-th cumulant contribution
0 (2.6) is O{T~E+") — 0. If all the partition sets are of size 2, then the cumulant
contribution to (2.6) using (2.5) is O(T~¢+*) = O(T°) = O(1) which may or
may not tend to zero. A more precige bound or caleulation is needed for the rase
of partition sets of size 2. The question is can this be done to show asymptotic
normality? The answer is no. It is shown by an explicit calculation for the third
cumaulant case L = 3 in Section 2 that the third cumulant does tend to zerc. Note
that this is a tedious calculation, and it is only shown for the third cumulant.

In the rest of this section, we now consider a more careful bound of the
partition sets of size 2 for the third cumulant. Consider (2.5) for L — 2 and write
explicitly the O(T1) remainder term as R (A, Az).

For a 1 dependent process, it can be shown that

(2.7) (211m2(d(T) (A(l)),d(T)()\(l’-)))
— (21r)2A(T)()\(1) 4+ A(Q))f(/\(l)) + R(T)(/\(l),)\@))

where BT is the remainder, I is an indicator function and

RII(AM, @)
T—1 o0

=> > U=t <wm ST -t -DI(-t2<uwp<T-t-1)-1)

t=0 u=—00
(I(=1<uy < (-1 <up £1))
eﬂ'(t,(,\(l)+/\(2))>e—i<,\“>,u)c2(u)}_

Then,
{R{T){/\(l), A

2_: Z lea{u) (=1 <uyp < DI(—1 <up <1)]
=0 u=—o00

(~ty Sur €T —t1 — DI(~t2a Sup <T—1y — 1) — 1

1 T-—1
It <ay <T —t; — VI(~ta <ug <T =ty —1) = 1]

\
o
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Consider u = (—1, —1) and evaluate the inner sum. The inner sum evaluates
here to 27 — 1. Thus,

‘R(T)()\(l)’,\@))‘ < O(T).

Now,

2 T—i 2 T-1
cuma ( ) I w), ( ) ST D@,

=1 =1

2 T—1
() = o

F3I=1

=2 {eumg (d (A;)d T (= 2m),

AT (XA (= X)),
d (A )dD (=X N}

The Leonov-Shiryaev calculus of cumulants (see Brillinger (1981}) allows one to
calculate the cumulants above, in terms of indecomposable partitions. Consider a
particular indecomposable partition consisting of 3 sets or partition elements.

), d T (= X))

- cumg(d{T) (—Am), dD (Aje )
- cumg(d™’ (A ), 4 (A )}

If one now replaces the cuma(-) terms by the representation (2.7} and multiplies,
one of the terms in the resulting sum is of the form

-1

T—1 —
T12 Z Z Z R(T)(AJ(1}1WA3(2)) ( )(_Aj(l)aAj{B))R(T)(Aj(Q),—'Aj(.'j)).
3(1) 1 3(3) 1J(3)_

Thus, when cumgs(+) is normalized by (VT2)%, it is bounded in absolute value by
a O(1) term, unlike the 1 dimensional case.

The Brillinger 1 dimensional proot depends on the nice O(7') bound and
Fourier properties. As nice as the cumulant method is, it does not carry over well
to the random field case. This is why one must resort to the Rosenblatt method
of proof, as further discussed in Section 4.
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3. Explicit third cumulant calculation

Let j% = (5% i) and Aoy = (Aj{k),Ajék)). Without loss of generality,

one may center the data at the sample mean so that d(77(0,0) = 0. Consider the
normalized third order cumulant of a sum of periodograms.

2 T-1 S 2z T-1
T3cum3 ( ) Z I(T} }\ (1) (f) Z I(T)(/\j(s)),

G = @M=

9 2 T-1
() 2 100

F®=1

9 Z Z Z cumz{d™ (A;0))d M (= A;m),

3(1) 13(2J 13(5) 1
AT\ @) )T (= A ),
AT (X )d T (= Ay 1
Consider a specific indecomposable partition of three sets, that is each parti-
tion element is a set of size 2.

T—1

(3.1) 7% Z Z Z { cumg{d‘T {Aje)s d7 (-~ -X@))

=1 =1 ;3 =1
X cumg(d(ﬂ()\jm), d(T)(-—/\ju)))
X Cunlg(d(T)()\j(a)),d(T)(/\j(a)))}.

Examine the first second order cumulant or covariance in (3.1). Let { = (f1,12)
and u = (uy,us).

cumn, (d (Ajm), 4 {(=Xj=))

T—1T-1T-4-1T—tz-1

ST Y Y Y i e

t1=0fy=0 ur=—1%) wa=—tg
'f’z(uh’uz)f(luﬂ < D (Jug| € 1)

S DD DI NN

uwy=-—1lug=—1

T-171T-1
. (Z Z e~ HEQ =X @)

£y =01=0

A(uy <6 <T —uy — DI{—us <ty ST—HQ—U)

T g
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: (A(ﬂ(,\jw —Am) = (AT (Ao =X m) —1)

—iA (1. (—1.0
¢ A )>Cz( - 170)(A(T)(/\j{1) — f\j;z)) — I)A{T)(/\jél) - }\jé‘ﬂ)
+

_ ~i{T 1A (1) A
+e e 1)(A(T)()\j(1) —Am)—e {rntm J’%z)))
1 1

—ai(T=1)(X —X .
i M S0 jéz)))‘

(AT - -
(A {/\j‘gl) )\jgz))

The above is a sum of nine terms, labelled as {—1, —1),...,(1,1) say. Recall that
we consider 5 5
T (kY 2T {k
Aoy = (?Jf ),735 )) -

The product of the covariances in (3.1) involves 9% terms for each index of the
six-fold sum. Consider the (—1,—1) term above under multiplication of the co-
variances in equation (3.1). 'T'he resulting sum is of the form,

(32) Tiqi TZ f{(A<T>(T(‘“ i) 1)
=1 (2 =1 =1

. ( Am (2w en

(7))
(o))
an(Fur )
(-1 )

1

2)—0-3 1

2n
AT (T (@ = 50 )}) _ 1)

6'5(27‘ /T)J{me":(%‘ /T)‘jgz’ (02(_1’ _]'J)S}

After some careful algebra, it can be shown that the above sum is O(T *). A
similar careful analysis can be employved to show that the sum of the product of
the (—1, —1) terms is O{T~%). Each of the remaining 9% terms is likewise O(7T3).
Refer to the Appendix for further computational details.

4. A modification of Rosenblatt’s result
This section will study the proper centering of sums of periodograms. This

contering is at the expected value of the periodogram, which is a biased estimate of
the spectral density. An alternative is to replace the definition of the periodogram
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with unbiased estimates of the spectral density, as suggested by Guyon {1982}
In the one dimensional time series one can use the biased sample covariances, as
for example in Brockwell and Davis (1991). 'L'he observation or comment being
made here is to note that one needs to be careful about the centering in Z2. This
problem does not occur in a real time series, that is a process indexed by Z. This
is discussed more at the end of this section. This problem was noted in Benn
(1996) and Benn and Kulperger (1997), where a spatial data analysis was studied
as an application of sums of periodograms in a spatial setting.

Rosenblatt (1985) studies sums of periodograms for stationary processes in-
dexed by Z%. The outline of his procedure is now given. His Theorem 5, p. 116
is a central limit theorem (CLT) for a mean 0, stationary process with finite 2 + &
moments. The observation is on the discrete lattice of points in the rectangle
0,7 — 1]¢. The normalizing rate is T4/2, This result is then applied to the
quadratic process, for given u, say Y () built up from Y.; = X;X; ., which has
expectation e(u) = Cov(Xg, X, ). Taking § = 2, that is ¥ having 4 moments, or
cquivalently X having 8 moments, gives his Theorem 6. Iinally he applies this
to sums of periodograme, which he rewrites as sums of empirical covariances; see
Theorem 4.1 below.

At this point take d = 2, and examine how Theorem 5, p. 116 of Rosenblatt
{1985), applies to a random ficld observed on A = [0, T 1]2.

4.1  Proofs
Theo sample covariance at lag u, as comes into play in the sums of periodograms

result, is defined by

1 T—|ul-1 1 T—|u|—1
(4.1} é(u) = T2 Z XiXiyu = T2 Z Yot
=0 t=0
where the sum ig a shorthand for the sum over ¢t — {#1,1:), 0 < #; < T — |u;| — 1.

Subtracting X is not important in the discussion below (due to the properties of
ATI(X)), and so the sample covariances are computed in terms of the X data
centered at E(X) = 0. Also note that if » has negative components, (4.1} gives
the usual formula by a translation of the index of summation.

Remark. For a given u, the divisor in {4.1) could be changed to (T'— |y |)(T—
|uz|} resulting in an unbiased estimator of c(w). This idea was used in Guyon
(1982). However this does not apply directly to the sums of periodograms, where
one needs the same divisor for all é(w) in the Rosenblatt proofl. Specifically the
right hand side of (4.2) with ¢ replaced by the unbiascd estimators is no longer the
squared modulus of the finite Fourier transforms. Alternatively one could correct
for this, but the same bias problem as described below comes into play at that
stage. Again we note that this method can make use of fast Fourier transforms in
the computations, whereas Guyon’s (1982) does not.

The d dimensional periodogram is

(4.2} Iy — m}jd(ﬂ(k)d(ﬂ(—)\)



SUMS OF PERIODOGRAMS IN A RANDOM FIELD 197

1 ,
= et 2 fwe
T

|u]|<T—1

This is obtained by directly substituting the definition of the finite Fourier trans-
form and doing a change of variables.
The result of interest applics to the smoothed periodograms

2
f IOy A()dA
{}
with a smooth weight function A. f; is the fourth order spectral density. Note the
mtegral is over A € (0,27|?. The weight function A is both integrable and square
integrable. These types of integrals and sums were also of interest to Whittle
to obtain estimates in stationary time series, obtaining what he called Gaussian
estimates; sce Whittle (1962). 'They have also been used in point processes by
Brillinger {1976).

To deal with the convergence of the mean of the smoothed periodogram we

also make the following damping assumption on the lag covariance function c{u).
Ct: ¥, fugle(w)] < oo

TarEorREM 4.1. (Rosenblatt (1985), Theorem 7, p. 118} Let {X(¢)} be an
ergodic strictly stationary random field that satisfies the assumptions of Theorem
A, Rosenblatt {1985). Consider

[ 7 I AN A

which is o quadratic form in X(t) with real-valued weight functions A(X) square
integrable. The smoothed periodogram is asymptotically normal with mean

2
FIAAA)AA
Q
and limiting covariance
27

(zw)d{sz A(,\)A()\)fg(/\)d/\Jr/O%

0 o f4(’\! _H;M)A(A)A([L)dAd‘u} .

From {4.2)

(27r)d/{;ﬂf(r)(/\)A()\)d/\z Z é(u)alu)

lul<T—1

where a(-) are the Fourier coeflicients of A, that is

1 2T O
alu) = W./o A(X)e dA.
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Therefore
27 2
o)A/ 2 {(T) _
(2m)*T {/0 I OYA(M)dA A f(/\)A()\)d)\}
= > T¥{i(u) - c(u)}al{u) + T > e(u)a(u)-

| €T —1 ug[-T+1,T-1]4

Under the conditions A integrable and the damping condition C1 on ¢(u) (given
just before Theorem 4.1), it follows that the second term on the right hand side

tends to 0 as T — 0. The first term can be written as

ST T2 e(w) - ctwtalu) = > TYa(w) — el Yalu) + BT

|ts] <T—1 Jes| <L

where R{T)(L) is the remainder from the normalized sum.
For d =2

RO =YL +1<u €T 1Ju €T~ DT (E(w) — c(u))alu)

=>"I-T+1<u < L~ 1, lup) < T = 1YT(ew) - c(u))alu)

W

=3 HL+1<up ST — 1, fug| €T = 1)T(é(u) — e(u))alu)
=Y I(-TH+1<u < —L—1jm|<T - 1T(e(u) - c(w))a(w).

The above terms are handled in a similar fashion, and so consider only the first
term. It can be rewritten as

STHL A1 <uy < T — 1 ua| < T — )T(8(w) — E@(w) + E(&(w)) - c(u))a(u).

The first part is handled directly from Theorem 5, p. 116, Rosenblatt (1985). The

second part has a zero limit.
Thus by Theorem 5, Rosenblatt {1985) for d = 2

T (]Uzﬂ IDAYA(N)AA

where = means convergence in distribution. The limit mean g and variance o
of this hiniting normal distribution must still be calculated. Since the random
variables in question have several finite moments, the mean of the limit distribution

equals the limit of the means.
Let f70(X) = E(I(A)). Then

2T
f(,\}A(,\)d).) = N{p,o?)

2

f(T}(/\) — _Lm Z (T — h"‘l I{ngl1 — |u2|)c(u)e——i()\,u)

(Zﬂ_)“ || <T—1

1 ur] + ug| | Jurusg] —i)
= By Z (1— T + 73 e(u)e .

[u]<T -1
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Then
PO =10 = g 30 (M ) e ot
(2m)? T T2
) <T—1
— o{1)

However under the mixing condition,
Y fuPle(w)] < oo
%
one obtains

@3 Jim 7 (O = (AN = Yl + ual)e(wal).

Thus

27

(4.4) (2 Ydgrd/2 f/% ITOVANYN ~ f(,\)A(A)dﬂ = N{p,a?%)
Lo J

where

== S (sl + usfelwatu).

In particular using the limit distribution (4.4) would lead to an incorrect confidence
interval, that is the confidence interval would not be centered properly.

How does one obtain a corresponding CLT with limiting mean zero? The
easiest, and most natural way is to consider the centered integral

(2m)dTd/? { f v I AN — / o f(T)(A)A(,\)ri,\}
] 0

which then has no asymptotic bias with which to be concerned.
Why is this result different than a 1D time series, in which the centering at
f or f{T) does not matter. The analogue of the bias (4.3) in 1D is

—-\/TZ M—}!H—QDC(H)G(U) =0T Y —0.

This is very much related to standard computational simplifications made in time
series; see for example Brockwell and Davis {1991}, where they can interchangeably
use divisors T and T — |u| to work with biascd or unbiased sample covariances.
Note also that in the random field case, cne cannot so easily change divisors for
convenience, that is one has to decide at the outset to work properly centered
variables.
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5. Conclusions

This paper deals with some practical aspects of the time series methods in
stationary random ficlds on a lattice. There are differences with respect to a time
series in 1 dimension. A problem in studying smooth sums of periodograms is
considered. In 1 dimension Brillinger {1981} has a very elegant proof of convergence
using Fourier propertics and associated asymptotics of the cumulants of finite
Fourier transforms of the data series. We have shown that this does not carry over
directly to a random ficld case, that is dimension 2. Thus, one can use Rosenblatt’s
method of proof {Rosenblatt (1985)). With this proof, one must be careful about
the centering terms. If not one may end up with a limit normal distribution
with non-zero mean, and hence incorrect confidence intervals. This problem was
first noted in Guyon (1982), where he used unbiased covariance estimators. Our
solution is to center the periodograms, as this allows one to retain the use of fast
Fourier transforms.

Both the problems noted here arc essentially geometric problems. This is
because the size of the omitted terms or bias terms in the random ficld case
(d = 2) is of the same size as the normalizing factor in the asymptotic normal
result. In the case of a one dimensional time series, the bias terms are of a smaller
order than the norwalising rate, and hence this problew does pot oceur.
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Appendix
Rewrite equation (3.2) as
T-1 o
(A1) ZO(T"’){ 3 (/.\.m (T i —ﬁ”)) - 1)
D o)
s =1

: (Am (%”(j{” +j§3))) - 1)

r . .
(Am (T(J§3) — M

_ 1)
(am (GFu M) - 1)}

(A-2) +Z{ Ti (Am @—TU{‘"" —ji”)) - 1)

) N
Dt ifP=y

2m :
: (A(T) (?(Jig) +J§”)) - 1)
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(s (2 ) )

(3
i =1

27 N
: (Am (?(Jéz) +J£3))) - 1)}

where D is the set of diagonal terms over the outer 4 sums of j‘( ), gé ), sz), jéQ)

with 0 (
(1 2
D=0 =P80 =i

In (A.1), the outer sum is over (T — l)‘ terms. The inner sum can now be

obtained in O(1)’s as follows. For each (3 , Jéz)) pair in D

T-1

. 29 (s

(ry {223 (1} AT -(2) (3)
;(A (T(Jg 2 )) )( (T( + )) 1)
dy =1

= (T = 1D(-1)+ (= 3)(- 1)+ (-1)(T - 1)
— O(1).

The same argument shows the other inner sum over j is O(T'}. Thus equa-
tion (A.1) is O(T®) as there are (T' — 1)*O(T)O(T) such terms.
Now re-write the set D¢ as follows. Let

DA G0 5P 50y 50 4 B =1 Y g =Ty
Then

Dt = DN (Dy U D)
= (DN Dy)u (DN D3).

Note |D° N Dy = O(T?).
Equation (A.2) can then be re-written as

SO+ Y0
DDy DenDs
For each element of D¢ N Dy, the inner sums of equation (A.2) evaluate to
(T 12 (T —2)(-1)2 - 0IT?).

Thus, the first sum above is O(T®). On D°N D§, each inner sum of equation (A .2}
evaluates to

(T~ 1)(=1} + (T — 2)(=1)* = O(T).

Taking note that 1D N DE| = O(T*) shows that the second sum above is O(T*)
also.
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