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Abstract. The article presents a central limit theorem for the maximum
likelihood estimator of a vector-valued parameter in a linear spatial stochas-
tic differonce equation with Claussian white noise right side. The result is
compared to the known limit theorems derived for the approximate likelihood
e.g. by Whittle (1954, Biometrike, 41, 434-439), Guyon (1982, Biometrika,
69, 95-105) and Rosenblatt {1985, Stafionary Sequences and Rondom Fields,
Birkhiuser, Boston) and to the asymptotic properties of the quasi-likelihood
studied by Heyde and Gay (1989, Stochastic Process. Appl., 31, 223-236; 1993,
Stochastic Process. Appl., 45, 169-182). Application of the theory is demon-
strated on several classes of models including the one considered by Niu (1995,
J. Multivariate Anal., 55, 82-104).

Key words and phrases: Spatial process, asymptotic normality, consistency,
lattice sampling, stochastic difference equation.

1. [Introduction

Parameter estimation in spatial autoregression models {SPAR models) con-
cerns stationary temporal-spatial processes satisfying the equation

(1.1) Pegé(n) =¢(n), née A

where Py is a linear difference operator and ¢ is a Gaussian white noise. The
maximum likelihood procedure has been studied already since early fifties. Whittle
(1954) noticed, that ordinary least squares applied to a general SPAR process may
lead to “nonsensical results”. He observed, that failure of the least squares may
occur even in case of a one dimensional processes, but he did not specify the
reason. Ord (1975) pointed out, that the bias of least squares (LS) estimating
equations one may encounter in some cases, is responsible for inconsistency of the
L& estimators. The equation 8¢(n) — £(n — 1) = e(n), where n € Z, |8 > 1 and
¢ consists of N{0,02) 1.i.d. r.v.’s, provides the simplest example. If we estimate 8
directly, without reparametrizing to the commonly used AR(1) model, then the
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LS estimator is inconsistent. Instead of investigating the likelihood itself, Whittle
modified the residual sum of squares and replaced the Gaussian likelihood with an
approximate likelihood function. The logarithm of approximate likelihood yields
the well known measure @ of discrepancy between the spectral density fy and the
periodogram f of the process £ defined by the relation

(1.2) QU 1a) = f In fo(A)dA + / FOV/ fo(Wd.

The periodogram of the process is fairly easy to compute and provides an asymp-
totically unbiased estimator of the spectral density function. However, the esti-
mating equations obtained by minimizing (1.2) subject to 6 are in general biased.
Inconsistency of estimators generated by (1.2) led Guyon (1982) to a thorough
revision of the Whittle (1954) central limit theorem for approximate likelihood
cstimators and suitable modifications like bias reduction and smoothing of the
periodogram. Recall that sometimes variance of the periodogram fails to con-
verge to zero as the number of observations grows to infinity. Guyon {1982) and
Rosenblatt (1985) formulated interesting theorems on asymptotic behavior of es-
timators computed by means of smoothed periodograms. In order to remove the
bias, Heyde and Gay (1080, 1003) suggested replacing Whittle's approximate like-
lihood estimating equations by the quasi-likelihood estimating equations of the
form

(1.3) /(f—ng)a"*J"_o, E=1,...r

They claim that equation (1.3) yields consistent, asymptotically normal estimators
under certain assumptions, referring to Rosenblatt’s (1985) proof.

The aim of this paper ie to study the conditional likelihood function of a
general stationary Gaussian SPAR process and related maximum likelihood (ML)
estimators. Mardia and Marshall (1984) studied asymptotic propertics of the un-
conditional AL for an arbitrary lattice process. The general result concerning
consistency and asymptotic normality of the ML estimator is obtained under reg-
ularity assumptions that are difficult to verify, becausc asymptotic behavior of the
coviriance mwatrix’s eigenvalues must be known. In Section 6 of their paper, they
comparc the ML with the approximate likelihood estimators for a data sct. One
may use the relationship between the approximate, conditional and unconditional
likelihood to comparc the properties of the corresponding estimators m the case
of unilateral processes. For such processes the approximate and conditional esti-
mators have asymptotically the same normal distribution. The optimality of the
unconditional maximum likelihood estimating function implies that the difference
between the asymptotic covariance matrix of conditional and unconditional M7
estimators is non-negative definite, see Godambe and Heyde (1987).

The number of results concerning exact conditional and unconditional like-
lihoods is continuously increasing in recent years. They focus on specific models
and the SPAR processes are investigated rather as a part of weighted linear re-
gression problems. It is worthwhile to mention papers by Niu (1995), Basu and
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Reinsel {1994), Martin (1990) and references there in. There is also a series of
papers dealing with unilateral processes, c.f. Tjastheim {1978, 1983). It is to note
that the possibility to give a SPAR process a unilateral representation does not
mean the problem of parameter estimation for SPAR processes can be reduced to
estimation in processes with unilateral representation, c.f. Whittle {1954}.

Here we give the exact conditional likelihood function of a general SPAR
process and the limit distribution of its consistent ML estimator. We compare
the result to those by Whittle (1954) and Heyde and Gay (1989, 1993). We also
demonstrate how our central limit theorem applies to certain classes of SPAR
processes.

2. The main results

In this section we introduce the notation used throughout the paper, derive
the likelihood function, show its relation to the approximate likelihood and the
quasi-likelihood and finally formulate the central limit theorem.

A SPAR process £ is formed by random variables £(n) indexed by multi-indices
n € Z% where Z% = {n:n = (ny,...,ng) and ny is an integer}. The Gaussian
white noise is a spatial process € = {(e{n}),cz+ such that e(n) are 1.i.d. r.v.’s, each
with distribution N{0,5?). The linear difference operator Pp from (1.1) is defined
by the relation

(2.1) Pol(n) =Y aw(®)é(n—k), ne 2z

kekl

where K is a fixed subset of Z¢ and @ belongs to a parameter set © C {~o00,00)".
The power v is a natural number. Notice that components of any & © K may
be negative or positive. Hence, Py contains generally both forward and backward
shifts. Let us denote by (n, A} the Euclidean inner product of two elements n, A €
(—oo, )% {n, A} = ngA] +-- -+ ngAs. The difference operator Py determines the
so called characteristic polynomial Py defined by the relation

(2.2) PoetlmA) — Py(N)eiimh),

It is easy to see that Py is a polynomial in variables e?*+ and e™*, k= 1,...,4d,
respectively. Due to the periodicity of the functions e** we may restrict our
considerations to A € [-m, 7% According to Cramér (1940), if ¢ is a spatial
Gaussian white noise, then there is an orthogonal Gaussian random measure Z on
the Borel o-algebra B(—oo, oc}? such that

(2.3) e(n) = f N Z(d)
almost surely (a.s.), EZ(d)\} = 0, EZ?(d)\) = ¢%d\/(2n)% and X € [-x, 7% If
Ps(X). has no zeros in [~m,7]? for every # and the function R{n) =

[ e AP (A7 dA Bs non-negative definite, then the stationary solution to (1.1)
may be described by the equation

(2.4) et = [N zg(an),
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where EgZy(dA) = 0, E;ZZ(d)) = 0®(27) | Py(A)|%dX and A € [-x,w]%. Con-
versely, the residuals of the process described by (1.1) admit the representation

(2.5) eo(n) — / Py(0)ei™ N 2, (dN),

where the subscript emphasizes the dependence of the white noise representation
on # under which £ was generated.

THEOREM 2.1. Let € be a zero mean Gaussian white noise process with vari-
ance o, let & satisfy the difference equation (1.1) and let Py(A) have coefficients
differentiable with respect to & and no zeros in A, A € [ﬂr,w]‘i. Suppose we com-
pute from a set (§{n))nen of observations N residuals (e{n)}neny, No C N, and
the model (1.1) provides a one to one mapping between the sets (£(n))nen;, and
(e(n)nen, when conditioning on the observations in N'\Ny. Then the conditional
likelihood of the observations (£(n))nenn given (E(n))neanw, can be described by
the equation

(2.6) Io(£(n), n € N | £(n), n € A\NG)
1
= Er@ e GXP{“@ > mas(nn?},

n»CNg

where vy is a constant that does not depend on 6 and v{(9) is described by the
relation

(2.7) v(#) = exp {(27r)_d/1n |P9(A)|‘2d)\} ,

where we integrate over [—x,T]%.

Proor. The likelihood for N ii.d. zero mean Gaussian random variables
eg{n) is given by the relation

(2.8) lo(eg(n),n € M) = (2—71'{_7.%_”/5 exp {—% Z eg(n)} ;

neNy

The likelihood of the observations (£(n))neas conditioned on (£(n))neann;, is ob-
tained by substitution for ¢y in (2.8) from (2.5). The new likelihood is of the
form

{(2.9) g(&(n),n € No | &(n),n € N\Np)
= L 1 Ji{n. ) ?
— chp g7 Z [] Fy(Me Zg(d,\)} In(6),

neNo
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where Jy(6) is the Jacobian of the transformation. The Jacobian is well defined
because of the one to one assumption about (£(n))nen, and (e(n))nen,. We
determine Ja{#) from the well known condition

{2.10} Eg0, Inlg(£} = 0, /le(E)df = 0.

The likelihood Iy must satisfy (2.10) for every £ = 1,....r and this happens only
if

2
(2.11) B, In Jn(6) = Z Ey0p, [ f Py(A)eitn *)Zé(d)\)]
RENn

The expectation in (2.11} may be calculated as follows:

f Py(N)e
= EQ{(f 3akPg()\)e“"”\>Zg(dA)) (f P;()\)ei(”')‘)zg(d/\))
4 ( / Pg(/\)ei("*“Zg(dA)) ( f aakpg(,\)e—*‘<n»*>z£(d)\))}

- / (B0 Po (N PE V) + Pg(A)aekP;(A)}i;(l—)d/\

a5t [ PP i3 = 00y L [ POV

The asterisk denotes the complex conjugate number. The proof is now straight
forward.

(2.12) Egpdy,

The representation (2.6), (2.7) goes back to Kolmogorov (1941), who derived it
for one-sided stationary time series (c.f. also Whittle {1953, 1954)). The following
assertion due to Whittle (1954) states that for large samples the likelihood (2.6)
may be approximated by the function (2.13) below.

COROLLARY 2.1. Consider the function
(2.13)  Iy(E(n),n € N)

N or)d
= B exp{—;{ln B [ [ s

Fa(X)
ey d"] }}

where we define

(214) fv) = oy 2 ™, G -~ D gt m),
meN neMim)
(215)  fo(N) = | PN 2,

(2 )d
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M(m) ={n:neN,n+m e N} and N is the number of observations in N.
Otherwise we preserve the notation from Theorem 2.1. If the sample size grows to
infinity then the function {2.13) converges to the likelihood (2.6) almost surely.

Proor. To simplify the notation in the proof we suppress writing of the
parameter 6. In sake of precision we assume that A C Z¢ contains a d-dimensional
rectangle. By sample size growing to infinity we understand that all sides of the
rectangle grow to infinity. The function P is a polynomial in variables e*** and
e ko= 1,...,d, with coefficients a,, n € Z%. All but finitely many of the
coeflicients are zero. Hence

(2.18) |P(V))? = Z Z aga}e k=t Z Z @ty e

keZdlezd meZd ke Zd

The function |P}? itself may be expanded into a series with respect to the complete

orthonormal system {(2%) "%/ 2e=HnAY oo

(2.17) 1PV = (27) /2 Z e Hm)

meZ4

Comparison of (2.16) and (2.17) yields the equality (27) ¥2¢,, = ¥, g aka},

for all m € Z?. According to the strong law of large numbers in Section 4, the
averages

. 1 : 1
(218) Cpm = STtk en)k+n+m),  Cu— ¥ Y En)En+m),

neNy neM{m)

converge to 12(m) almost surely as N increases to infinity. Consequently for large

samples C}, m may be replaced by Cym and

(2.19) — Z (PEM)? = ) ) e L E(k +n)E(l +n)

ne\&, kezd lcZd neNu

Expansion of fN with respect to the same system of orthonormal functions has
coefficients (2m)~%2C,, for m € N and zero for other m. The Parseval equality
combined with (2.17) thus says that ffN (PN = (27)V2Y g Contm
and the result follows.

Minimization of Q(f, fo) in (1.2) with respect to 0 leads to the approximate
likelihood estimating equations

P J
(2.20) ](1—fN(A))"J;Tf(H£;‘—)d)\:0, k=1,...,r
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Their solution, if exists, determines the so called approximate likelihood estimator.
The estimating equations (2.20) are generally biased. That means the expectation
of the left side of (2.20) is not zero for all ¢ ¢ ©.

Remark 2.1, M we replace fN in {2.20) by fn defined by

(221) fv(d) = %d N Z Crne™N 0 = == Y En)é(nt m),

nEM(m)

where M = {m : ¢y # 0,m € Z¢} and N,, is the power of M{m), then the
estimating equations {2.20) are unbiased.

This means the risk of inconsistency of the approximate likelihood estimator
caused by the bias of estimating equations can be reduced by using in (1.2) the
periodogram (2.21) instead of fN. In order to prove it, consider in the previous
proof the periodogram (2.21) instead of {2.14). Define C,,, = 0 in case when M(m)
is an empty set and follow the proof to (2.19). Then take derivatives on both sides
of the approximate equality (2 19) and calenlate the oxpected values. Rest of the
verification is trivial. Replacement of the biased periodogram estimator by the
unbiased one was advocated already by Guyon (1982). Heyde and Gay {1989)
suggested to remove the bias by replacement of one in {2.20) by the expectation
of fi. This leads to equations (1.3).

In order to formulate the central limit theorem for the conditional maximum
likelihood estimator computed from (2.6) we introduce the following regulatity
assumptions.

i) The function F,{A) has nc zeros for A € [, 7]%, the coefficients of Py(A)
are three times continuously differentiable and their derivatives, up to third order,
are bounded on ©.

ii) For every 6 € ©, the matrices Q(#) and W{#) with elements

Qia(6) = 5(20)* [ 90, iR Pas, In o (),
(2.22)
20, P ) 94, P (V)

W)~ on) ([ 2T

| :
+ Z(zn)wd/ayj 1n|PH(,\)|2d)\fa(,k 1nPg(,\)|f3dA),

where we integrate over [—m,7]¢, are invertible.

THEOREM 2.2, Let £ be a stationary Gausstan process on o rectangular
lattice N satisfying equation (1.1) and regularity conditions (i) end (i1). Sup-
pose we compute from a set (£{n))nen of observations N residuals (e(n))neng.
No C N. If there exists a sequence (On)%_, of ML estimates such that in prob-
ability limy_, o éN = By as the sides of N grow to infinity and 6y is the true
parameter, then

(2.23) Jim VN(Oy ~ f0) = N (0, W™ (80)Q(60)W " (6))

and



172 JAROSLAV MOHAPL
(2:24) Jim VN(5} - o5) = N0, 205)
in distribution.

Proov. See Section 4.

The random variable &% is the common maximum likelihood estimator of the

truc paramcter o computed from (2.6).

Remark 2.2. For stationary unilateral pracesses described by the equation

Ny Ny
(225) Z T Z akl,.“,kd(g)&(nl - kla c-egfig — kd) = E(‘TL]_, e 1nd)5

k1=0 kq=0

where ¢ is 2 Gaussian white noise, the random variables VN (8 —8o) and VN (5% —
o8) are asymptotically independent. This is a consequence of the arguments by
Rosenblatt (1985), Chapter IV.

A vector of estimating equations is called unbiased if its expectation is zero for
each # € ©. Under fairly broad conditions the solution of an unbiased estimating
equation is a consistent, asymptotically normal estimator of the true parameter. In
particular, under the assumptions in Heyde and Gay (1989), the matrix Q™' ()
agrees with the asymptotic covarlance matrix of the quasi-likelihood estimator.
The maximum likelihood estimating equations are in some sense optimal in the
class of unbiased estimating equations. This allows comparison of the asymptotic
covariance matrices of the ML and quasi-likelihood estimators.

Remark 2.3. If Q 1{f) is the asymptotic covariance matrix of the quasi-
likelihood estimators determined by (1.3) or of the Whittle's approximate likeli-
hood modified using the periodogram (221) then Q~1(f) — W 1{#) -
Q(80)W~1(#;) is a non-negative definite matrix. See Example 3 in Heyde and
Glay (1989), Remark 2.1 and the paper by Godambe and Heyde (1987).

The central limit theorem for estimators obtained from the approximate like-
lihood function (2.13) was studied in several papers, often for non-Gaussian pro-
cesses, c.f. Giraitis and Surgailis {1990), Ileyde and Gay (1989), Hosoya and
Taniguchi (19%2), Guyon (1982), Whittle (1953, 1954). It is believed, that un-
der the Gaussianity assumption, a consistent sequence of approximate likelihood
estimators substituted in the left side of the equation (2.23), has asympilotically a
zero mean normal distribution with covariance matrix Q '{fg) defined in (2.22),
i.e. the same asymptotic distribution as the quasi-likelihood estimators have. This
result was first formulated by Whittle {1954). lts criticism can be found in Guyon
(1982), who verified this assertion for approximate likelihood estimators modified
according to (2.21). However, Guyon seems to work only with the unilateral rep-
resentation of the studied processes. In order to extend the limit theorems to
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quasi-likelihood estimators, Heyde and Gay (1989) used an argument by Rosen-
blatt {1985), which is also valid only for unilateral processes.

Remark 2.4. A simple calculation shows, that for unilateral processes ma-
trices Q{fy) and W{8;) in {2.22) agree. This means, for unilateral processes the
exact, approximate and quasi-likelihood estimators have the same asymptotic nor-
mal distribution.

Comparison of matrices @ 1(6g) and W ="' (6)Q(8)W ~"(6p) in (2.22) for a
general spatial process is not easy.

Remark 2.5. Let ©® C (—oo,00) and suppose that £ satisfies assumplions of
Theorem 2.2. Denote by ¢(fy) and w{f,) the I x 1 matrices (J{fy) and W (f),
respectively. If the characteristic polynomial of £ is a real-valued function then
w(ty) = 4(fo).

In consequence of the Schwartz inequality ¢=1(f) < w1(8g)q(Bp)w1(60).
The converse inequality can be derived from Remark 2.3.

Ezample 2.1. The model 8£{n) — £(n — 1) = ge{n) with |8] > 1 and €(n) ~
N(0,1) iid. is comumonly fitted using repatametiization to the standard AZR(1)
model by means of the relations @ = 1/8, § = ¢/8 and &(n) — aé(n — 1) =
8e(n). The ML cstimating equation utilizing observations £(0),...,£(N) and
obtained by condltlomng on £(U) provides the consistent estimate of &, Bn =
Zn L& (n)/ zn - £(n)¢(n — 1), with asymptotic distribution limy \/_(QN -

§) = N(0,(1 - 07%)8%).
Direct application of Theorem 2.2 yields the estimating equation

(2.26) 92252(n)—925n)£n-1)w o2 — 0.
n=1
If # > 1 then the consistent estimator of @ is
- 1
(2.27) HN(O'): E(GNJF a%\,— +4bN(O')),
where the random variables a and b are deflined by Lhe relations
Z.],LL ‘S(n)f(n ~1) No*®
any = S v b)) =
En:l 6 (n) Zn:l fﬁ (ﬂ)

Under the notation of Remark 2.5 we may calculate g(0) = w(8) = o2(672 + (6% —
1)~"). The asymptotic distribution of O () is therefore, according to Theorem
2.2, limy—co VN(On (o) — 8) = N{0,(1 — 0 2)8*(26% — 1)""). As the reader
may notice, if we know the true value of ¢ then direct utilization of the model
fE(n) — E(n — 1) = oge(n) for estimation of & > 1 provides an estimator with
substantially lowex variance than the ropardmetrlzed model. But if ¢ is not known
and is estimated using the ML estimator 6% = N1 Zn L(BE(n) —&(n—1))? then
we receive the same estimator for 8 as by the repa,ramotnzatlon
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3. An unconditional likelihcod

Theorem 2.1 can be used In case of unilateral multiplicative processes for
computation of the unconditional likelihood function. We derive it for processes
on the plane. Generalization to domains with higher dimension is straight forward.
We recall that the model described by the equation {1.1) with d = 2 is called
multiplicative if its characteristic polynomial Fy 5 (\,w) = Ps(A)Ps(w), where
Pe(A) =1 —01e™ — . — " and Py(w) = 1 —dre™™ — ... = Y a0 We
take A,w € O, p and g are natural numbers. This means the model is described
by the equation

(31) E(”a m)W¢l,0£(n_l77n’)_¢0,1£(nu mml)*' ’ '*¢'p,q£(n"p7 TJ’?;—Q) - E(W’rm):

where ¢;; arc the coeflicients of the characteristic polynomial and e(n,m) are
i.id. Gaussian r.v.’s with variance 0. The covariance function of this model sat-
isfies the equation Ry s(n,m} = o0?Ry g(n)Ras(m), where Ry o(n) and Ry 4(m)
are covariance functions of ordinary autoregression models of degree p and g, re-
spectively, Suppose the observations are collected from a rectangular lattice of
points N = {(n,m) : n = 0,1,...,Nym = 0,1,... . M}, N > pand M > ¢.
Then Ny = {{(n,m) :n=p,p+1,....Nom = q,g+ 1,..., M} and we condi-
tion on (£(n))nean,- If we fix m € {0,1,...,¢ — 1} and set ((n) = £(n,m),
n=101,...,N, then conditioning on {{0},...,{{p — 1), we can derive the likeli-
hood for observations {(n} = £(n,m}, n=mp, p+ L,. .., N. Such a likelihond may
be obtained for cach m = 0,1,...,¢ — 1 and its form is

(3.2) lo.m(E{p,m), ..., E(N,m) | £(0,m),....&(p— 1,m)}
1

(2702 R 5 (0)vy () (N H1-p)/2

X exp{;72 Z(f(n,m) —&1&n—1,m)
n=p

S GpE(n—p,m))z}-

The constant v1(0) = (2r) 1 [T In{Fy(A)| 2dA. Now we can fix any n = 0,1,...,
p and derive a similar likelihood for any row of observations (£{n,m))n_,
ditioned on (£{n,m))? ;. This way we can obtain the conditional likelihood for
observations {£(n,m) :n=p,...,N,m = q,..., M} conditioned on observations

inAN.={(n,m):n=0,....p—1,m=0,...,g—1}

(3.3)  {p{é{n,m), (n,m) € NAN, | £(n,m), {n,m) € N)
1
T (2ma2)(NH1-p)(M+1-q)/2

N M
1
X CXD{—E Z Z(f(n,m) — p106(n —1,m)

n=pm=gq

con-
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- ¢0,1’S(n7m - 1) - qbpfq‘{('n' —pm— Q))Q}
1
8 (QWUZRgﬁ{O)Ui(9))‘1’(”“*19)/2
N o g—1
X exp{ QJZRH; 0 nz;”nz:o n,m) — th&(n —1,m)

R pf(n*p,m))g}

1
" Qro’R,, g(o)vg( )),,{Mﬂ_q)/z

xexp{ 20’2R ) ZZf(nm)— Hhéln,m — 1)

n=0m=q

- _ﬁQ£(nJm_Q)}2}ﬂ

where vp(¥) = (27)7! [T In|Ps(w)| %dw and the coefficients ¢; depend on 4
and ¥. The unconditional likelthood for the observations with indices (n, m) € N,
must be computed directly from the definition. Combined with (3.3} it yiclds the
unconditional likelihood.

Ezample 3.1. For p = 1 and ¢ = 1, relation {3.3) leads to the likelihood
function of the doubly geometric series:

(3.4) U{0,0.9]&) = (2W?)—<N+1>(M+”/2(1 — 93 MHD2(] L g2/

® exp{ Z (E(n,m) —84(n—1,m)

— 3 (n,m -1} 4+ 8 (n -1, m — 1))2}
,[92
% exp{ Z(f(’n 0) —85(n -1 0)) }
92
X exp{ Z(.ﬁ (0,m) — B0, m — 1))2}
xexp{—z—(l;g(i Nl —ﬂz)az(o,m}.

Properties of the estimators were studied e.g. by Basu and Reinsel (1994) and
Ying (1993).
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THEOREM 3.1. Let us consider a stochastic process £ that satisfies the spatial
autoregression equalion

(3.5) &n) =Y ax(B)é(n — k) + €(n),
kek
where K = xP_ {0,1,...,n,}, € is a Gaussian white noise with variance o? and

the vector of real-valued parameters {6 : k ¢ £} C ©, L < x¥_{0,1,...,n,},
15 unknoun. Suppose that there emsts a set L' C K such that {ag(0) 1 k € L'}
define a homeomorphism of © on itself. If the true parameter 8y is in © and
the observations are sampled on a rectangular lattice then the conditional and
unconditional ML estimators of 6y and of exist and are strongly consistent. If
(éN)OA?Zl and (6%)%_, are corresponding sequences of consistent estimators then
the random vectors VN (Gn —60) and VN{62, —02) are asymptotically independent
with normal distribution specified by the relations (2.23) and (2.24).

ProoO¥. Maximization of the conditional Gaussian likelihood subject to 8 in
the relation (3.5) is equivalent to finding the minimum of the quadratic form

(3.6) Qu(ad) =% 3 (s(n} =3 aw(0)é(n - k-)) .

neAp kek

i) If p=d, ap =0 for all k € K\ {(0,...,0)} and aq,.. o) = 0, then the
form has a.s. a unique minimum and the sequence of these minimums converges
to the true parameter according to the law of large numbers.

ii) Next we consider the general case. Let & = {&x(N) : k € K} be the
unique minimum of @ considered as a function of a and 8 = {6, (N) : k € £} be
the ML of # Roth are considered for a fixed sample from £ of size N. According
to our assumption the values {&g(N) : k € L'} determine a unique element 6(N)
such that ag{6(N)) = dx(N) for all k € £. The values # depend continuously on
a. Honce, according to i) we have limy_., 8(N) = 8y a.s. and hy the law of large
numbers

(3.7) lim Qn(a(B(N))) = Qa(60))

a.s., where @ arises from @y by fixing ¢ and passing with N to infinity. The last
relation and the inequalities

(3.8) Qn(a(B(N) = Qn(a(d(N))) = Qn (&(N))
have in consequence that
(3.9) Jim Qu(a(0(N)) = Qla(0u)).

The function @n(a) is conclave in each component ag, k € K. Therefore, relation
(3.7) has in consequence the inequalities ax (F(N)) 2 ap(0(N)) = ap(6o(N}). Using
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the relation limy _o 6(N) = 6y a.s. and continuity of a(8), k € £', with respect to
# we can easily prove the result for the conditional likelihood. Assumptions of the
theorem guarantee that for large samples the difference between the conditional
and unconditional maximum likelihood estimating equations may be neglected.
Hence, proof of the first part of the theorem is complete. A similar argument
allows to consider the second part of the theorem as a consequence of 'L'heorem
2.2 and Remark 2.2.

Ezample 3.2. Niu (1995) investigated a stationary temporal-spatial process
described by the equation

(3.10) Zekgtn k)+2¢;£twln) e(t,n),

k=—q

where 0, and ¢, are parameters to be estimated and €(t,n) are N(0,1) i.id. r.v.’s.
Compared to Niu we chose the parameter 6, equal to one, not #a. This hag little
eflect on application of the model as long as we do not want to draw inferences
about 6,. The choice #, = 1 provides a noticeable simplification in resulting
estimating equations for 8 Niu rconsiders the variance of € time dependent but with
a twelve month period which substantially simplifies the problem. We will suppose
the variance o2 constant over time. The aim is to obtain the conditional maximum-
likelihood estimate of the unknown parameters assuming a sufficient number of
observations over a rectangular lattice of points is available. The characteristic
polynomial of the model (3.10) is

(3.11) Py (A w) = Z e 4 qu e HA
kg

In order to determine the Jacobian of the conditional distribution we assume the
fur;ction Ziiu Qq_ke_ik“’ has no zeros for w & [~m, 7] and P (A w)/
qu=0 8,—re % as a polynomial in e~ has all roots in the unit circle for ev-
ery w € [—m,m|. We take any kK = —¢,...,¢ — 1 and calculate (see (2.11} and
(2.12))

2 T ™
(3.12) aek(QgT}Q [ f ln|P(9,¢)()\,w)|2d)\dw
—zk:u eikw
= + dAdw
(Zﬂ' / / Pig,py (A w) P(";;,é){)\,w)

T e~ tHa—kw etlg—Fkiw
- + ==, _ dw = 0.
—n \ Do iE gmre e 3 By et

This and a similar consideration for ¢ instead of # shows that the Jacobian is a
constant independent of both # and ¢. Consequently, if we observe the process on
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the rectangle A" = {(t,n) : ¢ = 0,...,T,n = 0,..., N} then the conditional ML
estimators of # and ¢ are computed from the linear equations

q T N-g
ST oY S et Kt k)
k=—q t=1 n=qg—1
P T N-g
DBy D Lt Ln)eltn— k) =0,
=1 t=1 n=g~1
q T N-—gq
ST6.5T N ettn-ket—in)
k=—gq t=1 n=¢g-1
p T N-g
D HD DT e Lt Vi) =
=1 t=1 n=g-1
k=g, .,—1,1,...,gand I’ = 1,...,T. Niu studied the asymptotic properties

of the estimators for " increasing to infinity. Theorem 2.2 is thus not applicable.
But it is easy to see that after appropriate scaling and passing with T to infinity
we obtain

q
> Jim VT - 6o) R0k - K)
k=—gq
+Z hm VT{é — & 2)RILE) = n(k"),
(3.13)
z hm Ty — 6 R, K)

k——q

P
+ Z.}Lﬁgo VT (¢y — drr)RA—1',0) = n(l"),
=1

where 1 is formed by zero mean normally distributed random variables and the
convergence is in distribution. If we set ¢ = (8,¢)" and ¢r = (fp,és) then
the ML estimators satisfy equations ['¢p = 0, where T' is made up by values
of the covariance function R, c.f. equations (3.13). Analogy with the ordinary
autoregression and unilateral processes suggests

(3.14) Tﬁm \/’?((p — ) = N(0, 771

We leave the reader to verify if this relation is true. Arguments by Niu (1995) show
that the unconditional ML estimators have the same asymptotic distribution as
the conditional ones. The paper also includes further details on the ML estimation
procedure.



MLE FOR SPATIAL AUTOREGRESSIONS 179
4. Supplementary results

A wide sense stalionary process (E(1))peza is called ergodic if it satislies a
version of the law of large numbers:

(4.1) lim ——— o L Zg ki,... kq) = E£(0,...,0)

k=1 ka=1

i the mwean ur aliwost surely. The symbol n — oo means that all components of
n=(ni,...,ng) tend to infinity.

THEOREM 4.1. If (£(n))pezae 5 a strictly stationary sequence then there is
a random variable £ such that

(42) J D DD DY (CHRW B!

ki1—1 ka=1

in the mean and almost surcly.

ProoF. The terminclogy used throughout the proof is introduced e.g. in
Krengel (1985). Denote C'(Z9) the space of all real-valued functions upon Z4 and
define on C(Z%) a set of bijections 7¢, k = 1,...,d. The mapping 7 is given
by the relation 7x(z}{(ny,..., %k, ..., 0q) = x(n1, ..., nx + 1,...,nq) for cach z €
C(Z and n = (ny,...,ng) C Z<. Bricfly, 7 is the shift on the k-th coordinate.
If we denote the product e-algebra of C'(Z%) by B then the strictly stationary
sequence (£{n)),cz« induces on B a probability measure v, 7 are endomorphisms
under v and the mappings Ty f{x) — fork(x) operating from L1{C(Z%), B, v) into
L (C(Z%), B, v) are positive contractions. The assertion is therefore a consequence
of Theorem 1.2 in Chapter 6 by Krengel (1985}.

THEOREM 4.2. (Law of Large Numbers) Let (£(n)),cz« be a strictly sta-
tionary process with finite second moments. Suppose the spectral measure of the
process s ubsolulely conlinuwous wille respect bo the Lebesgue measure. Then the
process is ergodic.

P'roor. In comsequence of the previous theorem it remains to prove that
& = E£(0,...,0) almost surely. We can and will assume E£(0,...,0) = 0. Set
Xo(A) = 1if A = 0 and yo(A) = 0 otherwise. Representation (2.4), (4.2) and the
relation

14
4.3 lim ——— gHrArtetnala) A
@ m o )

for every A € (—,7|? have in consequence that £ = |, [0} Z(dA) = Z{{0}) almost
surely. With regard to {4.2)

4.4 li Rk‘...,k,,:/ dF{A),
(4.4) i ndz Z 1 1) " (A

OOﬂ,l
=1 kag=1
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where F'is the spectral function of the process. Due to the absolute continuity of
the spectral function, the left side of {4.4) is zero. Hence, E£? = E|Z({0})]? =
f (0} dF{A)dA = 0. 'I'his may happen only if £ is zero almost surely.

Consider on Z% a metric p which assigns to every pair of points in Z¢ their
Euclidean distance. Using this metric we can define the distance between any two
subsets of Z#. We denote this distance by p again. A strictly stationary random
field (£(n)) ez is ealled a-mixing (with function o) or strongly mixing if there is
a function o of p such that for every pair of disjoint sets S C Z% and §' ¢ Z¢

{4.5) sup{|P(AR) — P(A)P(B)|: Ae A B e B} < a(p(S, 8))

and a(p) tends to zero as p goes to infinity. The o-algebras A and B are generated
hy the random variables {£(n) : n € 8} and {£(n) : n € §'}, respectively. The
a-mixing property thus means that correlation between the random variables in
the field decreases with increasing distance between them.

PrOPOSITION 4.1. If a Gaussian stationary random field has a spectral den-
sity function which is positive and continuous on (—m,7|%, then this field is strongly
mMELINgG.

PROOF. See Rosenblatt (1985).

_In order to formulate the main assertion of this section we accept the notation
zg:{, instead of 31 SV and set N = (Ny - Ny).

ny=0""" ng=0

THEOREM 4.3, Let (£(n)),cze be a strictly stationary strongly mizing
random field with E&(n) = 0 and finite second moments. Denote sy =
(B| ) €))7, If the normed sums | 3o £(n)|2/ 8% are uniformiy inte-
grable and limy_, 88 = 00, then

(4.6) lim —— 3 ¢(n) = N0, 1)

in distribution.

Proor. Tt can he ahtained hy minar changes from the proof of Theorem 2
in Volny (1986).

COROLLARY 4.1. Let (£(n)),.z+ be a Gaussian stationary zero mean ran
dom field which has a continuous spectral density f positive on (—m,7]%. Define
for a pair of arbitrarily chosen but fired indices k,1 € Z% the random variables
nin) =&t B)(n+ 1) — BE{(n+ k)(n+1). Then in distribution

(a7

1 N
Hm n) = v2(2m)? [ eik-LA) A),
dim e Do ntm = VBan)! [ )z,
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where Z is a Gaussian orthogonal measure with spectral density g(\) = (27)~¢ on
(—m, 7)<

ProoF. By Proposition 4.1 the field (£(n)),c z+ is a-mixing, thus n(n) form
again an g-mixing sequence. Due to the Gaussianity, the process (£(n)),cz¢ has
finite mixed moments of all orders. This draws with it uniform intcgrability of the
suns Zf V() /(B SN n{n)[?)~1/2. The ratio has therefore an asymptotic
normal distribution given by Theorem 4.3.

Let us investigate in more detail the expression E)| Eﬂ —; n{n)]?. Using the
(Gauss property and bta.monarlty we obtain by a direct computation:

(4.8) = Z Z En(nin{m)
n=1m=1
N-l N
= Z Z{E£ (n+Ek)(n+DEm+ k}¥{m+1)
n=1m=1
— Ftn+kYm+DEE(m + B)E(m 4+ D}
N N
=Y > ARk -1+ R*(n—m)
o +Rn+k—m—DR(n+1l—-—m—k)
- Rk 1)}
= Y (N —|n[)R*(n)
ncBy
+ > (N — DR +1-K)Rn+k 1),
neBy
where By = {n :n = (n1...., na),|nel < N,k = 1,...,d} € Z%1is a cube

with sides of length 2N, k = 1,....d, and (N — |n]) = (N1 — |m]) - (Ng —
Ing|). The functions {(2m)~%?e ~i(n. ’\)) cz+ form a complete orthonormal sys-
tem in Ly(—7,w]% Thus using the Parseval equality and the relation f(}) =

(2m)™4Y, cga el A R(t) we have

> Rn) - (Qw)d]f2(,\)dA,

ngZd

Y Rin+1-kRn+k-1)=(2r) f FAN RN g

ncZd
and the sum of integrals in (4.9) equals to 2(2m)2 [ f2{A) cos®({I — k, A} }dA. If we
divide both sides of {4.8) by N and take the limit, the term (N — |n|)/N converges
to one. Since (N — |n|)/N < 1, the expectation in (4.8) divided by N is dominated
by 2(2m)¢ [ f2(A) cos®(({—k, A})dA. We can thus apply the dominated convergence
theorem and show that

(4.9)

2

= z(gﬂ)dffz()\)cos‘z(a —k, AVYdA.

N

> nn)

n=1

. 1
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From the previous considerations it follows that the left side of (4.7) has
asymptotic normal distribution with zero mean and variance 2(27)¢ Al
cos?({! — k, AY)dA. In order to verify that let us write

(4.11) (2m)¢ f eHh=LY) (0 Z(dN)
— (2m)* [ cos((l = L N2V
n i(2w)d[sin((k CLANF(NZAN).

The random variable on the left is real-valued, thus the imaginary part in the
right must be zero almost surely. Variance of the real part equals to the right
side of (4.10). The normal random variables in (4.7) have thus the same first and
second moments and determine therefore the same normal distribution.

PrROOF OF THEOREM 2.2, Define, for the given sets Ay C A and observa-
tions (£(n))nenr, the functions
1/N

(412)  f.(8,¢) = (UW {ﬁ;)g/m]f’s(/\)zd/\* 5—(1)3(7395(”))2}7

where n € Ay. The function f,(6,£) is the conditional likelihood of £(n) condi-
tioned on the neighboring elements entering Ppé{n). The ML estimate minimizes
the negative log-likelihood L (8,£) = — 37, 4, In fu(#,£). This means it satisfies

the equation (?gLN(éN,f) = 0, where &Ly = (Jg, Ln,...,8, Lx)T. According
to the multivariate Taylor theorem there is a point 6* on the line between ¢ and
fo such that

(4.13)  OoLn (O, &) = BoLn (B0, &) + B3 L (80, ) (B — 00)T + Z(0%, €, 00).

In our notation 92 Ly (8, £) is the Jacobi matrix of the vector 8y Ly (0,£) at 8 — 0.
The last expression in (4.13), Z(6%,£,60), is a column vector with components
made up of sums of mixed third order partial derivatives dy_g,6, Ln(8,£) at 6 = 6*
multiplied by (Gun — Bou)(@un — Oou)s 4, v = 1,...,7. 'The left side of (4.13)
equals to zero by the definition of the ML estimator. If we denote by ai(f) the
coetlicients of FPp()), then the components of 3y Ly (8, £) are

(4.14) - Z 95, In fn(0,£)

neNy

T 952 Z {Da; (Pol(n))? — Eo,8s,(Pot(n))*}

neNy

= Z{Pag n)dp, Pog (1) — Eog, Po&(n)d, Po(n)}
nE.N'o

- ; 3757 ar(0)ai(6)d, (ur(0)af (8))
keZdlcZd

Yk + e + 1) ~ Eg bk + n)E(+n)).
nENo
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We recall that all but finitely many of the a are zero. If 8 = 8, then by the

strong law of large numbers, the last sum divided by N has limit zero a.s. for ¥V
growing to infinity. Thus

1
(4.15) j\}gnm "IVBHLN(GH‘E) =0 as

If we divide the sum on the left of {4.14) by v/ /N rather than by N, then we can
apply Corollary 4.1 and ebtain thag, in distribution,

{4.16) — hrn Z f}gj In f.(A,£)
" ‘m’ENo
L(k —~4A)
o \/—kEZZd tezz:d ax(8)a] (0)0s, (ar(B)a) 9})/ 7 ()\)|22(d/\)

V2 /dﬁzlje Z{d)\) = fde In | Pp(A)[2Z(dA),

where 7 is a Gaussian white noise measure with spectral function g(}) = {2r) ¢
on {—w,w]¥. Therefore,

(417) Jim \/LNB" T (0.£) = (0,05 (6)).

‘This proves that the vector 95 Ly (0, £) has asymptotically normal distribution with
a covariance matrix whose diagonal elements equal to ¢4;;{¢), 7 = 1,...,r. Form
of the off diagonal elements may be found accordingly. The covariance matrix @
is thus described by (2.22). Next we examine the limit properties of 85 Ly (6p,£).
By differentiation of dp, Ly {8,£) with respect to ¢ we obtain

5 Bo, [n(6,£) 00, fn(8,£) = [n(8.£) 00,0, fn(8,€)

(4.18) B0, Ln (6,8} =
neNg (6 6)

According to the strong law ol large nuwbers

. 1
(4.19) f\}gl{l}o ﬁaeke,LN(Qoaf)

3,0, frn(00, &)
fn(QO:g)

As we mentioned, f, may be viewed as a conditional likelihood function of £(n),
conditioned on the neighboring elements that form a vector §op. With the obvious
notation we obtain

fn(a 5( ) \50 b) . fn(gaf(n) I‘fo,b)
(420) Boo 5 09, e(n) | £0p) [E"“ [fn(ao,g(n) o)

= Eﬂuaﬂj In fn(BO: 6)89;5 In fn(g{h&) - E90

&)’(‘,]:] - E@DI — 1.
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Taking derivatives with respect to 8; and 6, on both sides we see that

68_,-9k fn (0: 5}
! fn(g(h f}

for every @ € @. In particular if ¢ — 6, then

Oy, S0 g

(4.21) Eo Fal60,6)

(4.22) Ea,8a, It f,.(00, )80, 10 {00, &)
= 4—;%{&9, ¢5(n) = Eg,3o,¢5(n)}{Do,.€5(n) — Eg,g, 5(n)}
= L {Bucon), co(n)eo(n)o,cofn)
— Epyea{n)d, cp(n) Eg,cp(n}0g, €0 (n)}
(02 Eg, 0, ca(n) o, €0(n)
+ Eg,€6(n)0p, €0(n) Ep,eo(n)Ty, ca(n))

oo g, Pa{ )09, Fy ()
== (271) d{] !PQ(A)P‘* dA

1
]

+i(2w)*d/ D, 1“|Pe()\)|2d/\/39k 1n|P3(/\)I2d)\}.

This is the component of the matrix W defined in (2.22). We used the relation
Emmnenane = EmneEnang + EminaEnang + ErgynaEnens valid for any quadruple
1, N2, M3, 74 of normal random variables. The second summand in the last line of
(4.22) comes from the relation (2.12). The expectation Fg,p, eo{n)dp, o(n) may
be evaluated in a similar way.

Finally we examine the limit of the last term in (4.13). According to (4.14)

(423)  On0.0, L (6.6 = = 30 Gpug. | as(0)ai (9)d, (ar(6)af (6))

kcZslczd

x > {&(k+n)(l +n)

nEND

— Btk +n)e(l +n)}

considered for § = 8. Note that & + n and [ + n belong to N whenever the
coeflicients ax () and a;(?) are non-zero. The expected value of (4.23) cquals to
Ro(k — 1) = 02(27)? [ | Pa(N)| " 2e**~bN dA. The coefficients of Py(A) are assumed
three times differentiable and therefore Ry(k — 1) is three times differentiable as
well. By the strong law of large numbers

(4.24) Jim o ST ek el 4 ) = Rolk— D).
nENy
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The coefficients of (A} and their mixed partial derivatives up to third order
are bounded on 6. Hence, the last term in (4.13) converges to a finite constant
for every ¢ and it 1s bounded. If (éN)‘j;f: 1 1s a sequence of ML estimators that
converges to 6y i probability then the third term in {4.13) converges to zero
in probability as well with N growing to infinity. The relation (2.23) is now a
consequence of (4.13), (4.17) and (4.22).

Next, we compute the limit (2.24). For convenience we replace in our notation
#2 with the averaged sum of squared residuals s3;( 6x). Using continuity of the
coeflicients ag(#} and the strong law of large numbers it is easy to verify that if
(Bn)7_, is a consistent sequence of estimators then (5% (On )%, where N is the
numbor of elements in Ny, is also a consistent sequence of estimatorg. That fnllaws
from the relations

{4.25) .s?\r(f)]\r) — .‘il‘g\y((){}) -2 Z(uk((j;v) — ak(Og))% Z e(n)l(n — k)

o nCNp
2
+ ]_if_ S (Z(ak(vw) — ax{tp})&(n — ’f))
nG_No kel
— % 00) + O ('ji}") :

Relation (4.21) has in consequence asymptotic unbiasedness of the estimator
s%(fx). In order to determine the limit variance we can calculate

(4.26) E(sx{f) —c’) = = Z > B(e{n) —o){e(n) + o)

REM) meMy

% (e(m) —a)(e(m) + o)
= Z > {E(E(n) - 0?)((m) - 0*)

HENU meNoy
+ E(c(n) — o)(e(m) ~ o)
x E(e(n) - o)(e(m) — 9)
+ FE(e(n) — a)(e(m) + )
x E{e(n) + a)(e(m) ~ a)} =

This is a direct consequence of normality and independence of the noisc compo-

nents £(n). Rest of the proof follows from Theorem 4.3.
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