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Abstract. Wo consider the asymptotic behavior, both in distribution and
almost sure, of the Bahadur-Kiefer representation of the two dimensional spa-
tial medians. The rates appearing in this expansion are non-standard. The
rate in the almost sure expansion is n(2logn) " ?(2loglognt~'. The set of
clusters points in the almost sure representation is obtained. The distribution
of the Bahadur-Kiefer representation of the two dimensional spatial medians
converges with rate n{2logn) ™'/ to a limit that is determined precisely.
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1. The Bahadur-Kiefer representation of the two dimensional spatial medians

In this note, we investigate the Bahadur-Kicfer represcentation of the two
dimensional spatial medians. Let {X;}72 be a sequence of 1.1.d.r.v.’s with values
in R%. Let X be a copy of X;. Haldane (1948) extended the definition of median
to the multivariate case, defining the spatial median 8, as a statistic such that

(1.1) D 1K, ~ 6, = inf > "|X; -8,
j—1 9ER® 7]

where |-| is the Euclidean distance. The main advantage of this estimator over the
sample mean is that it is more robust. It is less sensible to the presence of outliers.
Another interesting property of the spatial median is that it has a breakdown point
of 1/2. It also has nice invariance properties. The spatial median is invariant by
translations; rotations {the choice and the location of the coordinates axes) and
dilations (choice of units). Of course, this estimator f, is estimating a parameter
8y characterized by

(1.2) ElIX -0 —|X =6]] >0, for 6# 6.

If the distribution of X is symmetric about xg, then (1.2} holds for 8y = z¢. It is
known that if X is not concentrated in a subspace of dimension one, then there is
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a unique fy satisfying (1.2), i.e. the spatial median is well (and uniquely) defined
when the dimension is bigger than one (see for example Milasevic and Ducharme
(1987)).

Given an estimator 6, of a parameter iy, under regularity conditions, there
is a function ¢ such that

(1.3) n2{ 6, — 8o — 0 S (8(X;) — Elp(X)) | Zo.
J=1

If E{l¢(X)]?] < oo and (1.3) holds, then the statistic 0, is asymptotically normal.
Sometimes, it is interesting to know the exact rate of convergence of the term in
(1.3). The study of the rate of convergence of terms as the one in {1.3) started
with Bahadur (1966) and Kiefer (1967), which considered the n-th quantile, i.e.
6, := inf {t : Fn(t) > p}, where F,, be the empirical distribution function. Let F
be the distribution function of X;. Kiefer (1967) showed that if # is the value
such that I"(0y) = p, F is second diffcrentiable at 8 and F'(8o) > 0, then

(14)  Timsup(n/2loglogn)*/* (B, — fo + (F(60)) " (Fu(fo) — F(60)))

n—oo

_ 21/2373/4101/4(1 - p)1/4 as.

He also proved that

(1.5) 0346, — B0 + (F'(80)) ™ (Fulfo) — F(60))) Lp AL - )Y V2,

where g and g» are two independent standard normal r.v.’s. Finding the rate of
convergence of (1.3), we grasp a very good insight into the effect of the influence
curve in the asymptotics of the statistic. It is a way to measure the differentiability
of the statistical functional. Bahadur-Kiefer representations are needed in the
construction of sequential fixed width confidence intervals for a parameter (see
Chow and Robbins (1965); and Carroll (1078)). Sccond order representations can
be very useful in gaining statistical insights (see for example the four problems in
Pfanzagl (1985), pages 4 and 5).

The Bahadur-Kiefer representation of the spatial median was considercd by
Arcones and Mason (1992). Under the condition E[|X — 85]7%] < oc and d > 2,
they obtained that

(1.6) limsupn(2loglogn) ™ |H'(0)(Bn — o) + Hul(fo) = ¢ as.

TL—r D

where ¢ is a constant, H'(6p) is the d x d matrix determined by
(1.7) H' (Bo)t = E[|X — 0] 3 ({X = 80)'t)(X — 60) — |X ~ 6o} '],

Hn(60) =n™" Y h(X; - bo),
i=1
and
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(1.8) h(z) = |z| 'z, i z#0 and h(0)=0.

Observe that there is no abuse of notation, under the condition E[|X —6q|~'] < oo,
H'{8) is the derivative of H{f) := Eh(X — #)] (see the remark after Lemma 2.1
below). The derivative of E||X — @] at g, which is E[R(X — o)}, is zero. They
also showed that

(1.9) {(n(H'(80){6, — 80) + Ha(60))}, n=1,

converges in distribution. If d = 1, the spatial median is the usual median (or the
p-th quantile for p = 1/2). Thus, the asymptotics of the terms in (1.6) and (1.9)
when d — 1, are given in (1.4) and (1.5) taking p = 1/2 (with different rates).

It is easy to see that the condition E[JX —#fo|™?] < oo is not satisfied naturally
if X has values in R%. For example, it does not hold if X has a positive continuous
density in a neighborhood of 6. E{|X — |7} < co holds in some situations.
This condition holds for some discrete distributions. It also holds when X has a
first differentiable density in a neighborhood of #; which is zero at 8y. Niemiro
(1992) and Koltchinskii (1994a, 19945) mentioned that another rate appears in
(1.9) in this two dimensional situation. Here, we obtain the exact rate in the
almost. sure and distributional behavior of the Bahadur-Kiefer representation of
two dimensional spatial medians under mild conditions. We use the approach
in Arcones (1994a, 1994b). We will obtain that the rate of the Bahadur-Kiefer
representation of the two dimensional spatial median is that of the one dimensional
L3yo estimators, which were considered in these last references. One reason to
determine the asymptotic limit behavior of the Bahadur-Kiefer representation of
two dimensional spatial medians is to find out whether the limit depends or not on
the underlying distribution. We will obtain that there is distributional dependence
at difference with the one dimensional case. Our main result is the following:

TureoreM 1.1, Let {X;}%2, be a sequence of id.d.r..’s with values in R”.
Suppose that:
(1) There cwists B © R? such that

EIX — 0] — X = 6]] > 0,
for each 6 # 6,.
(i) H(®) = E[R(X — 0)] (h is as in (1.8)) has a second order erpansion at
Oq of the form:
H(6) = H(fo) + H'(60) - (§ — 60) + B(6 — 60,8 — 00) + (1 — 6o[),
as 6 — g, where B : R® x R2 — R? is a positive definite bilinear form.
(iii) X has a density f(z) in a neighborhood of 6o which is continuous at 0.

Then,
(a) With probability one,

{(n{2logn)~"/*(2log log ny (I (06)(0n — 6u) | Hu(80))},
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is relatively compact in R® and its limit set is

{w‘/z(f(ﬁo))1/22‘3/2 (5'31 + 212, Ty )

I3 A +21/2.’B4

C1.1%5 + €10
.(Hf(go))—l( 1,1T5 1,2 6)
C31T5 + €22%6

4
: E :cf + cmmg + 2¢1 pz5T6 + cg,gacg < 1}
=1

where ¢; ; = Cov(|X — b ~H{X D —85),1X — 8|1 (XD — 9§)), for 1 <i,5 < 2;
X =(XW XY and § = (9(()1),8((]2))’. In particular,

(1.10) limsupn(2logn) V2(2loglogn) ™ |(H'(66)) " (6, — Go) + Hn(b0)|

e T + 212 T
_Sup{ﬂ—l/z(‘f(aﬂ))lﬂz i ( 1 I3 i r +231/2$4

(H(0) " (61,11’5 + 61,23»”6)

C21Z5 + €227

4
: E :r? +e11%8 + 201 07576 + copul < 1} a.s.,
g=1

which is positive if f(6p) > 0.
(b) {n(2logn) 2(H'(06)(8, — 80) + Hn (o))} converges in distribution to

. + 2172 : -
R (ST ) ey,

. . 2
where g\, g2, 93, ga are independent standard normal r.v.’s, and W is a R®-valued
Gaussian .., independent of g1, g2, 93, g4, with mean zero and covariance given

by

DWW — ER(X — 0p){(1h(X — 6p))| — EIL(X — 60)| BI{i(X — 69))'].

In some situations, to know either the distributional of almost sure behavior of
the Bahadur-Kiefer representation is not enough. For example, Duttweiler (1973)
needed to determine the mean-square error of the Bahadur’s expansion.
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2. Proof of Theorem 1.1

Given a d x mn matrix A, we define the following norm

|4l sup Al
bl
|b]=<1
Observe that if m = 1, last norm is just the Euclidean norm.
We use the approach in Arcones {1994q, 199456}, which extends the one in

Arcones and Mason (1992). In order to prove part {a) in Theorem 1.1, we use the
following:

THEOREM 2.1. (Arcones, 1994a, Theorem 9) Let {X,}2, be o sequence of
t.i.d.rv.’s with values in a measurable space (S,S), let © be a subset of RY, let
h:8x© — R be a jointly measurable function, let H(0) = E[h(X\,8)], let
Ho(8) =n7 ' 30 h(X.,8), let b, = 9n(X1, ... Xn) be a sequence of estimators
and let {by} be a sequence of real numbers tending to infinity. Suppose that the
following conditions hold:

(i) There exists a By in the interior of © such that H(0y) = 0.

(ii) H(#) has a second order expansion at Ao, meaning thot H() s first

differentiable at 6y and there exists a bilinear form B : R? x R? — R? such that

H() = H(0:) + H'(82) - (6 — 60) + B(§ — 00,6 — 8a) + o{|8 — 6]%).

(iii) lims—o limsup,,_, ., SUPg.g_g,|<s @n|[Hn(0) — Hp{fo) — H(0} + H(0)| =0
a.s., where

(2.1) an = (n/2loglogn)'/?.

(iv) 6, — o a.s. and b, Hn(6,) = U a.s.

(v) There exists a real number M, M > {|(H'(80)) " |(E[|R(X, 80)12D)'/2, and
a compact set K C loo(T5,), where T3, = {t ¢ RY : [t| < M} U {oc}, such that,
with probability one, {Z,(t) : t € Ty}, n > 1, is almost surely relatively compact
in oo (1) and its limit set is K, where

Zp(t) i= bp(Hn (o + ta; ') — Hp(bhh) — H{bo +ta, ") + H(#o)), if |t| < M,
and
Zn(00) 1= an (Hp(6) — H(6y)).

We make two cases:
Case a. If b,(2loglogn/n) — 0, then, with probability one,
{ba(Hal00) + H'(00) - (0 = 80))} 224
s relatively compact in R? and its limit set is

LK) = {—a(~(H (#))™' - a{x)) :a € K}.
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Consequently, limsup,_,__ by | Ha(8) + H'(8y) - (8, — 60)| = sup{|z| : = € L(K)}
a.s.

Case b. Ifb,(2loglogn/n) — 1, then, with probability one,
{bn(Hn(gﬂ) + H,(B(}) ’ (Gn - BO))}noozl
is relatively compact in R? and its limit set is

L(K) 1= {—o(—(H'(80)) " - a(00)) — B((H'(65))™" - er(00),
(H'(86)) ™ - a(o0)) : a € K}

Consequently, limsup,, .. bn|Hn(6o) + H'(f0) - (0, — 00)] = sup{|z]| : z € L(K)}

a.5.

We apply Theorem 2.1, Case b, with ® = § = R?, b, = n(2loglogn)~* -
(2logn)~/? and h(x,#) = h{z — §). First, we present the following estimations
on the variation of the function A.

LEMMA 2.1.  For each z,y € RY,

(2.2) |h{y) — h{z)| < 2A 2]z —yl|/lz])
and
(2.3) |h(y) — h(z) + 2'(y — 2)lz| Pz — jz| " (y — z)]

< (4ly - @|/eh) A (dly — 2 /[2])-

Proor. Since |h(z)! < 1, |h(x) — h(y}| < 2. We also have that

() — h(y) — (y| = l=Dy + lyl(z —»)

(2:4) Bl

So, {2.2) follows. (2.4) implies that
h(y) — h(z) + 2/ (y — )2 o — 2|7y — o)} < 4jy — al/]al.
By an elementary computation

h(y) — h(z) + 2'(y - )|z "Px — 2| (v — 2)
(gl = =Dy — )y N (Jy] = =D (=" (y — =)y

lz 2y (2] + [y]) 23]y
 y-zPy -2y -
|2 [[y] (|| + |y]) || ’

and (2.3) follows. O
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It follows from Lemma 2.1 that if E[|X —6o|~"] < oo, then H(0) = E[A{X —6)]
is differentiable at 8y and H'(6p) is given by (1.7). Condition (iii) in Theorem 1.1
implies that £[|X — 6]7'] < 0. So, condition (ii) in Theorem 2.1 is satisfied.
Next, we consider condition (iii).

LEMMA 2.2. Under the conditions in Theorem 1.1,

lim limsup  sup  an|Ho(8) — Hy(6o) — H() + H{#){ =0 as.

60 nooo 4:0—8p|<8

PROOF. We have that the class of functions {h(x,8) — h(z,80) : 0 € R’} isa
V( subgraph class of fimetions {see Lemma 22 in Nolan and Pollard (1987)) and
E[|R(X,8) — h(X,80)?] — 0, as § — 6. So, the claim follows from the law of the
iterated logarithm for empirical processes indexed by VC subgraph classes. O

LEMMA 2.3. Let 6, be a sequence of r.v.’s such that E?zl 1X; — b, =
infgepe Z?:l {X; — 8l. Then, under the conditions in Theorem 1.1,

b, 8, as and n(logn) YV H,(8,) 0 a.s.

ProoF. lt is well known that in this situation 8, — 8 a.s. (see for example
Proposition 2 in Arcones {1995)). For each v € R?, v #0,

1IN X _ )
{2.5) 0. lim 70} (1X; = On +to] = X5 = 6ul)

j=1
_th -—9 X#, +|U|ZI X, =bn
j=1

Let V bea neighborhood of 8y, in Wthh X has a density. Ifi # j and X;, X; € V,
then X; # X;. So, eventually 77 Iy _5, <1 Taking v = — 2 h(X -

én)lxj 45, in (2.5), we get that

Zh(x Iy . SZ x,=b, <1,

for n large enough. So, the claim follows. O

The funny rate of convergence in the Bahadur-Kiefer representation of the
two dimensional spatial medians comes from the following lemma.

LEMMA 2.4. Under the conditions in Theorem 1.1,
,\ﬁm (2log A)‘lAgE[(h(X — 0 —tA ) — A(X ~ 6y))

(R{X — 8 — sA1) — h(X —60))']

o g f 381 + 128y 182+ ta8
- WI(HO)Q ( tiso + t281 t181 + 3t282
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for each s,t € RZ.
ProoFr. By Lemma 2.1,

(2.6) (log M) ' A2E[R(X — 8y — tA7Y) — h{X — 6)]
B(X — 80 — sATY) = A(X — 80)| ]| x —po<mr—1]
< (log Ny TINZAPE{|X — | < M1} — 0.

By the change of variables z = fy + Ay

(21og A) IXZE[(MX — 6y — tAT!) = A{X — by})
X (R(X ~ 68— sA™1) = h{X = 00)) Tngp 1<) x 0] <(tog )-172]
= (21ogA)_1A2[ (h(z — 8o —tA" '} — h{z — b))
MA—1<|z—8g|<(log A}~ /2
x (h{z — 8y — sA™Y) — h(z — 60)) f(z)dx
gy [ (h(y — 1) ~ h(y)
MLyl <A(log A) /2
x {hly — s) — h(y)) f(6o + A" 'y)dy,
which, by Lemma 2.1, is

=o(1) + f(60)(2log )"

-]' (g1~ @y — w0y~ @ s)y — g1~ s)dy.
M<|yl<Allog A}~ 1/

Changing to polar coordinates, i.e. ¥ — (rcosf,rsind)’, we get that the last
equation is

Mlog A) 12 aour
o(1) + F(B0)(2log A) ! j / (Wytyvg — )((vhs)vp — s)'r—1dbdr,
M 0
where vp = {cos#,sin8)’, which converges, as A — oo, 10
27
Z_If(ﬁg)[ ((vht)vg — t)((vhs)ve — s)'dO.
0
Using that
27 27 Cop2m )
f sin? 0df = f cos® Hdg =, f sin? @ cos® 0d) = /4,
0 v 0

2 2
f sin 0 = / cos* fdf = 3 /4,
0 0

and
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2 ) ]
f sin’ @ cos’ 8df =0
0
if either 4 or j {or both) are odd; we have that
o
[ (it = itwisyv — sy ds
0
&
= /0 (vpt){vps)vgvy — (Ugtivgs’ — (vgs)tuy + ts'df

am cos’®  cosfsind
= f (t1cond + tasinB) (s cosd + sa8in §) ( ) df

0 cosfsing cos” @

2 s1cosf  spcosd
—/ (t10039+tgsin6)(1 5 20 )dﬁ

o g1 8inf  sy&inf

2 .
— / (s1cos8 + spsind) (tl cosd 1 bmg) do
0

thcos@ tosin®
2
N tisy f1ss df
Jo tasy 282

_9-2_ 3115 +T28 1182 + t25
{189 + tog) {181 + Jasy

Therefore,

(2.7) (21og A) TIAZE[(R(X — 6y — tATY) — A(X — 6y))
x (h{X — 6y — sA™') — k(X — &)’
X Ipra-1<1x—6)<(log \) 172]

_ 3t181 + 128 f182 + 1oy
9 2 3 11 .
- Ti'f( 0) ( t189 +ta81  t1sp + 3tass

By Lemma 2.1,
(2.8)  (log A)T'XZE[|R(X — 0y — tA™H) — h(X — 60)|
. {h(X — 90 - .Q.)\il) — h(X — BO)II\X—ﬂm')(IUg)\) 1/:1]
< (log N)"HM[t|ISIENX — 0] 2L x —gy > (1og ) -172]
< (log X) "1/ 24lt||s| E[| X — 86[7'] — 0.

The claim follows from (2.6)—(2.8}). 0

In order to determine the limit set K in condition (v} in Theorem 2.1, we
need to use the concept of the unit ball of the reproducing kernel Hilbert space of
a mean zero Gaussian process {Z(t) 1+ € T}. Let £ be the linear subspace of Lo,
generated by {Z(t) : ¢ € T'}. Then, the reproducing kernel Hilbert space (r.k.h.s.}
of the Gaussian process {Z{t) : t € T'} is the following class of functions on 7’

(2.9) {(ElZ{t))er - € € L}
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This space is endowed of the inner product

(2.10) {f1. fa} = BE[&1&],

where f;{t) = E{Z(t)&] for each t € T and each i = 1,2. The unit ball of this
r.k.hs. is

(2.11) K = {(E[Z(D)¢])ier : € € L and E{¢?] < 1}

LEMMA 2.5, For each M < co, with probability one,

{Zn(t) = a}(2logn) ™1/
(H,(8y + ta;l) - Hn(()()) — H(Q{) + ta;l) + Hn(f)o)) tc TM}
is relatively compact n o{Th), where a, wos deﬁned in (2.1), Ty = {t € R? .

|t < MY}, and its limit set is the unit ball of the R?-valued mean-zero Gaussian
process {Z(t) 1t € Ty} with covariance given by

e . g f 3t181 +tesa 182+ T8
Fi Z (¢ = 7] i
0 (s))] f (Bu)2 ( t189 +tosy  f181 -+ 3t282>

fOT‘ ‘3‘7 !ti S M
PRrOOF. Since the class of functions {h(zx —0) — h{z — 6) : 6 € R’} is a VC
subgraph class, by Corollary 4 in Arcones {1994a) and Lemma 2.4, it guffices to

show that

2.12 lim sup a2 (logn) ™ (log logn) '
Tl

n—recQ

- E | snp \h(}('vﬂoftazl)—h(X*GD}[z =0

[t<M
and
{2.13) lim lmsup  sup (logn) ‘el
=0 nwoo  |s—t[<6
[shit|<M

E[|R{X — 0 — tay') — h{X — 8 — sa )] =0

By Lemma 2.1,

a2 (logn) H{loglogn)TLE | sup [R(X — 6o — ta ") — h(X — 80)1°
[t<M

?'(logn) Yoglogn) *E[4 A (4M3a,*| X — 817 2)]
a2(logn)~(loglogn) 4 Pr{|X — 8| < Ma!
+ 4M*(logn) " (loglogn)} ' E[|X — 801_211}(—001;‘1\4[;,;1}-
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Obviously,
a2(logn) "(loglogn) ' Pr{|X — fp| < Ma;'} — 0.
Taking ¢ > 0, such that X has a density in {z € R® : |z — 6| < ¢}, we have that
(2.14)  (logn) {loglogn) 'E[|X - HO\QQI‘X_GUDMQ;I]

< (logn) "' (log log n)~! / lo — lemgf(a?)d.cr
Jexlw—fol>Man !

+ (logn) {loglogn) e 2

Changing to polar coordinates, i.e. & = g + {rcos ¢, rsing)’,

(2.15) (og )~ (log log n) ™1 / |z — 0g| 2 f(x)de
o>z —0al>Mar®

< sup f(z)(logn) "' (log log n) ™!

ez |u—0g | Muan!

€ 2
] f r~ldpdr — 0.
Mait JO
So, (2.12) follows.

By Lemma 2.1 and the computation in (2.14) and (2.15), for {s — | < ¢,
s, 1t < M,
(logn) " ta2 E[h(X — 8y — taz) — h(X — 8y — sa;')|?]

= (logn) P2 E[|R{(X — 0y — tay ') — h{X — 8 — 3&;1)]2I‘X_Gnl£2M%1J
+ (logn) a2 E[[A(X — B0 — ta;") — h(X — 8o — sa; ) Lx g mnrar]

< (logn) 'a24Pr{|X — 0] < 2Ma;*
+46%{logn) TE[IX — 8 — ta, INZI|X790|>2M(1.;1]

< o(1) + 160%(logn) "ENX — o] *Lyx s sopest] = 0(1) +8°0(1).

So, (2.13) follows. 01

PROOF OF PART (A) OF THEOREM 1.1.  We have already checked conditions
(i)—(iv) in Theorem 2.1. Let
Za(t) i= a2 (2logn) "V (H, (80 + ta; ') — Ha(Bo) — H(fo + ta, ') + H(8o)),
if |t <M,
and let
Zn(o0) 1= an(Hy(686) ~ H(6p)).

Let g1, g2, g3, g4 be independent standard normal r.v.’s. Let

R o a3 oL/ 2 g0\t t
Z(t) = wlf‘(f(au))1/-2—3/~((-q‘ 27 )t 1 2),

g3ty + (g1 + 2'ga)ts
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for [t! < M. Observe that

AV _g { Bl151) +lasg lysa +igs)
BLZO(@()] = mfy s (Y17 e e e )

for |s|, [¢] < M. Let Z(x) be a R?-valued Gaussian random vector, iudependentd
of g1, g2, g3, 94, with mean zero and covariance
E[Z(00)(Z(00)) ] = E[L(X  8o){(R(X 60))] ER(X 6)]E[(RX ).

By Lemma 2.5 and Remark 12 in Arcones (1994a), we have that with probability

one, {Z,(t) : t e Ty} is relatively compact in I, (T5,) and its limit set is the unit

ball of the R*-valued Gaussian process {Z(t) : t € T3, }. Observe that we require
EZ(t)(Z(00))'| = 0 because, by Lemma 2.1,

an(2logn) V2 Cov(h(X — 8y — a; ') — (X — 6o}, h{X — 8)) -0
Thus condition (v) in Theorem 2.1 holds. Therefore, with probability one,
{a(21ogn)™* (Hu(80) + H'(B0) - (B — 60)) 172,
is relatively compact in R’ and its limit set is
LK) :=={-a(- (H'(6) ™" - a(0)) : a € K},

where K is the unit ball of the r.k.h.s. of the Gaussian process {Z(¢) 1 ¢t € Ty, }.
The linear space in Ly generated by the coordinates of this process is

4
Zl‘ij'i'l‘g;Wl%ﬂSgWQ:fL‘iER,lS‘iSﬁ s
j=t

where W' = (W7, Ws). So,

K = { o : there exist x; with F z.rjgj + zsW1 + zgWo <1,
j=1

such that a(t) = E [ Z(t) Z;rjgj , for each t € Ty,

3=1
If |t < M,
4
alt)y=F | Z(t ijgjﬁ—TrWlJrl:bWz
g=1
L/2.. .. t
YT 1/20-3/2 { 1+ 27/ %22 T3 1
s (2 )

and
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4
a(o0) = B | 7 () ;mjgj tasWit oW | = (:?if ; Zijl?)
Thus,
~ (-~ (H'(6:))7! - ()
= 72 (a1 2273/2 (221 +3’:2::/23:2 . +j‘:231/2$4>

E31T5 + Ca0Tg

(H () (C""I"’ N cl'm)

and the set in (1.10} is as claimed.
Next, we show that

P al . s N . !

‘:‘.up Ty + 2 /21‘2 Ta (Hf(e( ))_] C'l,l"?ﬁ + ('1"2-’1/6
5 . )

2 2y | 22, €175 e T 1i

4
. 2 o Ll F N T 2
: T+ exs e 2tsTe + O lsTe T O ol S 1
J=1

is positive. If z; = 1/2 and x, = a3 = 24 = 0, then
x4+ 9L/ 2, T ks F oy adg
xy + 2 4 i31/2 (H’(()U))*L 11Ty + e 2
T3 T+ 27 1y C21%5 + 2 22

— o lrgan L 1,1 (11\2) (Tﬁ)
( (0)) (62,1 2.2 Tg

Since X — (XM and X@ ~ B[X®)] are linearly independent vectors of Lo,
(1 ©2) s positive definite, and (H'(f))~ Lo o 2)( ) £ 0, for x2 + 23 # 0.
-2

€2,1 €22 02,1 o,

80, we can take xs and zg, such that 274 § e |r3 i e 2x5we | ez, zfr << 1 and
_ ¢ 1.2 T
(H'(#)) " ( Ll L2 Y] £ 0. o
Gzl Gz Ty

In the next theorem, we need to use a definition of weak convergence of
stochastic processes with arbitrary index sel. We use the definition in Hoffrnann-
Jorgensen (1991). This definition is as follows. Let 1" be a parameter set. Let
{Z,(£) €T}, n > 1, be asequence of stochastic processcs, and let {Z(¢) 1 t € T}
be another stochastic process. We say that the sequence of stochastic processes
{Z, (1) : t e T}, n> 1, converges weakly to {Z(2) 1t € T} in [ (1) if

{1) sup,er |Za(t)] < o as. for cach n large enough.

(ii) There exists a separable set A of [o(T) such that Pr"{Z € A} =1, where
Pr* means outer probability.

(iil) E*[H(Z,)] — E[H(Z)] for cach bounded, continuous function H in
loo(T), where £7 mcans outer expectation.




84 MIGUEL A. ARCONES

Now we consider the proof of part (b) of Theorem 1.1. We will need the
following:

THEOREM 2.2, (Arcones (19944}, Theorem 9) Let {X;}72, be a sequence of
i.i.d.r.v.’s with values in a measurable space {5,8), let © be a subset of RY, let
h:8x0O — R be a jointly measurable function, let H(#) = E[h(X41,0)], let
Ho(0) =n 130 h{X,,0), let fn = 0,(X1,...,X,) be a sequence of estimators
and let {b,.} he a sequence of venl numbers tending to infinity. Suppose that the
Jollowing conditions hold:

(i) There exists a By in the interior of © such that H(f) = 0.

(ii) H(8) has a second order expansion at 8y, meaning that H(8) is first

differentiable at 6y and there exists a bilinear form I3 R x R? — R? such that

H(B) = H(B) | H'(6,) (8 85) 1 B(# — 8,0 —85) + o(|f — 6]*).

(iii) For each 7 > 0,

lim lim sup Pr* { sup nlfz\(Pn — P)(h(-,8) — h{-,00))} > T} ={.

=0 pnooo |0—Bp{<é8

(iv) a, i3 Ay and bnnl/an(én) Tro.

(v) There ervists n R walued stochastic process {Z(t) 1 t € R U {oc}} such
that, for each M < oo, {Zn(t) : t € T} } converges weakly to {Z(1) : t € T3},
where Thy = {t € R™ : |t} < M} U {oc},

Zn(8) = b /2Py — PY(h(-, 00 +nY2t) — (-, 60))
and
Zo(00) = nt2 (P, — P)h(-, 00).

Case a. Ifbpn~12 — 0, then
{bunt 2 (Hy, (00) + H'(60) - (6 - 60))}
converges in distribution to

~Z{~(H'(60))™" - Z(o0)).

Case b. Ifb, =n'/? then
{n(Hn(60) + H'(0a) - (8, — 60))}
converges in distribution to

~Z(—(H'(60)) " - Z(00)) — BI(H'(80))™" - Z(00), (H'(80)) ™" - Z(00)).
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Using last theorem, the proof of the part (b} of Theorem 1.1 is similar to the
proof of the part {a). The main difference is in the proof of (v) in Theorem 2.2.
To check this condition, we use the following central limit theorem for triangular
arrays indexed by VC subgraph classes of functions. It follows from Theorem 10 .6

in Pollard (1990).

TuroreMm 2.3, Let {h{x,8) — h{(x,80) : 8 € R™} be a VO subgraph class of
functions, let M < oo, let {a,} and {b,} be sequence of real numbers. Suppose
that:

(iy limg e b?i Cov(h(X,00 + ta;l) — h(X,0,), h(X, 6y + S(I,;l) h{X,04))
exists for each |s}, |t] < M.
(ii) bg*-E[Him;‘ (X)] = O(1), where Ho(x) = supy, <, [h(x, 00 + 1) — h{z, 0)].

(iii) biE{Hiff@;L(X)IHAM--l(X)zrbglnlf‘Z] — 0, for each v > U.

(iv)  Hmlimsnp  sup B E(R(X, 00+ ta]") — h(X, 0 + sa;N? = 0.
=0 n—oo |s—t]<

[s]. [t} <M
Then,
{bﬁn*lﬂ > (X 00+ tay ') — A(X;. bo)
i=1
. E[}L('XJ #o + tau,;l)] + E[h(XJHU)]} : It‘ < M}
converges weakly to the Gaussian process {Z(t) : |t| < M} with mean zero and
covariance given by

ElZ({)Z(s)]
= lim b2 Cov(h{X, 8 + ta,'} — (X, 60), h(X, 60 + sa; ') — h(X,0)).

The following follows directly from Theorem 2.3 using the arguments in
Lemma 2.5.

LEMMA 2.6. Under the conditions in Theorem 1.1, for each M < oo,

(n(2log n) " Y2(H, (00 + tn /%) — H,{(80) — H(6y + tn~'/?) + H(8)) :
[t} < M}

conwverges weakly to the B2 _valued mean zero Claussian process {7Z(t) : [t < M}
with covariance given by

Bz =tz (i e e )

t182 + tasy 151 + 3taso
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for each |s|,tl < M.

The rest of the conditions in Theorem 2.2 can be checked shmilarly to condi-
tions checked to prove part (a} of Theorem 1.1.

REFERENCES

Arcones, M. A. (19944). Some strong limit theorems for M-estimators, Stochastic Process. Appl.,
53, 241-268.

Arcones, M. A. (19945}, On the weak Bahadur-Kiefer representation for M-cstimators, Prob-
ability in Banach Spaces, 9 {eds. J. Hoffmann-Jargensen, J. Kuelbs and M. B. Marcus),
35T-372, Birkhiuser, Boston.

Arcones, M. A. (1995). Asymptotic normality of multivariate trimmed means, Statist. Probab,
Lett., 25, 43-53.

Arcones, M. A, and Mason, D. M. {1992). A general approach to the Babadur-Kiefer represen-
tations for M-cstimators, Methods of Mathematical Statistics (to appear).

Bahadur, R. R. (1966). A note on quantiles in large samples, Ann. Math. Statist., 37, 377-580.

Carroll, R. J. (1978}, On almost sure expansions for M-estimates, Ann. Statist.,, 6, 314-313,

Chow, Y. 3. and Robbins, . (1965). On the asymptotic theory of fixed sequential conlidence
intervals for the mean, Ann. Statist., 36, 457 462

Duttweiler, D. L. {1973). The mean-squarc error of Bahadur’s order-statistic approximation,
Ann. Statist., 1. 446—453.

Haldane, 5. J. (1948). Note on the median of a multivariate distribution, Biometrika, 35, 414~
415.

Hoffinann-Jergenser, J. {(1991).  Stochastic Processes on FPolish Spaces, Aavhus Universitel
Matematisk mstizut Various Publications Series, No. 39, Aarhus, Denmark.

Kieler, J. {1967). On Bahadur’s representation of sample quantiles, Ann. Math. Stat., 38, 1323~
1342,

Koltchinskii, V. (1994a). Bahadur-Kiefer apnroximation for spatial quantiles, Probabudity
Banach Spaces, 9 (eds. J. Hoffmann-Jargensen, J. Kuelbs and M. B. Marcus), 401415,
Birkhiduser, Boston.

Koltchinskii, V. {18945). Nonlinear transformations of empirical processes: functional inverses
and Bahadur-Kiefer representations, Probability Theory and Mathematical Statistics, Pro-
ceedings of the Sizth Vilnius Conference (1993), 423-445, VSP BV, Zeist, The Netherlands,
and TEV T.td., Vilnius, Lithuania.

Milasevic, P. and Ducharme, G. R. (1987}, Uniqueness of the spatial median, Ann. Statist., 15,
1332-1334.

Niemiro, W. (1992). Asymptotics for M-estimators defined by convex minimization, Ann.
Stalist., 20, 1514-1533.

Nolan, £}, and Pollard, 12, {(1987). U-processes: rates of convergence, Ann. Statist., 15, T80-T799.

Pfanzagl, J. with the assistance of W. Wefelmeyer (1985). Asymptotic expansions for general
statistical models, Lecture Notes in Statist., 31, Springer, New York.

Pollard, [3. (1940). Fmpirical Processes: Theory and Applications, NSF CBMS Regional Con-
ference Series in Probab. and Stalist., Vol. 2, Institute of Mathematical Statistics, Hayward,
California.



