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Abstract. We apply the Kalman Filter to the analysis of multi-unit variance
components models where each unit’s response profile follows a state space
model. We use mixed model results to obtain estimates of unit-specific ran-
dom effects, state disturbance terms and residual noise terms. We use the signal
extraction approach to smooth individual profiles. We show how to utilize the
Kalman Filter to efficiently compute the restricted loglikelihood of the model.
For the important special case where each unit’s response profile follows a con-
tinnous structural time series model with known transition matrix we derive an
EM algorithm for the restricted maximum likelihood (REML} estimation of the
variance components. We present details for the casc where individual profiles
are modeled as local polynomial trends or polynomial smoothing splines.

Key words and phrases: Continuous-time stochastic models, EM algorithm,
Kalman Filter, mixed model prediction, restricted maximum likelihood,
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1. Introduction
Time series data on a panel of units are modeled according to
(1.1) Yie — J;tﬁ + 3;:"}"5 + Tee + Vs

where y,+ denotes the response for the i-th unit at time ¢; 3 is a vector of unknown
fixed pnpulation parameters measuring the timpact of covariates; «; is a vector of
unit-specific random effects, usually offsets from the population parameters; r;; is
a stochastic component, expressed in state space form, that describes the time-
evolution of the measurements on unit #; and 14 is an independent measurement
error. Furthermore, all random components are independent across subjects.
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The model in (1.1) provides a very flexible representation as a wide variety
of models can be written in this form. The model in (1.1} without the state
space compenent was introdnced by Hartley and Rao (1967), who showed how
to compute maximum likelihood estimates of the parameters; for further discus-
sion, see Harville (1977). If r;, follows a stationary process, then we can view the
model in (1.1) as a Laird-Ware modcl (Laird and Ware (1982), Laird et ol. (1987))
with stationary errors. Special cases include independent within-unit errors, and
within-unit. errars that follow antoregressive moving average (ARMA) models; see
Jones (1993). If r;; follows a nonstationary process, then the model in (1.1} spec-
ifies a semiparametric regression function for each unit. Models of this type can
be used to smooth each unit’s response profile, in addition to the estimation of
covariate effects 3 and the prediction of subject-specific effects ;. A natural way
of smoothing the i-th unit’s profile is to extract the signal vector consisting of
elements s,4 = x4, + 2,7 + rp for t = 1,...,n;. This is the approach adopted
in this paper, and we show how to obtain the Best Linear Unbiased Predictor
(BLUP) of the signal. Since this predictor depends on unknown variance com-
ponents, we [ollow a two-stage Empiical Bayes approach. We first estimate the
parameters by maximizing the restricted loglikelihoed of the model and then sub-
stitute the restricted maximum likelihood (REML) estimates into the expressions
for the BLUPs.

The Kalman Filter is an efficient algorithm for the calculation of the likeli-
hood, and for obtaining predictions of the states, signals and future observations
in state space models. It can accomodate unequally spaced observations by oper-
ating on the state space representation of the discrete realization of a continuous
stochastic process. In the context of a single time series, a number of papers show
how to adjust the Kalman Filter for diffuse initial states and fixed cffccts. Ansley
and Kohn (1985, 1990), Kohn and Ansley (1986}, De Jong (1991) show how to
achieve this by modifyving the Kalman Filter recursions. In Section 2 of this paper
we follow our earlier approach (Tsimikas and Ledolter (1994, 1997)) which relates
the inference in state space models to mixed model prediction and estimation
within the REMT. hierarchy. Omnr methodology provides a unifving algorithmic
framework that ties together the various algorithms that have been proposed for
the inference in single-unit state space models.

In the coutext of the multi-unit Laird-Ware model, Jones (1993) shows how to
utilize the Kalman Filter for calculating the likelihood and obtaining predictions
of the random effects. In Section 3 of this paper we expand on the work of Jones.
Assigning flat prior distributions on fixed effects, we obtain REML estimales of ihe
variance components and best linear unbiased predictors (BLUPs) of the random
effects. The REML hierarchy has the advantage that the mean squared errors of
the predictions arc corrected for the estimation of fixed effects; REML estimates
of variance components are also less biased than their maximum likelihood (ML)
counterparts. We show how to implement an EM algorithm for REML estimation.

In Scction 4 we propose a general stochastic trend model for r;; that contains
smoothing polynomial splines (Anderson and Jones {1995}) and random-disturbed-
highest-derivative polynomials (Wilson (1995)) as special cases. Our model is
further enhanced by introducing stochastic seasonal components (Harvey (1989)).
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Since we assume an underlying continuous process, our results accomodate quite
easily nimeqnally spaced abservations.

2. Smoothing in the single-unit state space model

In this scction we review results on single-unit state space model estimation.
This review helps us understand the various within-unit state space structures
that arise with repeated meoasures. Detailled accounts of inference in state space
madels can be found in Harvey (1989), De Jong (1988, 1989, 1991}, Koopman and
Shephard (1992}, Koopman {1993}, and Tsimikas and Ledolter {1997).

2.1  The single-unit state space model
Consider the single-unit state space model with fixed and random time-
invariant regressors,

(2.1) Y = zp B+ zly + hioy + vy
' oy = Qpary |+ By,
where t = 1,2,...,7. The vector 3 is a p X 1 vector of fixed effects, visa g x 1
vector of time-invariant random effects; z} is the 1 x p design vector for 5 and
z; is the 1 x g design vector for «; k] is a 1 X g vector and «, is the ¢ x I state
vectnr at time t, v, is the ohservation nnise, @, is a g x g transition matrix, R,
is a ¢ x m matrix, and & is the m x 1 disturbance term in the state transition
equation. The 1,’s are uncorrelated and distributed with mean 0 and variance o2,
the £,’s are uncorrelated and distributed with mean 0 and covariance matrix =;
disturbance terms and observation notse terms are uncorrelated. The vector - has
mean 0 and covariance matrix By and is uncorrelated with the disturbance and
noise terms. Time-invariant regressors that appear in the state transition equation
are transferred to the obscrvation equation (see Harvey {1939}, p. 104).

We partition the initial state vector ag = (@, &) into a g1 x 1 vector g
with a dilfuse prior and a g3 x 1 vector agg with a proper prior distribution with
mean 0 and g2 X ¢ covariance matrix Bss. Moreover, let Bys = cov{y, aby). We

i

t—1 . . .
define o) = oy — [[,_, @1~ and move aq into the observation equation; the

modified initial state al is fixed at the value 0. We partition b, = h; Hi;é o,y
according to the partition of the initial state ag = (g, @hg)’; that is, we write
b, = (b}, : by ), where b, is a g, > 1 veetor and by, is & ¢z % 1 vector. Furthermore,
we form the p + q, row vector x} = (2] : b),), the design vector at time ¢ for the
(p+q1) x 1 vector of “fixed” effects 5* = (3", adp), and the g + g2 Tow vector
2 = (2} : Uh,), the design vector at time ¢ for the (g + ¢z) x 1 vector of random
effects v* = {7/, ahy)’. Then (2.1) can be expressed as:

g = of B+ 2+ Rl + v
(2.2) ! J{
0y = @taFl + Rt&‘.
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2.2 The state space model as a linear mized model
In mixed model form, equation {2.2} can be written as

(2.3) Y= X8+ Zv* + Ha'l 0,
where ¥y = (y1,...,yr), X = {z},...,23), Z = (2f,.. ,2}), v = (v, ..., o),
al = (og}L ,...,a}})’ and H is a T x mT matrix whose ¢ row is the vector (0,..., A},

...,0). Model (2.2) can also be expressed as a mixed model in terms of the
disturbances £ = {£7,...,&5)"

(2.4) y=Xp"+Zv" + K{+v,
B, 0 - 0
A kb e O
21 22
(2.5) K - . 1
kry Ky o0 kpr

where kj, = hiR, and ki, = h;(]_[f;é*l ®, ;}Ry, for s > t. The matrix K is
of dimension 7' x mT and has a triangular structure. The m7 x 1 vector of
disturbances £ has mean 0 and covariance matrix Z = diag(Z,,...,Zr). The
vector of the time-invariant genuinely random effects v* has a prior distribution
with mean 0 and covariance matrix B, which consists of By and B»s on its diagonal
and covariance component B12. A flat prior is assumed for the fixed effect vector.

2.3 Estimation_and prediction in the state space model
Let A = K=K’ + ¢%I, where K is given in (2.5). The covariance matrix of
the observations is given by V = var{y) = ZBZ' + A, and

(2.6) iV} =In/Aj+In|Bl+In|B ! +2ZA 1z

Furthermore, under normality, the restricted loglikelihood (Ig) and the concen.
trated loglikelihood (l¢) are given by:

T —p— 1 1 1
=2 —P=a Dy ey - Ly - Lywy
2 2 2 2
27) T 1 1
.- = _ !
le = -5 - s WVI-sy'Wy,

where W = V1 - V1IX(X'V 1X) X'Vl See Tsimikas and Ledolter (1994,
1997), for example.
The Kalman Filter {KF), applied to the model with observation equation

Yy = h;af +v; and with the initial state condition fixed at 0, performs the Cholesky
decomposition of A~!, That is, the inverse of A can be written as A~ = L'F~1L,
where the KF operator L is a lower triangular matrix with ones in the diagonal.
The diagonal matrix F = diag{fi,..., fr) is also output of the KF recursions.
The Cholesky decomposition implies that |A] = H;F:l fe-
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For any T x s matrix € one can obtain the matrix product LC by simulta-

neously applying the Kalman Filter that corresponds to the model y, = hfta:r +
to each column of C. That is, let y = ¢(;y, where c;y is the j-th column of C.
Predictions and updates of the “state” vector are collected in augmented “state”
prediction and “state” update matrices,

(2.8) A (C) =logi . agly r=t—1t,

where the KF recursions are given by:

(a-) A;/t_1(0) - @tAtfl/tfl(O)a
(b) Pijpoy = &P 1,19, + RER,,

1
(29) (L) At/t(C) - Af./t—l(O) + *Pt/‘t_,]_fth;(C),
fr
1 !
(d) Pt/t = Pt/t——l - }-:Pt/t—lhthtpt/t—la

(&) fi=hiPys1hi+ 0>

The 1 x s row vector E[(C) = [ce, €2, ..., Cts] — My Ay {C) collects the “mno-
vations” at time ¢ for the rows of C. The initial conditions are Aq/{(C) = 0 and
Fy/0 = 0, matrices of zeroes of respective dimensions. Note that only equations
(a) and (c) in (2.9) are augmented. As a by-product of these recursions we obtain
InjA| = dety, where

(2.10) det, = det,—1 +1Infr, {detg =0).

Computational savings in the recursions occur when C is lower triangular. In
that case c(;) has zeroes as its first j — 1 elements and

3 c .
(2-11) )y — oy — 0 for tay
The matrix C’A~'C + G, where GG is a s X s matrix, is obtained through the
recursion

(2.12) QiC5C) — Qur(CC) + }tEt(C)E;(C),

with starting value Qo{C:G) = G. It follows that C'A"1C + G = Qr(C;G). If
¢ is triangular, simplifications arise as (see (2.11)) several elements of ££,(C) are
known to be zero.

Evaluation of the loglikelihoods in (2.7}, disturbance smoothing, and signal
extraction is accomplished through the augmented KF recursions defined in (2.9);
see Tsimikas and Ledolter (1997). This is achieved by sclecting the appropriate C
and G matrices, and by sweeping the end result of the augmented KF recursions on
the rows that correspond to the time-invariant effects. The appropriate C matrix
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depends on the particular application, but is generally of the form [X : 7 @y : Al
The appropriate G matrix in this paper is of the form G = diag(0, B~1,0,0).

For disturbance smoothing we select € = [X : Z :y : I : K]. At the end of
the recursions we get

(2.13) Qr{X:Z:y:1:K];G)
X'AlX X'A-Z XAy | X'A-1 X'A'K
ZfA—lX ZfA—lz 14 B?l Z’A’ly Z’A71 Z.'A-—'IK
- y’A’lX y!Am]_Z y'A_ly yfA—l y’A—IK
AYX ALz Aly | ATY ATIK
K'A™X K'A-1z K'A~ly | K'A™Y K'ATK

If we sweep on the g+ gg rows that correspond to the time-invariant random effects
{that is, the second “row” of matrices in (2.13)), we obtain

(214) Q¥IX:Z:y:1:K|;Q)

X'v-lx —-X'v-1lzp X'v-ly | xX'v-! X'VTlK

BZ'V-'X B-BZ'V-'ZB BZ'V 'y |BZ'V'! BZV K

_ ytv—lX Hy"V_IZB yrv—ly er—l y.'v—]K
v X ~V-zZB vy | ov! VK
K'v-1x -KVv'zB KV'ly| Kv'! KVIK

Further sweeping the matrix in (2.14) on its first p + g rows that correspond to
the “fixed” effects leads to

(2.15) Q%&EML([X:Z:Q;:I:K];C)

(X'v-1x)-1 ~-UZB B* U UK
-BZ'U" B-BZWZB 4 |BZ'W BI'WK
= -3 A yWy | W yWK
Nig ~WZB Wy W WK
—K'T _K'WZB K'Wy| K'W KWK

where W =V-! - VIX(X'V1X) ' X'V !and U = (X'VIX)"1X'V—L

| X'V~ X| and |Z'A~'Z + B~} are obtained during the sweep operations. If
the first sweep is on the rows that correspond to the random time-invariant effects
and the second one is on the rows that correspond to the “fixed” effects, and if we
denote the sucecessive pivots by pv,, then

ptai+etaa pt+a1
(216)  (ZA7'Z+B7Y = J] opv. and |[XV7'X|=T]]pv.
i=p+qi+1 i=1

If, during the second sweep on the rows that correspond to the “fixed” effects,
we avoid sweeping the lower right matrix in the partition in (2.14}, we obtain
QMU([X : Z :y: I: K|;@), which is identical to QF*MU([X : Z : y : I : K|;G),
except that W is replaced by V™1 in the lower right matrix in the partition shown
in (2.13).
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Selected compoenents of the matrix Q5" in (2.15) and its maximum likeli-
hood counterpart Q¥ are used in the inference of the model in (2.1). Standard
theory on linear mixed models (see, for example, Sallas and Llarville {1981}, Searle
et al. (1992)) implies the following results:

1) Estimation of effects: The Best Lincar Unbiased Estimator (BLUE) of
5", the Best Linear Unbiased Predictor (BLUIP) of v* and their mean square errots

(MSEs} are:

‘B+ _ (XJV_1-X’)—1.XJV_Ly; MSE(,{%W) — (XJV—]_‘XV)fl

(2.17) K , )
4% = BZ'Wy, MSE(4*)= B - BZWZB.

These expressions are obtained by taking € = [X : Z : y] in the angmented KF.
QBEEML and QMY are of dimension p+ g+ ¢ + 1.

2} Computation of restricted and concentrated loglikelihoods: Using the re-
sults in (2.6), (2.10) and {2.16}, we obtain the restricted and the concentrated
loglikelihoods in (2.7) as

T p-a 1 pryty 1 1,
,{R:———-—-Q fidet’r*:j ; hlpvi~§1n|B|—§’y Wy
(2.18) S | Prere 1 1
o= V§—§detT*§ Z ]11pv,i—§ln|B|—§y’Wy

i=ptg1+1

They are computed by taking C' = [X : Z : |, and arc maximized with respect to
the relevant parameters.

3} Signal extraction: BLUPs of the vector of signals and of the noise com-
ponents, as well as their respective MSEs, are given by

(2.19) §=—y—oWy  MSE(8) =%l — o'W
- U =o*Wy, MSE($)=c%l- o'W

This is carried out by taking € = [X : Z : ¢ : I]. The triangular structure
of I is exploited throughout the recursions (see (2.11)). QREME jg of dimension
p+g+q+ T+ 1. While the number of pivots is small, the number of elements that
are changed during each sweep is of order T2, llowever, if one’s only intercst is
in obtaining MSE(§,) but not their covariances, then it is not necessary to sweep
the off-diagonal elements of A=!. This reduces the nuraber of computations to the
order of T

4) Disturbance smoothing: The BLUP of the vector of disturbances and its

associated MSE are derived from the mixed model representation in (2.4):
£=E5K'Wy, MSE({)=E2-EK'WKEZ;

(2.20) g ) o
{':t = EthW?J; MSE(Ef) Et — \:tAf,WKt:.f'.l

where the m x T' matrix K is (see (2.5})

(221) [(t = [U,...,U,k}tt,kit.}.l,t,...,kJTt}.
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The quantitics needed for disturbance smoothing are stored in the p+g+g+1+1T+
T'm square matrix QREME([X 0 Z 1y : [ 1 K|;G). The matrices KW K in {2.20)
are the diagonal blocks of K'W K. K has a triangular structure and simplifications
analogous to (2.11) occur in the augmented Kalman filter. Furthermore, if the
covariances hetween the smoothed disturbances are not of interest, one needs to
sweep only the 7'm? elements of the diagonal blocks of K’A™"K in Q7.

Comments: The above results on the cstimation of effects and the evaluation
of the likelihood are given in De Jong (1991); running the augmented KF on
X : Z:y| is equivalent to De Jong’s diffuse Kalman Filter.

A disturbance smoother for state space models was first developed by
Koopman {1993); his algorithm requires both forward and backward recursions.
The contribution of our work consists of combining the Kalman Filter with results
from mixed model theory and presenting a general unifying framework that ties
together various special algorithms that have been proposed in the statistical liter-
ature for state space mode! inference. Our approach of smoothing the disturbance
terms and estimating the signals does not require backward recursions; it is an
alternative to the disturbance smoothing algorithm of Koopman.

Our algorithm provides the complete MSE matrices of all estimates; the co-
variance between any two disturbance or signal estimates is -obtained directly,
without the use of special recursions (as in De Jong and McKinnon {1988)). Our
approach is very general; state smoothing, adjustments for missing observations,
and forecasting are easily carried out within our framework by selecting the ap-
propriate C matrix; see Tsimikas and Ledolter (1997)

A drawback of our approach is the large storage requirement that depends on
both the number of time points 7" and the dimension of the state vector q. For
examplc, with 100 observations in a model with a state vector of dimension ¢ = 2,
QRPMLUX . Z iy 1 K|;G)is a (301 +p+g+q) x (301 + p+ g+ ¢) matrix,
However, considerable savings can be obtained during the matrix recursions by
utilizing the simplifications that arise from the special structure of I and K. The
discussion under points 3) and 4) of this section shows that while the dimension
of the matrix may be large, computational savings can be realized by processing
only the relevant compounents; [or further discussion, see Tsimikas and Ledolter
(1997).

2.4  An EM algorithm for the estimation of variance components

Let us assume that Z;, the variance of £ in model (2.1), does not depend on
t. The EM algorithm for REML estimation of the variance components, g2 and
Z, in the state space model with known transition matrix €, can be derived from
the theory for normal linear mixed models.

The (r + 1) iterates of the REML estimates of o2 and E are obtained from
the (r) iterates as:
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2[5 (r) + MSE(#(r))]

o(r +1) —
T—-p—q
— 02(7“) 4+ 0,4(7,) [(W(T)y) (;:V(T)y) - tI‘(PV(T))]
(2.22) L DR
E(r 4+ 1) = > [E ()& (r) ;: MSE(&(r))]

=i 2E G —EC )(ZKt (r)K=(r)

—
?

|_z

where tr(W) denotes the trace of the matrix W. Wo follow Koopman {1993) who
has shown how to use the disturbance smoother for EM estimation of variance
components in state space models. The disturbance smoother from the previ-
ous section is used for the caleulations, and all needed quantitios are stored in
REML([X : Z 1y I : K|;G). The indexed notation (r) denotes that the quantity
is evaluated with the (r) iterate of the parameters.
The EM itcrations for obtaining ML estimates of the variance terms are sim-
ilar, and they are given by:

a2(r 1 1)y =a*(r) | 04(?4)[(W(7"):U)’{W(r)§{) ~te(V ()]

(2.23) -
)+ ZEOE0) -SSRV RY=)

Er+1) =

The matrix Q¥Y{([X : Z : y : I : K];G) contains all needed quantities. QSEML ip
(2.15) involves more sweeping calculations than @ and, consequently, REML
estimation requires more compuler time. This is because the REML hierarchy
adjusts the MSEs of the noise and disturbance terms for the estimation of fixed
effects.

The EM iteratlons in (2.22) and (2.23) assume an arbitrary covariance ima-
trix =, but in many applications, in particular the structural time series models
considered in Section 4, this matrix is diagonal. Assume that Z has the following
structure

(2.24) = = dag(0ilm, , T3 lmas s T2 Ly ),

where mj + -+ + my, — m. In other words, the disturbance vector at ¢, § —
(€14, 85, ... &, ), consists of h mutually independent component vectors; the my;-
dimensional disturbance component §; has a N(0, G’?Im)) distribution. Denote
the I-th scalar disturbance in £; by gj.? and partition K, in (2.21) according to
the partition of the disturbance vector; that is, K, = [K{, : ... : K},]’. Then the
EM iterations for the REML estimate of o7 become

S ST ER ()2 + MSE(ER ()]

(2.25) ol(r+1) = T,

= a;(r) + oj(r)

Zt 1[( JLW( ry) (KW (r)y) - tr( JLW(T) il
Tm; '




156 JOHN V. TSIMIKAS AND JOHANNES LEDOLTER

The iteration for the ML estimates of the variance compouents is similar; the only
difference is that tr{K;; W (r)K},) in (2.28} is replaced by tr( KV Hr K, ).
The disturbance smoother also provides the necessary guantities for the imple-
mentation of the Scoring and Newton-Raphson algorithms; for details see Tsimikas
and Ledolter (1997). An earlier paper by Koopman and Shephard (1992) shows

how to utilize the disturbance smoother for the method of scoring.

3. State space models for repeated measures

Consider a multi-unit model for repeated measures in which each unit’s re-
sponse profile follows the state space model in (2.1). More specifically, the obser-
vation for the i-th unit (i = 1,... k) at time ¢ (¢ = 1,...,n;) is modeled as

(3 1) Yit — Iétﬁ + zg{g"h' + héazt + 2 g N(O: ‘72)
oy = Qo1 + Riglins Lt ~ N{0,Z);

all random components are assumed independent across units. Furthermore, we
assume that the i-th unit’s initial condition ;g is drawn from a N{ag, By} dis-
tribution, and we allow it to be correlated with ~;; let cov(vyi, o) = Bia.

After moving the initial states ayqg into the observation equations, we obtain

t—1
‘ Yit = TS+ zpv + (h; H (I}z',ti> Qo + h;ajx + i
(32) [=0
a:rt = ‘ita’:r,t—l + Rucdac; ajb‘ -0

We partition the initial condition for the é-th unit, oy = wo + a4, into a “fixed”
part «g of dimension ¢ which gets assigned a diffusc prior, and a random off-
set of dimension ¢ which is modeled as a;o ~ N(0, Byz) and cov(vyi,ayy) = Bio.
More general situations where the initial conditions are related to between-unit
covariates can be handled similarly. In general, initial conditions are regarded as
time-invariant random effects and are handled within the Laird-Ware framework.

Lot 5% = (8 : oY, 7 = () alo), a3, = (ae : B0,), and = = (2h, : Do),
where b, = ki [[;Zy ®i,t—. Then we can express the i-th unit’s response vector,
Yi = {(Yi1s. - -, Yin,), 88 & mixed model

(3.3) yi = XiB8* + Ziv] + K& + vi,
Wh(—‘J‘F‘. X" = (mi*l’ e I,:nt)" ﬂ.nd Z'i - (Z:J_a Poeey Zrni)rs EJ = ( ';13 o.e -.E:;n,-}’ al’ld
vi = (i1, Vi, ). The n; x nym matrix K; is
k;’ll 0 0
; i 21 toy 0
(3.4) K, = ' . . _ j
k;,ﬂil k*g,nﬂ U ki,'mnz-
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with k&, = hilty and k], = hg(H;;ffl ®; .. )R, for s > t. The covariance
matrix of y; is given by

(3.5) V.= Z,BZ] + A,
where
(3.6) Ai = Ki(l,, @ BYK! + 6°1,,.

3.1 REML estimution in the repeated measures model

Our approach for calculating the restricted loglikelihood of the model in (3.1)—
(3.3) processcs the units sequentially and does not require the inversion of large
matrices. This approach is useful when each unit involves more than just a small
number of observations. Qur algorithm, described in steps 1 through 4 given
below, makes extensive use of the augmented KF in carrying out the Cholesky
decomposition of A; '. In the ML hierarchy and for the evaluation of the concen-
trated loglikelihood our algorithm is similar to that of Jones for the Laird-Ware
model with ARMA errors. However, we believe that it is preferable to carry out
the analysis in the REML hierarchy, since it accounts for the estimation of fixed
effects.

STEP 1: For each unit ¢ we run the augmented KF recursions that corre-
apond to the i-th unit’s state space model,

Yir = h’ta;rt + vy

al = @z‘tf’-lt—L + Rit&it; ailo =0

on the colimns of & = [X; 1 Z; 1 yi]. Welet G = diag(U.B"l,O) and obtain
Qn, (Y[ Xi 1 Z; : yi]; G). As a by-product of the KF recursions we calculate

Tig

(3.7) detn, (i) = In|As] =D In fi(2).
t=1

STEF 2. Wesweep (2, (1) on the rows that correspond to the time-invariant
random effects (that is, rows p + ¢ + 1 through p+ g + g + ¢). The result of this
sweep is stored in Q)f (7). The pivots of this sweep are used to calculate

prg+g+g
(3.8) A =W |ZAT'Z + B = ) Inpyy(d).

{=p+q+1

STEP 3. We repeat steps 1 and 2 for 2 = 1,...,k and accumulate each
subject’s contribution to the loglikellhood through the recursious

(a) S; =S +@QL(1), (b) di=di+4d(D),

3.9
(3:9) (¢} det; = det,_1 + dety, (7);
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the abave recursions are initialized with zerces, At the end of the recursions we
obtain the matrix S, whose relevant parts are shown below:

. . ]
Y oXVX; XV
=1 i=1

(3.10) S

k
AR zw :

L g1 a

STEP 4: Wo swoeep Sy on its first p | ¢ rows, which correspond to the fixed
effects. Elements of the resulting matrix

+ +
ST 313

(3.11) S5

!
* L
—&3 S33

are used to obtain the BLUE of the fixed effect vector and its variance

k -1 /g
_ (zx:vi-lxi) (Z x;v;lyz) i,
— —1

-1

var{3"} (ZXVLX) =581

As a by-product of this sweep we obtain

k
> XV,

=1

(3.12)

ptq

= Z Inpvy,
I=1

where pv] is the I-th pivot during the sweep.

Let N — Ef:j n;. The restricted and concentrated loglikelihoods can be
expressed as

(3.13) In

:n+q

N _ _
B Sl 5 N Zlnpvl ffdetk——dk——lniB\ 333

2

—
=
i

N 1
lc:—ghﬂﬁr—gdetk dk*_lnEB‘ 533

Maximizing the restricted loglikelihood u (3.14) wilk respeci o the paraine-
ters yields REML estimates.
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3.2 BLUPs and the EM algorithm for REML estimation
Mixed model theory can be nsed to obtain the BLUPs of the i-th unit’s time-
invariant random effects vector +7, the disturbance &;, the signal s; and the noise
vector v, as well as their mean square errors. The results of Section 2, and those
in De Jong (1991) and Koopman (1993), apply. Define é; =y, — X; [3"‘ where 3*
is given in (3.12); then
~ BZ!V, '¢;; MSE(4)=B - BZ/W;Z,B
& = (1, DKV
(3.15) MSE{£) = (I, ® Z) — (In, @ D) KW K1, ® E),
& =y —oV,re;  MSE(s) = o1, — "Wy
b= oV, e MSE() = oI, — o'Wy

2

The second equation in {3.15) implies

where Wi = V7' — VL X(08, X0V, T XtV

(3.16) MSE(&;;) = 2 — ZKuWu K2

where K;p = [0,...,0, ki ss, - .-, Kin,e) IS an m x ny matrix; its elements are given in
{3.4). The BLUPs in (3.15) depend on the variance components and the param-
eters in the transition matrices ®;;. If these quantities arc unknown we estimate
them by maximizing the restricted loglikelihood. Substituting these estimates into
(3.15) results in Empirical Bayes estimates. In particular, §; is an Empirical Bayes
smoother for the i-th unit’s response profile.

For known transition matrices ®,: the BLUPs and their MSEs in equation
(3.15) are sufficient to implement an EM algorithm for REML estimation of the
between-unit and the within-unit variance components in model (3.3). Assuming
general covariance structires for B and =, we obtain the following EM algorithm:

Y ssq(ViH(neilr)) — 30, tr(Wii(r))

o(r+1) = o%(r) + o*(r)

(>mni—p—q)
(3.17) B(r+1) = B{r) + 2 A () - B(le[zz ZiWii(r) Zi] B(r)

> 2ia Gitlr)Ei(r} — S(r) 32 s KaWa(r) K| 5(r)
D ’

where ssq denotes the sum ot squares of the vector elements. For ML estimation
we simply replace (3, n, —p—¢q) by >, ng, and Wy, by V™ L

If = has the diagonal btructure shown in (2.24), then mmphﬁcations similar to
the ones shown in (2.25) occur. Partition Kj; according to the partition of the dis-
turbances, i.e. Kjy = [K{ ..., K],,]"- The EM iterations for REML estimation
of the variance components in = then become

Z(r+1)=2() +

(3.18) a?(fr + 1) = UJQ-(T) + 04(7')
NI S (K e W () (G o W () — oG5 Wi () K i)
mj(za‘:l n;)
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The augmented KF is used extensively in the derivation of the needed quan-
tities. The EM algorithim for REML or ML estimates involves the following steps:

STEP 1: Run the KF on [X; : Z,: K, : I, : &] to obtain for the ¢-th unit
QnL(Z)([Xi I Zi . K.t' . Inz. : éJG)

STEP 2: Sweep Q. ((X; : 7, : K; : I,, : &]: GG} on the rows that corre-
spond to the random time-invariant effects and obtain the matrix QMF(){[X; :

Zi K Iy, 1 6], Gy

(3.19) QF(0)

X,V X, ~X;V, ' Z;B X[VUK, XV XV
BZV7'X, B-BZV7'Z;B BZV 'K, BZ\V! A
- | Kv'Xx;  -KlV7'zZ,B  KIV7'K, KV | KVl
VX, -V, 'Z:B V'K, Vil L Ve
WOXo -avi'zB o eviKe &yt [ dvTe

This matrix contains the contribution of the i-th unit to the EM algorithm for
ML estimation of the variance components; see equation (3.17). Note that for ML
estimation alone it is not necessary to process X;.

STEP 3: Replace X[V, 'X; by >.¥ | X!V,"" X,, which we obtained during
the cvaluation of Iz, and sweep the left upper part of the matrix in {3.19) (that is,
the whole matrix, except for the last row and column) on its first p+ g rows (rows
that correspond to the fixed effects). This results in QR=ME () ([X; : Z; : K = I, -
é;]; G), with the relevant elements:

(3.20) QuMH(9)

-k -1
(S xvx)
=1

= B - BZ!W,Z;B A
KIW, K; Kivile,
Wy | V.ilg

It contains the contribution of the é-th unit to the EM algorithm for REML estima-
tion of the variance components. Considerable computational savings are achieved
by skipping the sweeping operations in STEP 2 and STEP 3 for the elements that
arc not on the rows or columns of the pivots and which are not directly needed
for the implementation of the EM algorithm.

After convergence of the EM algorithm has been achicved a final pass of the
augmented KF over the i-th unit performs Empirical Bayes estimation of ;" and
gmoothes the i-th unit’s profile through Empirical Bayes estimation of s..
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4. Local continuous polynomial trends and polynomial smoothing splines

In this section we extend the implementation of ke methodology in Sections 2
and 3 to continuous-time structural time series models. Such models are useful as
they can accomodate unequally spaced observations. We first consider the single-
untt case, which amounts to inference on a single unit without any “borrowing”
of information from other units. The continuous local polynomial trend of order
m satisfies the transition equation

(11) (i) = Aa(®) +n(t)
Wllt![ﬁ

010 0

0 01 0

Alm) | o -

¢ 00 --- 1

0 00 --- 0
is an m x m matrix and n(¢) is an m x 1 multivariate disturbance process with mean
zero and covariance matrix Q™ = diag{s?,...,02}. The observation equation
at time ¢, for v =1,...,7,is
(4.2) yr = [1:0: .. :0la(t,) + vr,

where 1. is a measurement error term with variance o2. The measurement error
is assumed independent of the white noise disturbance process 7(t).

Let 8, =t — t._1 be the elapsed time between the 7-th and the {v — 1)-th
ohservation. Tn discrete time the state space representation of the continuous local
polynomial trend model is given by:

yr = [1:0:...:0la, +vr
Qy = (Dg-m)ar—l +- ) n‘T ~ N(Ong-m))r
where (see Harvey (1989), p. 484),

(m) (m) S 5 )k
B = exp(A7™E, ) Z
(44) ‘ k=1

.25
Q= [ exp(A™ (6, = 5)Q™ exp(a ™6, — s
S0

(4.3)

Using the structure of the matrices A“ and 2", and the fact that (A“)" =0
for k > m — 1, we obtain, after some algebra,

r ) 62 5m71 B

1 i AV
or 2 {m—1)!
01 & 5;%2 m (0
(4:5) (I)SFM) - ’ (e = 2)1 ; Qgrm) = ZJ? [(-)7 g:,zjl ’

oo o : =1 {
o0 o0 b,

Lo o0 0o - 1 |
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where @(Tt) is an ! x { positive definite matrix, with clement in the a-th row and
b-th column given by

2 —a—b+1
62

65U (g b) = -
(4.6) O ) = G T — i

0; is an I x (m — I} matrix of zeroes and 0y is an (m — 1) x {m — 1) matrix of
zeroes. For o2 =0, for [ = 1,...,m — 1, and a?,

representation of a polynomial smoothing spline; sec Wecker and Ansley (1983).
For an explicit expression for 0¥ = 0 and o2 # 0, see Anderson and Jones (1995).

# ) we nhtain the state space

The clements in the non-diagonal matrix Qg-m} are functions of m variance
components. We can reparameterize this matrix and the corresponding state tran-
sition equation in terms of independent random disturbances as follows. Let L(Tl)
be the upper Cholesky factor of @(Tz); that is, Lg) is an upper triangular { x [ matrix
such that 6&” = Li’”L&”'. Then the state space model in (4.3) can be written as

Yyr = [1:0:. . O, + vy
(4.7) ) .
ar = ®™a,_y + RUM™e, s £~ N0, diag{o?, 020, . .., 0% I,0)),
where
E].T
(48) & = ; R(Tm) - [L:(U s L:(E) Co L:(m)]
ng

The disturbance vector &, is of dimension 1+---+m = m{m+1)/2; each subvector

£1- 1n the disturbance vector &, is of dimension . The matrix RE"") is an mx m(m+

1)/2 matrix; it depends on §; and does not contain unknown parameters. The

. 0. o
m X | matrix L:( ) in the above expression is given by

()
L
4. I
(4.9) - [ 0

It is simply the upper Cholesky factor of (—-)(TI) augmented by (m—1) rows of zeroes;

furthermore L:™ — 1™
By moving the initial condition ag = {0, o1, ..., 5, 1) to the observation
equation we obtain the following state space representation

t
Yr = Cego + Zagkk—j—k[l:O:...:D]aI-i-yT
al = oMol |« RM™e . £~ N0, diag(o2, 020, ... 02 1),

where ag = (.
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The widely-used polynomial smoothing spline, in which only o2, # 0, is a
special case of this model. Its state space representation is given by

m—1 k:
Yr = o + ok = +[l'0:...:(}}ai+z/7
(4.11) ; k!

of = omal |+ Lime: & ~ N(0,021,).

The model in (4.10} can be extended to handle seasonality with period s by
adding a trigonometric stochastic seasonal component. The transition equation
for a discrete realization of a continuous-time trigonometric seasonal model is

412) o, = [«/)LT] _ [ cos(Ar, 6, sin(X,, 8 )] [zp” 1J | a2 [wlt};

Yo - —sin(X, 8,) cos(A,,8,) g1 Wi
{wig,w) ~ N(0,021).

At, in the transition matrix is the seasonal frequency corresponding to &, i.e.
A, = 2mj(t.}/s, j(t;) indicating the season the 7-th observation was collected;
sce Harvey ((1989), p. 487). By moving the initial condition to the observation
equation and combining the seasonal and trend components one obtains the fol-
lowing structural model

Yr = W10 COS (Z )\tmém) + 120 8in (Z Aty 6m)

m=1 ma=1
rie—1 tk
(413) +C¥g()+zaokk' [1'0:...:0:1:0]&14*1}7
k=1
(m) ‘
ol = [(DB s ] ol 4+ (R 6L,

& ~ N0, diag(o}, 0815, ..., 05 1, 02 15))

where S is the transition matrix in (4.13). Further extensions to the continuous
structural model are possible, such as including stochastic cycles (Harvey (1989),
pPp. 487-488).

In the multi-unit case we can postulate a Laird-Ware-type model to estimate
the unit specific trend and seasonal coefficients, as well as the offects of covariates
on the unit profiles. This model specifies

)

Yir = ‘LTT)@* + Z;T’Y'n‘ik +h o T Vir
QJT N |:‘1)6r SO :| Qj‘r 1 + [R(m) ' 1/2‘[2166‘1'

where h is a vector of zeroes except for ones at the 1st and (m+ 1)-st position. The
vector 3* Includes fixed covariate effects and population coefficients for the trend
and seasonal components, whereas 7, contains unit-specific random offsets. The
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matrices ™, 8;, and R™ are functions of &;,. The methodology in Section 3

is directly applicable. We can evaluate the restricted loglikelihood, and we can
use the EM recursions in (3.18) to obtain ML or REML estimates of the variance
compornents.

REFERENCES

Anderson, S. J. and Jones, R. H. {1955). Smoothing splines for longitudinal data, Statistics in
Medicine, 14, 1235-1248,

Ansley, C. F. and Kohn, R. (1985). Estimation, filtering and smoothing in state space models
with incompletely specified initial conditions, Ann. Statist., 13, 1286-1316.

Auwley, C. I and Kohn, R, {1990). Filtering and smoothing in state space models with partially
diffuse initial conditions, J. T¥me Ser. Anal., 11, 275-293.

De Jong, P. (1988). A cross-validation filter for time series models, Biometrika, 75, 594 -600.

De Jong, P. (1989). Smoothing and interpolation with the state space model, J. Amer. Statsst.
Assoc., 84, 1085—-1088.

De Jong, P. {1891}. The diffuse Kalman filter, Ann. Statist., 19, 1073-1083.

De Jong, P. and McKinnon, M. {1988). Covariances for smoothed estimates in state space
models, Bivmetbrika, T5, 601-602,

Hartley, H. O. and Rao, J. N. K. (1967). Maximum likelihood estimation for the mixed analysis
of variance model, Biomeirika, 54, 93-108.

Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter,
Cambridge University Press, Cambridge.

Harville, D. A, (1977). Maximum likelihood approaches to variance component estimation and
to related problems, J. Amer. Statist. Assoc., T2, 320-340.

Jones, R. H. (19293). Longitudinal Dulu with Seriul Currelution. A Siule Space Approach,
Chapman Hall, London.

Kohn, R. and Ansley, C. F. (1986). Estimation, prediction and interpolation for ARIMA models
with missing data, J. Amer. Statist. Assoc., 81, T51-761.

Koopman, S. J. {1993). Disturbance smoother for state space models, Biometrika, 80, 117-126.

Koopman, S. J. and Shephard, N. {1992}, Exact score for time series models in state space form,
Biometrika, T9, 823-826.

Laird, N. M. and Ware, J. H. (1982). Rauduwu elfects models for longitudinal data, DHometrics,
38, 963-974.

Laird, N. M., Lang, N. and Stram, D. (1987). Maximum likelihood computations with repeated
measures: application of the EM algorithm, J. Amer. Statist. Assoe., 76, 860-860.

Sallas, W. M. and Harville, D. A. (1981). Best linear recursive estimation for mixed linear
models, J. Amer. Statist. Assoc., 82, 97-105.

Searle, S. R., Casella, G. and McCulloch, C. E. (1992). Variance Components, Wiley, New York.

Tsimikas, J. and Ledolter, J. (1994). REML and best linear unbiased prediclion in stale space
models, Comm. Statist. Theory Methods, 23(8), 2253-2268.

Tsimikas, J. and Ledolter, J. (1997). Mixed model representation of state space models: mew
smoothing results and their application to REMT, estimation, Statistica Sinica {forthcom-
ing).

Wecker, W. E. and Ansley, C. F. (1983). The signal extraction approach to nonlinear regression
and spline smoothing, J. Amer. Statist. Assoc., T8, 81-80.

Wilson, [3. P. (1995). Longitudinal data analysis for linear Gaussian medels with random
disturbed-highest-derivative-polynomial subject effects, Statistics in Medicine, 14, 1219-
1233.



