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Abstract. We consider exact weak and strong Bahadur-Kiefer representa-
tions of the least absolute deviation estimator for the linear regression model.
The precise behavior of these representations is obtained under minimal con-
ditions.
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1. Introduction

We consider the following linear regression model:
(1.1) Yi=zip+U;, i=1,...,n,

where {U/;}2°, is a sequence of independent identically distributed random vari-
ables; {x;}7¢, is a sequence of p dimensional vectors and 3 is a p dimensional
parameter to be estimated. Usually i = (1, z;5....,2:,). U will denote a r.v.
with the distribution of I/, We want to estimate 3 from a sample ¥1,...,Y,. A
least. absolute deviation (LAD) estimator 3, of # is a random variable such that

n "
1.2 -1 Y — 2/ 8, = inf n'S Y — 20b],
(1.2) nTh S HY; - a8, Jnf n ;I bl

=1

where |v] is the Euclidean distance.

This well-known model represents the dependence of two variables y and =z,
possibly multivariate (see for example Draper and Smith (1981); and Rao and
Toutenburg (1995)). The value of x has some influence on the value of y. z is
called the predictor variable. Y is called the response variable. 3 represents the
linear relation between the two variables. U7 is the random error. The problem is
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88 MIGUEL A. ARCONES

to estimate 8. The nsual method is to estimate 3 is to use the least squares (LS)
method. The advantage of this method is the easy computability of the estimator.
In contrast, we consider the least absolute deviation (LADY} estimator. The LAD
estimator has better robustness propertics than the LS estimator. Sinee using a
computer program, it is not difficult (nor long) to compute the LAD estimator,
the LAD seems a better choice than the LS estimator. Observe that convexity
guarantees the cxistence of a solution to (1.2). These statistical methods have a
long history {see for example Stigler (1986)).

It is known that, under regularity conditions, {V,,(3, — 8)}3%, converges in
distribution, where V,, is the p x p matrix determined by

(1.3) VZ= ijx;,
j=1

see Bagsett and Koenker (1978), Ruppert and Carroll (1980}, Bloomfield and
Steiger (1983}, Koenker and Portnoy {1987) and Bai ei al. (1989) and Pollard
(1991). In tact, it follows from their work that

(1.4) OFL(O)Valfn B)— 3 sign(U;)Vy ey -0

=1

where Fy(u) — P{U < u}. Here, we will study the rate of convergence of

(1.5) 25 (0o (B — B) — Y _ sien(U,)V,, ',

=1

both in distribution and almost surely, where sign(x) = 1 if z > 0; sign{zx) = 0 if
z = 0 and sign(z) = —1 if z < 0. Previous papers in this problem are the ones by
Koenker and Portnoy (1987), Babu (1989), Rao and Zhao (1992), Arcones (1996)
and He and Shao (1996). Koenker and Portnoy (1987) and He and Shao (1996)
imposed conditions such as n™' 377 2,2} converges to a positive definite matrix
and n”! Z?:I |z;i**7 is a bounded sequence, for some 7 > 0. The problem with
these conditions is that they are difficult to justify in a real problem, unless we
may choose the values z; beforehand. In the case p = 2, a common choice for the
points z; is to select evenly spaced points, in a region growing to infinity, with
some repotitions and having more repetitions in the onter points than in the points
in the middle (see for example Draper and Smith (1981)). For example, suppose
that n = 2km + 1 and 2, = (1,—k +m~"(j ~ 1}), for 1 < j < 2km + 1. Then,
E;'Ll .LJJ,; is of the order (j n(k{,?)' Since & — oo, the conditions assumed by
Koenker and Portnoy (1987} and He and Shao (1996) do not hold. In the previous
computation, we did not allow repetitions between the x’s. A similar computation
shows that 2;1115:}373‘ is of the order (j nz.z), when the predictor poluls are
(1, —k+m~(j — 1)), for 1 < j < 2km + 1 with some repetitions and the number
of repetitions is nondecreasing with the distance of the point to the center of the
range of the predictors values. Of course, the conditions assumed by Koenker and
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Portnoy (1987) and He and Shao (1996) hold if {x;} is a sequence of L.i.d.r.v.’s with
finite (4 + 7}-th moment. In this case, exact sccond order expansions for the LAD
estimator follows from the work 1 Arcones (1996}, assuming that Efjz;[?] < oo.
Babu (1989) considered general types of conditions in the sequence of regressors.
The problem is that his bound does not give the right rate for some sequences of
regressors {see Section 3 below). Kocnker and Portnoy {(1987) and Babu (1989)
only considered LAD estimators. Instead of considering the particular function
h{z} = |z|, Rao and Zhao (1992) and He and Shao {1996) considered a more
general class of regression A -cstimators.

There are several reasons to study the rate of convergence of term in (1.5).
It is a measure of the diffcrentiability of a M-estimator. It is also useful in the
study of L-statistics (see Koenker and Portnoy (1987)}. It is also useful in the
construction of sequential fixed-width confidence intervals (see Chow and Robbins
(1965)). Among other results, we will see that, under regularity conditions,

(1.6)  an 2F(0WValBu — B) = > _ sian(UVi ey = Op(l)
F=1

and
(1.7) limsup a,,(2log logn) 3/

n—oo

n
-2FU(U)V A Z‘ilgn U,, T ;LJ —c a.s.
=1

where u, = (Z; LV ) H1/% and ¢ is a positive constant.

The main tools, that we use, come from empirical processes. We apply a
method very similar to the one in Arcones (1994): a central limit theorem (CLT)
and a law of the iterated logarithm (LIL) holding uniformly over certain classes
of functions. In that reference, the classes of functions are VC classes and the
summands are i.i.d. Here, we usc the results in Arcones (1995a, 19956) which
apply to some processes of sums of independent, but non-necessarily identically
distributed r.v.’s. Another ingredient in the proofs will be the Talagrand isoperi-
metric inequality (Ledoux and Talagrand (1991), Theorem 6.17). We will use this
inequality as an infinite dimensional Bernstein’s ineguality.

We will usc the notation in empirical processes. We will denote by {;}72, a
sequence of Rademacher r.v.’s independent. of the sequence {U;}72,. ¢ will design
a constant that may vary from occurrence to occurrence.

2. The weak Bahadur-Kiefer representation of LAD regression estimators

In this section we study the distributional asymptotic behavior of (1.5). Most,
of the time, we will assume the following assumptions:
{A.1) U has a density fi(u) in a neighborhood of 0, fi/(u) is continuous at 0,

fu(0) #0 and
P{U <z} =27 +afu(0)+0E") as ¢ —0.
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(A.2) Yor n large enough, Z?:l z;z} has a positive definite square oot V.
(AS) max|<j<n, ‘Vn_l.’L'j| — (.
(A.4) For each 7 > 0,

n
E :an mJ‘Ian‘Vf:liﬂjl-;’T — 0,
i=1

where a, = (23:1 [V, )~/
It is well known that, under (A.1)-(A.3), we have asymptotic normality of the

LAD estimator (see Bassett and Koenker (1978); Bloomfield and Steiger (1983);
Bai et ol. (1989); and Pollard (1991)):

THEOREM 2.1.  Under conditions (A 1}-{A.3),

(2.1) 2fu(0)V, ngn AV, 2o

Obrserve that (2.1) and the wuoullivariate CLT imply that

(2'2) Vn(Bn - JBJ i’g:

where g is a centered Gaussian random vector.

To get the second order expansion of the LLAD estimator, we are requiring
the extra condition (A.4). This condition is very weak. Observe that if {z; |l
is a sequence of RP-valued iid.r.v.’s such that Ef|z1{%] < oo and E[z 2}] is a
positive definite matrix, then, with probability one, {A.3) and (A.4) hald Ry
the law of the large numbers, with probability one, n™' 377 | z;2/ converges to
Elx,z{]. By the Marcinkiewicz law of the large numbers, with probability one,

‘1/271, g 200

Ifn=2km+1and 7} = ( —k+m (7 -1}, for 1 < j < 2km + 1. Then,
Z;;l x;x; is of the order (0 , MaX)<;<q |V, 12| is of the order n™/2 and a,,
is of the order n'/*. So, condltlons (A.3) and {A.4) hold in this case. Last assertion
is also true when the points are chosen in a similar way for the multivariate case.

Next, we give the heuristic arguments that we will use. Given the definition
of f3,,, we should expect that

(2.3) an Zsign(Uj — 25V, NG — BV, 1y 2.
Let

(2.4) Wo(t) = a, T(qlgn(U A lt)—ﬂign(Uj)uE[sign(U 'V 11)})1/"711'.1-

VRl ivn
=1
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and let

i

H.(f) == a, Zsign(U 'ern OV, L
j=1
It is easy to see that

T k3
1.(t) = W,(t) + an Z E[sign(U; — :c;Vn_lt)}anlsL'j + Zsign{Uj)Vﬂflrj
i=1 7=1
and

anZE[Sign( — 2LV, M) — sign(U)NV ey = —2F(0)ant + o(1).

Thus, we expect to get that
0= Hn(vn(,én o ﬁ)) = Wn(Vn(Bn - JB)}

it
— 2FL (), Vu(Ba — B) + a,, Z sign(I7V, 7 a; 4+ op(1).
i=1
The scquence of real numbers {a,,} is chosen so that the stochastic process {W,(t) :
{t| < T} converges to a nondegenerate limit, for each T < oo. We will get that

k(3

2F (D), n(ﬂ -3 —a, Zsign(Uj)V;lfrtj

=1

converges in distribution to the limit of W,,(V;,(3, — 3)). Next, we make previous
arguments rigorous and precise. First, we prove (2.3).

LeMMA 2.1.  Under conditions (A.1)—(AA4):

Tt

n Zslgn(U -z ( -V, 0.

i=1

PrROOF. Let & > 0 be such that U has a density in [—8,81. Since f, is a
solution of (1.2), for each v € R”, v # 0,

0< lim 1~ 12 Uj — &5 (Bn + tv — )] — |U; — < (Bn — B

i=1
i n
= — > dhusigu(U; — a5 (0n = Oy, parpupy + 2 1500, = (3, -y
Jj=1 j=1

Taking v = —V,”! and v = V.1, we get that

TE T

Tt

ity Zsign(U *1'( ﬁ))V Ly <anT|V ~L1|In = (B —A)

i=i =1
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Given 1 < iy < iy < -+ <ipyq < n, there are Ay, ..., Ay such that zg’if ATy =

0 and not all X’s are zero. If U;, = 2 (anﬂ), for1 <j < p+l,then Efi; AU, =
0. But, since the distribution of U is continuous in [~8,8], when |U; | < & for
each} < ji<ptl, Zfill A;Ui, = 0 happens with probability zero. So, when
|VeiBn — 8} < 6, with probability one,

n

-1,.. R , -1, N
a Vi iy, — (5 -p0) gpfé‘;‘?ﬂ“”m 1T 01l (-t
=1 ==

So, it suffices to prove that
max an|V, ta;|l 50
1<j<n n TIHU <MV "] !

for each M < co. Given 7 > 0

—1..
F {1?3'&_%(1'& an|Vy; xﬂl[iUﬂthVJifﬂjl Z T}

n n
= ZP{{UJ‘ = NIIVn71$j|}Ian|V,;'lzj|21' = CZ
J=1 j=1

.
1/TL w.?[Ian\Vrflzr:jlzf‘

So, the claim follows. O
LEMMA 2.2, Under conditions (A.1)—-(A.4),

n

sup @, Z(E[sign(Uj - :E}Vn"lt)]Vn_lccj + 2fp(0)t) — 0

=T |55
as n — 00, for each T < 0c.

Proor. By condition {A.1)

L

Sup Gn Z(E[sign(Uj - a:_’?-Vﬂ_lt)}Vn_lznj + 2 fu(0)t)

l#<T =1

T

= sup @, Z(Vn_lxj(l — 2F (2 V, 1) + 2fu (02 V, ')
iH<T j=1

1/2

ki n
Scany Vit =c| DoVl
=1 Jj=1

n 1/2
) -t (1/2 ~1,, 42
< clgljdgn\Vn ] (Zan i | ) — 0.

i=1
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Observe that
n n
-1, |2 —2

Z|Vn 'z;|? = trace ZJ:;VH T,
i=1 i=1
T

= trace }: mja:;—ang = trace(lpxp) = P,

J=1

where I, is the identity matrix p x p. O

We will need to bound tails probabilities for some stochastic processes. We
will need the following theorem which is Theorem 12 in Arcones (19955):

THEOREM 2.2. Let X{,..., X, be independent r.v.’s with values in the mea-
surable spaces (S1,81),...,{(5n, Sn) respectively. Let Ty be a parameter set. Let
Fi(0) = 85 — R be o mewsuwrable function for cach t € Ty and each 1 < j < n. Let
Fj(z) = supyeq, 1fi{z, )], Let a > 4. Let qo be an integer. Suppose that for each
g > qo, there exists a function 7, : Ty — Ty such that

Tomt(t) = mgmn(s), i () = mo(s),

D Bl(290,4( X5, mg(t))) A (227AT (X, T (1)) <1

i=1
where
Ajglz, mg(t)) = Sup )Ifj(:v, 5) — fi(z,mq(8))]-
simy(s)=mglt
Then,
Pasup | Y e (f(X5t) — f(X;,mq{t)))] = M
tcTy i1
< P{Fj(Xj) > M{a+1)7'2 % 2 (log Ngyia) ™12
=1
R =] ‘I.
. ( > QQ(loqu)W) }
g=go+2
+ Z AN,
g=q0
for

0
M=2Ya+1) Y 27%og N2,
g=go+2
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where N, is the cardinality of wo(To).
Next lemma states the stochastic process in (2.4) is stochastically bounded.

LEMMA 2.3. Assume conditions (A.1)-(A.4). Let

Woit) == an Z(Sign(Uj - m;Vn’lt) — sign(U;) — Elsign(U; — 23V, 'OV, 2y
i=1
Then,
sup [W,, ()| = Op(1)

[t]=F

for each T < o0.

Proor. Without loss of generality, we may assume that T is a positive
integer. We have that

(2-5) Wn(t) = 2an Z(IU,'SO - IU,-gx;V,{lt = EUUJ'SO - Iqjggg;vn—lt})vn—lmj
i=1

+ 129 Z(I[]J—:m;\/n_it o P{U] = ‘P‘C;Vﬂ_lt})vn_lm.f

j=1
n
—1,
— Qp E Irjj:QVn Ly
J=1

There are ¢, 8 > 0 such that |fy(u)| < er|ul, for ju| < 8, and Fis(u) has a
density in |u| < 6. Take n such that max;<j<n |V, 'z;] < 6. Take M < 20 such

that 2¢|7T| < M?. We have that
| n
|S|LLI}P Un Z(ijg{) — IU,<:¢'.V,,_1t — E[ijso — IU,—<$’ anlt])Vn_ll‘j > M
1< - =5 ERd
= =1

< M2 sup a2 Y Ryl V ) - POV
= =1

T
< M72a2Y " o|T|| 2V P = M2 |T

i=1

< 1/2

So, by Lemma 1.2.1 in Giné and Zinn (1986},

i

-1

r \S\uzpf Gn Z(IUJ‘SO - IUjém;%:it — Elly,<0 — IU;'SIQ-V;%DVH zj| > 4M
o -

< =

ki

< 2P ¢ sup an Zﬁj(IUﬁU - I.(rjgcr;v,:lf)vn_1$.f =M

[t| <M =1
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Now, we apply Theorem 2.2 to Ty = {t € R : |t| < T'}. Given ¢ > 1, large enough,
take a positive integer m such that 4p'/2¢;m ™1 < 2729 < 4pM2¢(m — 1)L,

Given t = (¢, ..., ¢, we define my(t) as follows. If =T + m~1j, < !9 <
~T 4+ m~1(j; + 1), for some integers ji,. v dp With 0 < 44,00, gp £ 2Tm, we
define 7 (t) = (=T +m j1,...,~T +m~1j,)". Then, |r,(t) —t| < m 1p'/? for
each t € I3. We have that

Ajo(z,mg(t)) = sup  [fi{z,8) = fi(z, mg(t))]

sy () =y (1)

-1
< 20y, vt i<V by mepr e Ve L

D BIAL (X5, g ()] < deym™ ' pPal Y T VT )P < 27
=1 =1
We algo have that
N, < (2I'm + 1) < (8Tp'/%¢,2%0 + 27 + 1)P,
Therefore, by Theorem 2.2,

L3

-1
P < osup anzﬁi(IU;SO“Iujga;;.v,:'lt)vn x> M

[t M i=1

< ZP{UjI < TV,

=1
an|Viitz;| > M(a + D27 ®(log Ny 1) ¥

o0 -1
( Z Q—Q(]nqu)l/Q) }

4=qo+2
o0
+ > AN
4=q0
oc L ]
< Z 4N + Z Ctx;vn_iifani\/n_la,jch’
9= 3=1
for 0
M>2%a+1) Z 2_q(108Nq)l/2-
g=qo+2
S0,
i3
lim limsupP< sup aq Z(Iujgo Ay ety
M50 psoo T |55 T

>M}:O.

—1..
- E[IUJSO - I{J,ga,-;v,rlt])vn &Ly
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It is easy to see that the proof of Lemma 2.1 gives that

I)
sup ang Iy, U, = Vi 1¢V z;|—0.
<ty 5o

Since P{U =0} =0,

n
_ P
Un, Z Iy, oV, Ixj = 0.

=1

Therefore, the claim follows. O

THEOREM 2.3. Under conditions (A.1)-(A4),

(2.6) | 260 (OWVa(Bn — B) = Y _sign(U;)V,, ;| = Op(1).

Proor. By Lemmas 2.2 and 2.3,

.

sup 2a, fu{0)t + an Z(Sign(Uj - :c}Vnmlt) — sign(U; )V, Tz = Op(1),

I < i

for cach T < oc. From this and (2.2),

n

2a, fir(0)Va(Bn — B) + an Y (sign(U; — 25(3n = B)) — sign(U; )V, w5 = Op(1).

i=1
From this and Lemma 2.1, (2.6) follows. O

Next, we will prove that under some extra conditions, the bound in 'T'heorem
2.3 is attained. We will need the following lemma, which is a particular case of
Theorem 1.5 in Arcones (1995a).

THEOREM 2.4. Let {k,}5%, be a sequence of positive integers converging to
infinity. Let Xn1,..., Xpk, be independent r.v.’s with values in the measurable
spaces (Sp1,Sn1);---14Snkn>Snk,) respectively. Let To be a parameter set. Let
faj(t):Sp; —Rbea measurable function for each t € Ty and each 1 < j < ky,.
Let b > 0. Suppose that:

(i} Zj:] P{F, {Xn;} > n} — 0, for each y > 0, where Fy;(z) =

SUPteTs, Un,j(l', £)i-
(i) lim,,—, o Cov(S,(s,b), Sn(t, b)) exists for each s,t € To, where

t b) z:fn'n’ n.g; Ilfn’i(Xﬂl t)[<b-
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(iil) There arve positive integers qo and ng; a function my : Ty — Ty, for each
q > qo; and a function Ay (- me(t}) : Sp; — [0,00), for each 1 < j < ky, each
n > ng, each q > go and ecach t € Ty such that

|fn,j($s t) - fn,j(l‘, Trqt)| < Aﬂ,j,q(-T’ﬂq(t))s
for each x € S, ;, each 1 < j < ky,, each n > ng, each ¢ > qo and each t € Ty;

kﬂ.
sup > E((278n 5.0 (Xn g T (ONA2AT ) (X s Tg (DA s (X s ma ()l € 1

n2no i=1

and
o0
Z 27 % (log Nq)l/z < o0,
g=qo

where N, is the cardinality of 7,(To).
Then,

TL
Z(fn,j(Xn,jat} = Elfni(Xng: )1 ix,,.00<6) 1t € To
j=1

converges weakly to o Gaussian process {Z(t) : t € Ty} with mean zero and covari-
ance given by
E[Z(s)Z{t)] = lim Cov(Sy(s,b), Sn(t, b)}.

We also nced the following lemmas:

LEMMA 2.4. Assume conditions (A.1)—(A.4), plus the following condition:
(A.8) There is a funclion B : R” — M(p x p), where M(p = p) is the set of
P X p matrices, such that ag 337 2V eV, el Vo B — o/ BB, for each
o, 3,t c R,
Then, {W,(t) : |t| < 1"} converges weakly to the process {W(t) : [t| < T'} for
each T < oo, where

W,o{t) .= a, Z(sign(Uj — x;Vﬂ_]t} —sign(U;) — Elsign(U; — m;Vn'Lt)})anlmj

=1

and the limii process {W(t) : t € RP} is a Gaussian process of R”-valued random
vectors with mean zero and

E[{e'W))B'W(s))] = 27/ (B(t) + B(s) - B(t — 5))5,

for each s,t, o, B € RP.
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ProoF. By the estimations in Lemmas 2.1 and 2.2, it suffices to show that

kL3

p Z(IUjSO R Elly, <0 — IUjgx;ujlzDVrflﬁj T
Cg=1

converges weakly. This follows from Theorem 2.4. O

THEOREM 2.5. Under the conditions (A.1)-(A.5),

(2.7) tn (2 {0}V (Bn — B) — D sign(Ui)V,, ;) 5 W {g),

i=1

where {W () 1 t € R"} is the process in Lemma 2.4 and g is ¢ R"-valued cen-
tered Gaussion random vector, independent of the process {W(t) : t € RF}, with
Elg(9)'] = (4f2(0)) "  Ipxp, where L, is the p x p identity matriz.

Proor. It follows as Theorem 2.3, but using Lemma 2.4 instead of Lemma
2.3.0 '

Observe that if {z;}52, is a sequence of RP-valued i.i.d.r.v.’s with finite third
absolute moment, then, with probability one,

n~ 12V, — (Bl zi)V? =V,
‘n-_l/4an—>(EHT1V_1E3D_1/2,

n
n1/2 Z Exjvnfltlafvnflxjm‘;vn-lﬁ N E“mlvAltiarvglxlmflVflﬁl’

=1

for each o, 3,t € R, and

n
n1/2 Z 25l rm1a — 0, foreach 7>0.
i=1

So, with probability one, conditions {A.2}-(A.5) are satisfied. To obtain the
asymptotic normality of the LAD estimator with the rate n'/2, it seems natu-
ral to require that E[|z1]|?] < o0. To get the second order representation with
@, of the order n'/*  we are requiring that E[|z;|*] < oo. Observe that, even if
E[|z113] = co. by Theorem 2.3, we always have that

1/2
T

n
2F{'J(())Vn([;n -3 — Zsign(Uj)Vn"ix;, — Op | n3/1 Z 2|3
=1 =1

In this case, the order of (n™*/*(3_7%_, |2;|°}*/?) is bigger than n'/%.
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Even if Ei|z;|?] < oc, it is possible to get that Vn(ﬁn - ) converges in
distribution (see Pollard {1991), and Davis et al. (1992)). This happens when
the sequence {x;} is in the domain of attraction of a stable distribution (Cauchy
innovations for example). But, in this case it is not necessarily true that the limit
distribution is normal and the rate of convergence is n'/2.

The case p = 1 is the case of simple linear regression without a constant
term. In this case, conditions (A.3) and (A.4) have a more simple statement. In
particular, Theorem 2.5 in the case p — 1 says the following:

THEOREM 2.6. Assume conditions (A.1)-(A.2), p=1, and

n —1/2 7%
(A-6) (Z |$f‘-|2) 2 Nl 2 140 ez = O,
=1

1=1
as o — 00, foresch T > 0.

Then

1
T

an2 fu OV (B — B) — an Y sien(U,)V,, 'z,

i==]1
converges in distribution to W{g), where {W(t) : ¢ € R} is a Brownian mo-
tion, g is o mean-zero Gaussian random variable, independent of {W(t) : t €

R}, with Blg?] = (4f5(0))F, Vo = (71 |251)Y* and an = (327 2,7/
(7l )2

Proor. It suffices to show that (A.6) implies (A.3) -(A.5). Take n such that

1 -1/2 n
2
(E |z ) D 175 a2 (S o) S agyr ST
=1

i=1
If foj| > 7(300 ol ®) /A0 [al) Y2, then

n ~1/2
(Z I-'Eag) lzgl < 7

=1

If oyl < 7(2?:1|$?:|2)”1/4(Z?:1\l‘ilg)l/z, using that Y. 2P <
(37 |2;12)%/2, we have that then

n f1/2
(z |) oy] < 7
g=1

(A.4) follows from (A.6) directly. (A.5) holds obviously for m = 1. 3

Suppose that p = 1 and z; = ¢, for each j > 1, where ¢1,b € R. We have
that (A.2)-(A.3) hold only if b > —1/2. We also have that (A.2) and (A.6) hold if
b > —1/2. In this situation to get a second order expansion, we are not restricting
the possible sequences.

If {x;} is a sequence of real-valued nondegenerate random variables with finite
second moment, then (A.2) and (A.6) hold.
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3. The strong Bahadur-Kiefer representation of LAD regression estimators

Here, we will study the almost sure asymptotic behavior of (1.5). Here, we
will proceed in two different ways. First, we give a bound which holds under quite
general conditions. Secondly, we give an exact bound which holds under more
restricted conditions. The difference between the two approaches is to do or not
to do a blocking argument. Next theorem gives a sharp bound in the second order
expansion of the TLAD estimator:

THEOREM 3.1.  Assume that for some sequence of real numbers {by}:
(A1} U has a density fu(u) in a neighborhood of 0, Fu{w) s condinuous at 0,

fU(O) 7& 0 and
P{U<z}=2""+zfu(0) +0(z") us x—0.

(A.2) Forn large enough, Z;’z L ;25 has a positive definite square root V-
(A7) (logn)Y/ 2 maxy<j<n [V, 2| — 0.
(A.8) For each T >0,

[ &) T
>0 log )|V vt s, < 00

n=1 i=1

(A9) by > (0 fz:V, 1 [*) Y ? (logm) =11
Then. there erists ¢ finite constant ¢ such that

lim sup &7 (logn) ™" 2 fi {0V (B — B) — Zsign(Uj)V;la:j <¢  a.s.

Previous theorem applies to

1/2

™

b = | Qlogn)™* | Y 12V, P Vdy,,

i=1

where d,, = maxi<;j<n |V, lz;{, giving that, with probability one,

21 (0)Va(Bn — B) = ) sign(U;)V,7 '
i=1
1/2

=0 | | (logn)** Z EA Vv (d, logn)
=1
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Under similar conditions, Babu (1989) showed that, with probability one,

2fu(0)Va(Bn — 8) — stgn WVitzs| = O(dy/* (log n)*%).

(Observe that
1/2

(logn)** Z SVl < d/*{logn)!

and, under condition {A.7),
d, logn < dY/?(logn)**.

So, the presented bound improves that in Babu (1989).
Ifn=2km+1and z% = (1,-k + m~(j — 1)), for 1 < j < 2km + 1. Then,
by, = n V4(logn)~Y1. So,

n

2 (0)ValBn — B8) — Y _sign(U,)V, ;| = O(n™/*(log n)**).

j=1

In this example, d,, is of the order n'/2. So, the obtained bound is of the same
order as the one obtained from Babu (1989).

If p— 1 and o; = j7° for some 0 < h < 1/4, Babi’s hound gives that

QfU(O)Vn(Bn 3) Zsign(Uj)anla':j —O(n_(l—%)/‘l(logn)sﬂi).

i=1
Theorem 3.1 gives that
ki3
2 fu (0)V, Z sign(U )V = O(n_1/4(logn)3/4).
j=1

So, in this case Theorem 3.1 gives a sharper bound than that in Babu {1980}
To prove Theorem 3.1, we will need the following elemental observation (its
proof is omitted}.

LEMMA 3.1. Let U be a r.v. Suppose that U has o density fu(u) in a neigh-
borhood of O which is continuous at 0. Then

(U - t]) = BU - tEfsign(U)] + (0) + o{t2),

ast — 0.
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First, we prove an LIL for the LAD ecstimator. Next lemma. says that certain
process goes to zero almost surely.

LEMMA 3.2, Assume the conditions (A.1), (A.2) and (A.7). Then,

sup \an(t)l -0 as.
i<

for each T < oo, where

n

an(t) = (logn)_lZ(g(Uj,(logn)l/2 Ay 'ty — Elg(U;, (logn) %2 VL 5

=1
and g(x,t) = |z ~ t] — |z| + sign{z)t.

Proor. We claim that by the Talagrand inequality (see Theorem 6.17 in
Ledoux and Talagrand (1991))

n.

(3.1) ZP{ sup Z

n=1 |¢]| =T =1

g(U;. (log n)t/zx;Vnﬁlt)

— Blg(Uy, (logn) ;v 1))

> 17log n} < oo,

for each i > 0. Using that |g(z, )| < |z[j; <y, we get that

sup K Z(g(bz, (logn)' 22V, 1) — Elg(U;, (logn)/22(V,71t)])

jt|=T —1

<ecsup Y Ella(U;, (logn) 22V, 1))
H<T =

4

< c(logn]z A Y2P{JU| < T{logn)' 22V, L} = ollogn).

Thus, we may symmetrize in (3.1). In fact, we have that

n

> (g(U;, (logn) 22,7 )

j=1

(3.2) P{ sup

[t =T

— Elg(U;, (logn) 22V, )])

> 4nlog n}

< 4P ¢ sup Zejq (logn)'/ %z V| > nlogn
< 55
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Now, we apply the Talagrand inequality to the last expression with
g=4Ky, s=t=2""nlogn and k= [logn],

where K is the universal constant in that inequality, to get that (3.2) is bounded
by

[log n]
(3.3) g-2logn 4 4p i Y>> 2%nlogn » + Sexp _M ,
pa i = 916 Ko M2

where {Y]* 1 < j < n} are the order statistics of

{S“p \9(Uj, (log n)*/223V, 1t):1<j<ﬂ}
jt|<T

and

M, = E | sup ijg (U;, (log n)/ 2 Vo 3

[T |5

Since lg(z, )] < |t

[log n)

Z Y] < (log n)*/2|T| Jnax 2, V,mH = o(logn).
<ig

So, the middle term in the right hand side of {3.3) is zero. It is easy to see that
Theorem 2.2 implies that

sup (logn)~'/2 Zejg (U;, Qogn)' P ziv,7" ot So.
[t|<T =1

'I'his and the Hottmann-Jgrgensen inequality (see for example Proposition 6.8 m
Ledoux and Talagrand (1991)) implies that M, = o({logn)'/?). Therefore, (3.1)
follows. [0

From the previous lemma, we get the following:

LEMMa 3.3, Assume the conditions (A1), (A.2) and (A.7). Then

.

(3.4) (Iogn)_]'/2 QfU(O)Vn(ﬁ'n -B) - Zsign(Uj)V;lxi —0 as
j=1
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Proor. Let T < oo. By Lemma 3.1,
(3.5) sup (logn)~ (ZE U; — (logn)} 22}V, tt| - IUjH) — fulo)?

"

(logn)™* > (E[U; - (logn)'/?;V, | - |U}!

= sup
It|<T =
+ sign(U;){log n) 225V, ¢
— frr(0)(log n) (2 V7 16)%)
< sup {logn)™* Z o((log n)|z5V,7 %) —
< =

Let Gn(t) = (logn) 227 (IU; - (logn)/?ziV, 4| — |U;]) and let 7, =
(logn)™'/2(2fy(0))"1 D5 sign(U;)V,; 'a;. By Lemma 3.2 and (3.5},

(6) = Fu (@)t — 2f (Ot + An(t) = fu(O)ft = 7al> — fu(Onal* + An(),

where sup), < |An(t)] = 0 a.s. for each T < 00. Given 6 >0
ot (Ga(t) — Gu(t)) = |, inf _ (Galt) = Galmn)) = fu(0)8? +o(1)  as.
So, (3.4) follows. O
Now, we can proceed as in Section 2.
LEMMA 3.4. Assume the conditions (A1), (A.2), (A7) and (A.8)
Then, with probability one,

b l(logn)~! Zulgn( - wg(ﬁn — BNV, tey| — 0.

=1

PROOF. By the arguments in the proofl of Lemuna 2.1, it suffices to prove
that
1 1 -1, .
llf(ﬂa.(X b (logn) |Vn :LJ*I|Uj\SM{logn)lf'z]Vn_lmj[ -0 a.5.,

for each M < oo, Given 7 > 0
e 21 -1
F {1“2"‘5’26“ (log ) Vi "5 1|y, < a(log v v 51 = ’r}

<Y P{Ul < Mogm} 2|V, 2 M=t g my =3 vt |5
3=1

n
< C(IOgn)l/zz |Vn71$.?"1 ;1(logn)*1ﬂ/,fl:rj >t
i=t
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Hence, the claim follows. [
The proof of next lemma is similar to that of Lemma 2.2 and it is omitted.

LeMMA 3.5, IUnder conditions (A1), (A.2), (A.7) and (A.9),

T
sup by [(logn)~! Z:}:'J[sign(l'}dT - (logn)l/Qw;Vn—lt)]Vn_lmj + 2f, (0} — 0,
1

l|<T =

as n — oG, for each T < 00,

LEMMA 3.6. Assume the conditions {A.1), {A.2), (A7) and (A.8).
Then, for each T < 00, there exists a finite constant Cr such that

limsup sup |Wa.(t}l < Cr  a.s.,
n—ooo |l €T
where

k(3

W, (t) = by (logn) ™! Z(ijg(logn)wm;v;‘t — Iy, <o

j=1

- E[IUJ‘S(log n)t2zi vty T IUjSU})Vn_lmj'

Proor. The proof follows from the arguments in Lemma 3.2. So, we only
sketch the prool. We have to prove that

T

_‘|'_'

|§|1-1<I;“ E :ﬁj(fujg(logn)uzx;vglt —lu,<0) Vi w5
=4 4=1

(3.6) i r

n=1

> nby(logn) » < oc.

Now, we apply the Talagrand inequality to the last expression with
y=4Ry, s—t-= 2 3pbylogn  and k= [logn],

where K. We get that {3.6) is bounded by

[log n] 2p2 2
~2logn S Y7 > 2 %b, log _ by (logn)”
2 +P 2 Y = 2 b, logn +2exp( SR MZ )
=



106 MIGUEL A. ARCONES

where {Y* : 1 < j < n} are the order statistics of {I
1 <j<mn}and

=11,
J(Jj\g(logn)lszlm;V,fH!Vn ‘II’JE :

n

M, =E JZ‘E’} Zej(IUjg(log n) 2 Ve T IU-JSU)Vnil‘T.T'

=1
We have that
[log n]
PS Y Y =27, dogn
i=1
<P {1%82{11 I|Uj|5(10g”}”2|;n;vn_}\|Vn_lx.'f| = 2_37]bn}

< Z c(logr)! /2| v,! vt 15 rb -
J=1

So, by condition (A.8),

[log »]

iP Z Y > 2 b, logn } < 00.

n=1 7=1

It is easy to see that Theorem 2.2 implies that

—1/2
o g~ (Yl )

|¢f<T i1

[

-1 P
Z :EJ U; <(iognlf’2.r vt T IUJ'SO)VT! Tj —0.
J=1

This limit and the Hoffmann-Jergensen inequality (see for example Proposition
6.8 in Ledoux and Talagrand (1991)) imply that M,, = o(b,(log n)'/?). Therefore,
(3.6) follows. 00

Proor or THEOREM 3.1. It follows from the previous lemmas, using the
arguments in Theorem 2.3. N

Theorem 3.1 does not give the exact rate of convergence. Following the pre-
vious approach, but using a blocking argument, we will get the exact rate. We
have the following theorem:

THEOREM 3.2. Assume that:
(A1} U has a density fy(u) in a neighborhood of 0, fu(u) is continuous at 0,

fu(0) # 0 and
PU<z}=2" 4 zfu(®+ 0" as z—0.
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{A.2) Forn large enough, Z;;l z;x; has a positive definite square root V,.

{A5) There 15 a function B : R? — M{p x D), wh(ﬂre M(p x p) is the set of
p X p matrices, such that o2 Y [Vt Vit VT B — of B(t)8, for each
a, f3,tc RP.

(A.10) (loglogm)'/? max |V, 'z;| — 0.
1<55n
(A.11) hm lim sup sup L -V, V. =0.

=0 nooo p<m<[(146)n]

(A.12) There are r,7 > 0 such that

0o [v']
2 2 exp(=r(log ) a5y Vil )
j=11i=1
1 2
{log ), EaIN a1 |V, il 27 (lag 5) 2/e < 09
for each v > 1.
(A.13) lim lim sup sup 11— a,a; Lo 0.

8= n—oc pome [{(14+8)n]

Then, with probability one,

an(2loglogn) 3 | 2y (0)V, } sign{UU;)V,
j=1

T

n=1

15 relatively compact in RY and its limit sef is

{z(v) : {z(t))ter- € Kp-},

for T large enough, where T* = {t € R : |t| < Ty U {co} end Ky« s the unat ball
of the reproducing kernel Hilbert space of the Gaussian process {W(t) 1t € T*}
which was defined in Theorem 2.4.

Under the conditions in Theorem 3.2, there exists a finite constant ¢ such that

T

lim sup an (2log logn) %% |2 £ (OV, (B, — B) — Zsign(U.j)V,;“lﬂ:j =C  as.

O j:l
By the argument in the proof of Lemma 11 in Arcones (1996}, if there exists a

vector v € RP such that B(Av) is positive definite for each A > 0 small enough,
then ¢ > 0. If p = |, by the argument in Corollary 16 in Arcones {1996),

T , r ‘
Hype = {(uc(t))ter,m : /—T(a’{t))zdt + 4(fy(0))2((x(uu))2 < 1}
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and
T
lim sup a, (2loglogn) 3 12 £ (0)V,(8n — ) — Zsign(Uj)Vn_lzj
=334 f,(00)" V2 as.
Since e=® < ¢!, for o > 0, coudition (A.12) holds if
oG [’Y’]
o _1/4 .

(3.7) 22 (og iy e Vi@l 'L, Vel 2rlog i) =174 < 0

i=14i=1

for eachy vy > 1.

If {x;}52, is a sequence of RP-valued i.i.d.r.v.’s with finite third absolute mo-
ment and E[:cl%] is positive definite matrix, then with probability one, conditions
{A.2), (A.5), (A.10)—{A.13) hold with

0”2V, — (Blnai ) =V,
nfl//lan N (E[|mlv—1|3])—i/2
and

az L 2V, oV a2V B — Bl VT e VT s VO 8],
for each o, 3,t € R?. Observe that in this situation,

oo
Z 73/4(105.] 1/4E[|.1? I II:c |Z7yi/4{log 5)— 1/4] < 0.
=1

2 <q<3and {2,}%, is o sequence of R valued i.i.d.r.v.’s with E[|z1]9] <
oo and £ [:ri;r 1] is positive definite matrix, then with probability one, conditions
(A.2), (A.5), (A.10)—(A.13) hold with

V2, o (Elz 2 )2 =V, ay =070

and

Zm, “Ula' VeV 8 0,

for cach «, 3,t € RP. This implies that

Y sup 1 732/ (40 (2 |og log n) ~5/4

n—o0

kL

20 (O)Va(Br — 8) = Y sian(U)V, 7ty =0 as

g=1
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LEMMA 3.7.  Assume conditions: (A.1), (A.2), (A.10) and (A.11). Then,

(3.8} l;lgﬂjan(t)] -0 as.

for each T < 00, where

mn

a(t) := (loglogn)™* Z(Q(Uj’ (loglogn)'/*z V)
j=1
— Elg(Uy, (tog log ) /22 V7 11)])
and g(u,t) = |u— 1| — [u| + sign(u)t.

Proor. Take & > 0 such that

lim sup sup 11—V, V' <1/2.
n—oo n<m<[(1+86)n]

Take ng := [{L + 6)*]. Let n » 0. By symmetrization and the Lévy mequality,

I sup sup (loglogn) Z(J . (log log n)l/2 LVl
npSn<ng g [H<T

— E[g(U;, (loglog m) 2z, v, 1))

o)

< 4P sup  sup Ze;,g(Uj.,(loglogn)lf2 V. 1t} > nloglogny

nk<n<nhu|ﬂ<T

< 4P sup sup Zejg (U, (log log ny )% LV, )| = nloglog ny,
np<n<ngyi |¢<2T

=1
Tek41
< 8P ¢ sup Z €;9(U;, (loglog nk)I/QzBV.,;lt) > nloglog ng
u<er |
By the Talagrand inequality,
o0 |nk+1
ZP sup Z e;9(U;, (log log ni )2z 5 mlt) > nloglogny p < oc.
k=1 [t|<2T i=1

Therefore, from this and the lemma of Borel-Cantelli, (3.8} follows. O

It is easy to sce that the proof of Lemma 3.3 gives the following:
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LEMMA 3.8. Assume the conditions (A1), (A.2), (A.10) and (A.11). Then

T

(log logn) ~12 [ 2fy (0)V,(Bn — B) — Zsign(Uj)V,flxj —0  as

=1

We also have that the arguments in Lemma 3.4 give that:

LEMMA 3.9. Assume the conditions {A.1), (A.2), (A.11) -(A.13). Then, with
probability one,

an(2loglogn) ™34 ZSign(Uj - I;(f;n — BNV, tey — 0.

3=1

TrEMMma 3100 Assume (A1), (A2), (ABR) and (A 10)-(A13). Let

W, (1) == a,{2loglogn)~3/4

n

ot Z(I(JiS(Qloglogn}lﬂ"gxi‘/{lt — Iy, <0
i=1
—1 .
- E{Ilf'ig(zlog logn)t/aivy *t Iy, <o)V, s

Then, with probability one, {W,(£) : [t| < T'} is relatively compact in 1o {1") and its
lemat sct is the wnit ball K of the reproducing kernel Helbert space of the Cauasian
process {W(t) : |t| < T} defined in Lemma 2.8,

Proor. We will proceed as in Theorem 1 in Arcones (1994). Ilere, {c;}72,
will denote a sequence of ii.d. Rademacher’s r.v.’s, independent of sequence
{U:122,. By astandard argument based on the Arzela-Ascoli theorem, we have to
prove that

(3.9) lim %\11)2/\ W,.(t;} = sup Z Azt

[ Ye's! TERTi 1

for each t1,. .., tm € R Ary..., A € B? and each m, and
lm limsup  sup  |[W,(f) — W,(t)] =0 as.

8= nooo |t |ta|<T
Jtlftg‘sb

Condition (3.9) follows exactly as the corresponding part in Theorem 1 in Arcones
(1994). Sou, the proof of this part is omitted. Observe that

sup Z)\ z(t;) = lim Var Z(Q log log n) /2 XNW, (1))
reK- =00

T =1 =1
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Let v > 1 and let n; = [/]. Next, we will see that

(3.10} limsup sup [Wp,, (t1) — W, (£2)
7=oo |uflt2| ST
[ty —t2| <8

< 2131(5/2’1'1/2(1 + fU(U))Uzbl/d
+2%(L + 74+ r)(logd H™! as.,

for each 0 < & < 27!, where Ky is the constant in Theorem 6.17 in Ledoux and
Talagrand (1991). By symmetrization,

(311) P sup (W, (t1) — Wi, (£2)]
[ ] eaj=T
[t—s|<8

> 2'L:JK(1}-/2T1/2(1 + fu(U)')l/QOIM +20(1 +’r+’r)(logé_1}_1

M
—1..
< 4P sup Gn; z :EiVﬂJ ‘IZ(IU;S(Qlogiogn)1f2x:V,;"151
[t],]s] =T i=1

[t1 —ta]<A

- IU,,E(Q tog log n}lf'?J::V,:ltg)

> (log )Y 65K 2TV2(1 + f;(0))1/251/4

+ 281+ 7+ r)(logs™)™h)

for j large. Let

(]
Ay =Y exp(—r(logj)* ai ;) [V il ™)

=1

1/2177—1
og i)' 2V milly v 1 eogs) e
If A < g ? we apply the Talagrand inequality to the last expression with

qg= Ko V2 k=4(logj)(logs™ )",
t = 20K, P TV (1 + f(0))/261 (log )*/*

and
s = 24(1 4+ 74 7')(10gj)3/4(10g6*1)”1.
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Observe that
(KO/Q)k = j_21

g

E

N

a sup
btz |<T |35
|81 —t2| =6

-1
Eivﬂ,j ‘rE’i(IU.-S(Z log log n,-)lfﬂw;-vﬂ_ltw

-1

nj
sup

(TNPILEY par Ay
ft1—ta]<6

—12
EAS lE{(IUig(z1oglngnj)1/2x;m;1t1

-1
< AT8(1 + fu (0))(log j)'/2,
for § large. We also have that

Ui <{2loglog n; )/ 25 Vi tta

i=1

i . . .
where {Yn'"j’,-}i;1 is a nonincreasing rearrangement of

U; <(2log log ny )t 2z Vi 'tz

)|| = O((log )'*)

)] + (8Ms/k)

k
. .
ZYnj,j < 8(log j)an, sup IIU,—|§(2loglogn)l"?bn;v;HT
1<i<ing

. _ -1,
Ay sup ‘IU,—S(2]oglognj)lr"zmiVn“‘ltl IU«LS(Q]'Og10%"%)1/2“’1‘/’:‘1’52HVn 591':
[e1lslezisT ! !
1ol <5
1<i<n;.

So,

Y o>

Teiad

{a'ﬂlj

8

i[]=

(A

P
1<igng

by
< Z P{ang ‘Tiua—lirﬂf,,!:"(?. oy, lugn}l/ﬂ.l,i\r’,;l["[’ > 2(T + T)(IOgJ)
i=1

o —1/4
sup 1 <iztogtog nyt e vty 2 201+ 7+ 7){log j) / }

71/4}

nj
- A1/2 -1
< 2T (fu () +1) E (log j) ixa‘Vn_, |Ianj|ucgvn—jl1;:g(f | ry(log 53144

i=1

< OT(fu(0) + )7 S exp(—r{log j)*/ a7 !

i=1

(log ) 212V, i, parvit vt )14

< 27(fy(0) + 1) 572

V1

P

I~
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From these estimations, we get that (3.11) is bounded by
(3.12) 16(1+ T(fu(0)+1))5 7%,

for j large.
If A; > j 3, we apply the Talagrand inequality to the last cxpression with
q= Kob~1/2, kzé(logA;i)(logé_l}"l.
i = 26Ké/2T1/2(1 + fU(O))1/261/4(10gj)3/4
and
s=2Y1+ 7+ 7)(logj)**Qog )L,

Observe that

(Ko/q)* = A,

F

V1l
an, E sup E €V, Tl < (2108 108 my )1 /220 Vi
Itls 2| <T 152
[t1—22|=d

B IU1§(2loglogn_,—)ll'za:;vu_ltg) = O((]‘Ogj)l/4)

and

g
2 ry7—112
o, sup E :i‘TtVn i E[(I(J,-S(2loglognj)ifza:gvn_ltl
[talltz|<T 7
|| <6

a IU&,S(?10glogn,)1/2xgvn“1t2)2] + (SMS/k)
< 4TS+ fr(0))(log )2 + O(L)(log 5 (log A} ),

for j large. We also have that
ZYJJ!j S Y?:jll + kYn*J12

g .
where {Y¥ 1.2, is as before. So,

k
PN Yy 2sp SP{Yy 1227 s} +P{Y] 5, > 2 'k s},
i=1

We have that

P{Y; 122715}
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< ZP{a’nJ1Vn:1I"‘:!IH]1-LS(‘210g lognj)lt"gan;lmi[T > 4T(1Ogj)3/4(10g 5_1)_1}
¢—1
<2T(fyr(0) + 1)) (2log /)2 |V, I (- - ;
i 4 0g 7] Ly nj aﬂj|Vn11:r,-,|f_»"4r(iogj)3“(logé'1)71
i—1 ’

< 2T(fur(0) + 1) ) exp(—r(log )™ *ar 3|V Aol ™)

[
—1

: (IOgJ)l‘/?lIan;l |61/4Ia,,j|Vn;1:r:a'|2’r(logj)_l’f4
< 20 (f(0) 1 1)81/4A,
and

PIY) , 22 'k s}

L%
S (Z P{anj ‘an xilI‘U1‘S(2 log log 71":")1/2“/7;;1‘12”71,

i1

> 2(r + r)(log jy*H(log A7)~ })
< (Z W (fir(0) + 1)

2
N1/2y -1
. (l()gj) / anJ CL'ilIanj \V,.,;l$i|22(T+T)(i0gj)3/4(log A_«,.-l)_l)

< BT2(fy (0) + 1)?

e
x (Z(logj)“iwv,;;lmexp(—r(logj)g/"a;}iv;jm—‘}

=1

2
1/2
A Ia"g|Vﬁ}1zii>7(10gj)‘1“)
< AT (0) + 1)2A,.
From all these cstimations, we deduce that {3.11) is bounded by
(3.13) 210 (fu(0) + 1)° 4, + 8573,

for j large. Therefore, (3.10} follows.
By (3.10), to end the proof, it suflices Lo show that

(3.14) lim limsup sup  sup  |[Wyu(t) - Wi,s()| -0  as.

Tl m—no [T i angyitl
Let v > 1 and let n; = [y?]. We have that, for n; <n < njp

(3.15) W, (t) — W, (s)
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= a,(2loglogn) 3/

i

' z :(IUi§(2[oglogn)1/9xiV,flt o IU:‘SO

i=1

-1
- E[IULﬂ(Qloglogn)lfza:;v,flt — Iy lV s

an,(2loglog n;) 34

i3

) 2 :(IU¢§(2lug]ognj)lﬂwg‘/n_jlt - IUzSO

i=1
— EL[UtS(’-’ log log nJ)ll‘zmiVn—jl
= a,(2loglogn) /1

T

DV,

’ 2 :(IU5§(2loglogn)lr’zxivn_lt - IU:SO

i=1

— Elly, o (a10g 105 my172ervic e — In <o)V, 'ay — Vnw;ll.i)

+ (an(2loglog n)*3/4 = n; (2loglog nj)_3/4)

i

> Uy, <2108 10g my ) 2 vite — AUi<o

i=1

~1
- EII.U;Q(?loglog’n_,‘)ll’?ﬂtilf,rjlf - IU,'.<0])VT?,_.,- Ty

+ an(2loglogn) 3/

i

2 : (IUzg(Qloglogn)lffzzt:;anlt _IUiSO

i=n;+1

—1 .
- Euug(g1oglogn)1/2x;u,—1t — Ty.<ol}V,, "

+ an{2log logn)~*4

i

. Z :(IU“S(Qloglogn)lfzm,"-v,:lt - IUiS(Qlog logn.‘;)lt"zz_’iv,:lt

i=1
o E[IU13(2loglogn)lf,gm'v_lt
IU <(2log log n;)/ 2xl Vi D

= I (t) + T (t) + TLL, () + IVn(

Since a,{2loglogn)3/* < 2q, (2loglogn,)~>/* and |V,,,V,!| < 2, for j

and ny; <n <nyy,

(3.16) sup  sup |, {t)| <2 sup
n;<n<n; () <T n,; <n<ng 4

whose limy_4 limsup;_, . is zero. By (A.13),

(3.17) sup sup |[I1,{t)]
ni<n<ngi [HST

).

! Vﬂ 'l Vni

L1} sup [Wa(d)]

lt|<2T
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< sup  |an(2loglogn) ez (2loglogn;)*t — 1
nj <N b ’

sup |[W,(t)l,

jt|<2T

which salisfies the same propoerty.
By the Talagrand inequality (and arguments similar to the used in other parts)

(3.18) lim litnsup  sup sup [FIL,(t)] =0 as.
Tt joee ng<ngngin [H<T

For j large and ny < n < ny41, an{2 loglogn)—3/1 < 2a,,;(2loglog n, )34
and |V, V! — 1] < 8. So,

(3.19) lim limsup sup  sup |[IV,(#)
Rl S T nj<n<n;t1 ¢ LT
< limlimsup sup |[Wo(t) — Wa(s)|=0 as.
820 n—oc glls|<T
[t—si<é

By {3.15)-(3.19}, (3.14) follows. O

ProOF OF THEOREM 3.2. It follows from the previous lemmas, using the
arguments in Theorem 2.5. O
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