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Abstract. Let X, X5,...,Xn, Y1.Y5,..., Y, be a simple random sample
without replacement from a finite population and let Xy < Xy € -+ < Xy
and Yy, € ¥y < - < Y, be the order statistice of X, Xy, ..., X, and
Yi,Ya,. .., Y,, respectively. It is shown that the joint distribution of X, and
X4y is positively likelihood ratio dependent and Y{;, is negatively regression
dependent on X(;y. Using these results, it is shown that when samples are
drawn without replacement from a finite population, the relative precision of
the ranked set sampling estimator of the population mean, relative to the simple

random sample estimator with the same number of units quantified, is bounded
below by 1.

Key words and phrases: Ranked set sampling, finite population, order statis-
tics, dependence.

1. Introduction

Let Xy, Xoq,..., X, be independently distributed according to a univariate
distribution, and let Xy < Xy < --- < X, be their order statistics. In
this case, Lehmann (1966) has shown that the joint distribution of two order
statistics, X(;y and X5, 18 positively likelihood ratio dependent. We consider the
case where X, Xo, ..., X, is a simple random sample without replacement from a
finite population and, therefore, Xy, Xo,..., X, are not independent. It is shown
that the joint distribution of X;; and X ;y is positively likelihood ratio dependent
also in this case. We prove this result in Section 2.

Next, let Xy, X3, ... X, ¥1,Y5...., Y, be a simple random sample of size
m + n without replacement from a finite population, and let X, < X5 <
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49



50 KOITI TAKAHASI AND MASAO FUTATSUYA

« £ Xy and Yy < Yoy < -0 < ¥,y be two sets of the order statistics
of X1, Xq,..., Xy, and Y1,Y5,...,Y,, respectively. We consider possible depen-
dence between Xy and Y(;). It is shown that Y{;) is ncgatively regression de-
pendent on X(;,. We prove this result in Section 3. In Section 4, we show that
Cov{X iy, X(;)) = 0 and Cov(X(,),Y(;;) < 0, and we give the conditions for the
equality to hold.

Finally, using these results, we shall prove a theorem on ranked set sampling
(RSS} in finite populations. As it was pointed out by Patil et al. (1995), most of
the researche in RSS has been concerned with sampling from infinite (continuous)
populations. Takahasi and Futatsuya {1988}, Futatsuya and Takahasi (1990), and
Patil et al. (1995) studied RSS for estimating a population mean when sampling
was done without replacement from a finite population. Takahasi and Futatsuya
{1988) gave an expression for the variance of the RSS estimator (firss), and Patil
et al. (1995) obtained explicit expressions for the variance of fipse and the corre-
sponding relative savings. Performance of the RSS estimator is generally bench-
marked against that of the simple random sampling {SRS) estimator (fisgs} with
the same mimber of quantifications. For this purpase, we use the relative precision
(RP), RP = Var(fisps)/ Var(jigss). Futatsuya and Takahasi (1990) considered
the extremal finite populations maximizing relative precision. In Section 5, we
ghow that K ig never smaller than 1, and is greater than 1 unless N — 1 slements
of the population of size ¥V have the same value.

2. Positive likelihood ratio dependence between order statistics of a sample

Let €2 be the finite popuation {a1,..., 21,22, ..., 2Z0,..., 2, ..., 31} {21 <
@y < - < @) of size N. Let vy be the number of z, in © {a = 1,2,...,1),
fo=vitwm+-+r,(a=12,...0), fo=0and f, = fu 1 +1(a=1,2,... 1)
We assume that v, > 0 (a =1,2,...,0). Let X{,Xs,...,X,, be a simple random
sample of size n without replacement from 2. Let Xy < X(g) < -+ < X5 be the
order statistics of this sample. In this section, we prove that the joint distribution
Xy and X5y (2 # j) is positively likelihood ratio dependent.

Let us first consider the case @ = Qu = {1,2,...,N}. Let 21, 2Zs,..., %,
be a simple random sample of size n without replacement from 0x. Let Z;;y <
Zigy < -+ < Zpyy be the order statistics of this sample. The set of all points (s, )
satisfying Pr{Z(i) = 8, Z(;y =t} > 0 is denoted by S. For | < i < j < n, we have

(2.1) S={(s8)]|i<s<N-n+i,j<t<N-n+jj-1<t— s}
We prove the following:

Lemma 2.1, Let 1 <@ < j <n. Then the joint distribution of Zy;y, and Zj
is positively likelihood ratio dependent; that is, if s < s' and t < ¥/, then

(2.2) PI‘{Z(Z-) =g, Z(j) =t} Pr{Z(i) = S',Z(j) = t’}
> PI‘{Z(Z-) = g, Z(j) = ff} PI‘{Z(.L-) = S’, Z(j) = t},

with equality holding if and only if (s,t) ¢ 8 or (&', t') ¢ §.
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Proor. From (2.1),if (s,t) ¢ S or (¢',t') ¢ S, then (s,t') ¢ Sor (s/,¢) ¢ §
and, therefore, equality holds in (2.2). If (s,t) € S and (¢/,t') € §, and (s,¢') ¢ S
or {s',1) ¢ 8, then

Pr{Zy = 8, Zyy =t} Pr{Zy = ', Zyyy = t'}
>0=Pr{Zy =52 =} Pr{Zy = 5, Zgy = t}.

Finally, if (s, £}, ("%}, (s,1'), (s',t) € 8, then, since

1 s—1\(ft—1—s\/N—-1t
PI{Z(“_S’ZW”(N)(iml)(jl-J(nj)’

)
we have

Pr{Zyy = 5,2, =t} Pr{Zyy = &', 25y = '}
Pr{Zu) = 5.2y = '} Pr{Zy) = &', Zy;) = t}
o (t—s-1t-s—-2)- - (t—s—j+i+1)
{t’—s—1)(t’—5—2)---(t’——S—-j+i+1)
- -0 —-5-2)--- -5 —-7+i+1)
(t—s'—1)(t—8—=2) - {t—8—~F+i+1) "

(2.3)

Because (1 —s—k)(t' — s —k)— (' —s— k)t —s —k)={' —1)(s' —5) > 0,
we get (2.3) > 1. This completes the proof of the lemma.

Now we consider the general case Q = {z1,...,%1,22,...,%2,...,%,..., T4}
Leat

Gop = {(8,) 1 fa <8< fa, o St < fo,5,t € Qn).

We have the following lemma.
LEmMma 22, Forl<ij<n,i#jandl <a,b<|,

Pr{Xy <20, X5y <26} =Pr{Zy < fo, Zyy < o}
and

Pri{Xp = 2o, Xy =2y = >, Pr{Zu =824 =t}
(s,tYeGap

ProoF. The results come from the relations Xy < x4 ¢ Zy < fo, Xy =
Lo 7 .JEa =< Z(i) < fa, and the definition of Gy.

The following theorem shows positively likelihood ratio dependence between
two order statistics in general finite population.
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THREOREM 2.1. Letl < i< j < n. The joint distribution of Xy and X;, is

positively likelihood ratio dependent; that is, if l <a <a' <land 1 <b< b <,
then

(2.4) PI‘{XM) = LL'a,X(ﬂ = .’L‘b} PI‘{XH} = ma’:X(j) = ZL‘{,I}
= PI‘{X{,;) = Sl’,'a,X(j) = CL‘bJ} PI‘{X(«;) = :E,lf,X(j) = .’Eb}

with equality holding if and only if Gap N & =B or Cup N8 = .

PrOOF. Let (5,t) € Gy and (s',t") € Guy. Then, s < s" and ¢ < ¥\
Therefore, from Lemma 2.1, we have

Pr{Zyy = 8,20 =tYPr{Zy = &', Zi5y = t'}
> Pr{Zy) = 5,2y = '} Pr{Zy = 8", Ziy = t}.

Sumning both sides over (5,t) € Gy and (s',t') € Gyyp, and applying Lemma
2.2, we get (2.4). The condition for equality in (2.4) also comes from Lemma 2.1.
This completes the proof of the theorem. '

3. Negative regression dependence between order statistics of two samples

Let M = {X,,X5,...,X,} be a simple random sample of size m without

replacement from @ = {zy,...,71,22,...,%2,...,%1,..., T} given in Section 2.
Put & — © — M. Let N = {¥3,Ys,...,¥,.} be a simple random sample of
size n without replacement from ®, and let Xy < X < -+ < X(m) and

Y4y < Vg < --- £ ¥(y) be the order statistics of these samples, respectively. In
this scction, we prove that Y,y is negatively regression dependent om X4y

Let us first consider the case = Qy = {1,2,...,N}. In this case, let us de-
note M = {Xy, Xz,..., X} and N = {¥1,Yo,..., Yo} by M = {h,Usgy ..., Un}
and N = {V], Vo, ..., Vo], respectively. Let Uy < Uy < -+ < Upny and Viyy <
Vigy < -+ < Vipy be the order statistics of {Uy,Us,..., Uy} and {Vi,Va, ..., Vo],
respectively. Let us assume that 1 < i <m, 1 < j <n, with N > m +n. Put
N=N-m-—n+i+j— 1. We deline several subsets of £y x £3y as follows:

{(u,v) | Pr{U4;) = u} > 0 and Pr{V};, = v} > 0},
{(u,v) | Pr{Uyy = u, V5 = v} > 0 and v > v},

{(u,v) | Pr{lUyy = uw, Vi = v} > 0 and u < v},
{
{

(u,v) | i+j <u<N,u=uv},
(wo)li<u<giti—lLji<v<itj—1}

I

0
A
C
B
D

and

E:{(u,'u)|N+1SUSNﬁm+i,N+1§v§Nﬁn+j}.

Then we have the following lemma.
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LEMMA 3.1. For the sets defined above, we have

O={(y,v)]i<u<N-m+i,j<v<N-—-n+j}

(3.1) A={wv)li+j<us<N-m+ij<v< Nu>o},
(3.2) C={(wv)|icu<Nitj<veN—_n+ju<uv},
(3.3) {2} | Pr{lUpy = u, Vi =0} > 0} = AU C

and

O=AUBUCUDUE,
where A, B, C, D, E are mutually disjoint.

Proor. It is sufficient to prove (3.2), because the proof of (3.1) is similar
to the proof of (3.2}, and others are obvious. Let us consider Table 1. Under the
assumption v < v, Pr{Uy; = u, V{;y = v} > 0 if and only if there are non-negative
integers z and ¥ such that all the entries of the table are non-negative. Using this
fact, it is easy to obtain {3.2).

Table 1. Conditions for €.

1,...,u -1 » w+1l,...,v—1 v v+1,..., N Total
M t—1 1 Y 0 m—1i—y m
N T 0 i—-1-= 1 n—j n
P-AN wu-i-z 0 v-u—jJ+x—-y 0 N—-m—-n+i+j—v+y N-m—n
Total w1 1 v—1—u 1 N-—w N

Figure 1 gives an example of the partition of O inte A, B, C, D, E, where
the points of A are the lattice points in area A in Fig. 1 and so on.
The following lemma is used in proving Theorcm 3.2.

LEMMA 3.2, Let (u,v) € O. Then,

Pl =0, Vigy = v} = Pr{Ugm-se) = N = 0+ 1, Viuopumy = N — v+ 1},
PI‘{U(Z-) = u,V(j) <w}y = Pr{U(m,rH,l) =N-u+1}
-Pr{U;, qny=N-u+1,V, ;1 hH <N}
and
PriVij <v| Uy =1} =1~Pr{V,_ji1y SN =0 { Upmeipy = N —u+1}.

Proor. The results come from the fact that the joint distribution of
{Utm—i+1)s Vin—j+1)) is the same as that of (N + 1~ Uy, N +1 - V).
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v
N-n+j
¥
C
N
B
i+ A
D
i
- - -~ B u
1 t) N N-m+:

Fig. 1. Exampleof A, B, C, D, E(N=20,m=8n=3,i=4, § =3}

Let T, = {a € ® | a < v} and Ry = #{h € ® | h < V;y}, where {X
denotes the number of elements in the set A, The following lemma is important
for deriving the joint distribution of U(;) and V(.

LEMMA 3.3. Let (u,v) € O. Then,

Pr{lUg,, = u, V) < v}

= ZPI’{U(Z) = U,Tv = (L} PI‘{R(j) < a}
a=j

minfa,N-m—n+j}

=" |Pr{Uu) =, T, = a} > Pr{R(;, = h}

a=j h=j
Proor. It is easily checked that
Vi <vel,>j and Ry <1,

= \/ [T.u = a,R(j) < a],
a=j
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where A7 vV A% means A& or A5, Because (U(,;),I},) and f(;) are independent, we
have

Pl'{U(l) = U, I/(_;n) < 'U}

= ZPI{U@ =u, Ty = a, Bgjy < a}

a=j
= ZPF{U(';) =u, T, = u} Pr{R; < a}
a=j

min{a,N—m—n-+37}

=>  |Pr{Uy =uT, =a} > Pr{R; = h}

a=j h=j
Now we can give an expression of the joint distribution of UU;;y and V;). Let

Ay = {(u,0) | (u,v) € A,v =N},

(34) Ax=A- A —{(wv)li+j<u<N-m+ij<v<Nu>uv}
C = {(uy,v) | (w,v) € C,u=N-—n+73}

and
C,=C—-C.

THEOREM 3.1, Let 1 <i<m,1<j<nand (u,v) € O. Then, Pr{U,, =
u, Vi) < v} is given as follows:

(u— 1) (N—u)
1—1 m — %

)
m
(35) PI‘{U'@-) Uy V'(j) < 'v}
N-—u . N )
B m— i mm{u'zgv,Zm'thJ} o1 N_m-_h
W) m

h=3j
m iz

uwv)e A UCHUE

min{a—iu}

vy fu—1—-w
* Z | (a)(u—i——a)’ (u,v} € Ao
a=max{h,v+1—1}
Pr{luy = v, Vi) < v}

B L

(3.6) Pr{lg =u, Vi Svj

), (uw,v) e B
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N—-uy/u-1
(m - i) (i - 1)
- N
()
am— 1
(1)
[N\ (N-m
I
min{N—v,N—u—-m+i,N—m—j+1} (h B 1) (N Cm h)

x >

h=n—j3+1

min{ N —v,N ~u—m+i}
« Z N-—-v v—-Uu
' a N-u-m+i-aj’

a=max{h,N—v—m+i}

n—j j—1

(u,v) € Cy
PI‘{U(E-) = u, V(j) < U} =0, (u, 'U) € D.

PROOF. By elementary combinatorial calculations, we have the following (i),

(ii) and (iii).
( (h—l)(Nmm—h)
JZUN 2] /o j<h<N-m-ntj

(i) Pr{R(;y = h} = 4 (N m)

0, otherwise.

')
(o — 1 N —u
iZlAM ) i<y <N —m i
(11) PI‘{U(” ZU}:< (N) ’ -
K

{0, otherwise.

(iii) fv=wor v=wu—1, then
P T 0, atu—1
I'{U(l) = U, Ly = CL} o PT{II(I) — ”}’ @ =1 —1
If1<wv<wu-—1,then
PI‘{U(T') = U, Tv == a}
(1 [fovNfu—1-v\/N—-u
MA\a/\u—i—a/\m—i)’
m

max{0,v + 1 — i} < a <min{u —4,v}

L0, otherwise.
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Case 1. (u,v) € A; U Cy U E. In this case, we have Pr{lUy, = u,V; <
v} = Pr{Uy;; = u}. The desired result comes from (ii).

Case 2. (u,v) € D. From Fig. 1, this is obvious.
Cuse 3: {u,v) € B. In this case, we have

Priliy = u, Vi) < v}
= Pr{U(z-) =, Vij) S u— 1}
u—1
= ZPr{U(,;) =wu,T, = a}Pr{R(;) <a} (by Lemma 3.3)

a—=j

=Pr{U;, = u} Pr{R;y <u—i} (Uy = uimplies T, = u — i)

u—1 N —u h 1 N_m—h
i . ) min{u—i,N—m-n+j} . X
NS m —i Z j—1 T —j

N ‘ N-—m
h=3j
T 7

(by (if) and (i)

N uwy/fu 1 . _ A

(m—i) (i—l) minfu b N men k1NN —=m— h
GBS 2. GO
m n

Case 4: (u,v) € Ay. From Lemma 3.3, (i) and (ii), we have

Pr{lip) = u, Vi < v}
min{a,N—m—n+j3}

=Y Pr{Uu = u. Ty = a} >, Pr{R; = h}
a=j h=j

rain{u—i,m}

Z 1 Y u—1l-v\{N—-u
_ (N) a/\u—i—a/\m—i
a=max{j,v+1-i}
U
, (h A\ (N-m-—h
mln{a,Nz—Sn~n+J} i1 n—j
‘ (Nm)
h=j
T
N—u o
~ m i mm{ihv} (’U) (UH-I—L‘)
T (N\(N-m = _a \e/\u—i—a
( )( )a*max{g,v—t—l—z}
™m n

) min{a.Nim,—ﬂ‘f'j} (h . 1) (N —m — h)
= j—1 n—j

X
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N —u . o N ‘
) i min{u—i,9,N-m—n+j} h—1 N—-—m-—h
= (N) (N - m,) Z g1 e
h=j
m n

min{u—i,v} 1
v w— -
X E .
(a) (u — 14— a)
a=max{h,v+1—1i}

Case 5 (u,v) € Cy. This case can be obtained by using Case 4. By Lemma
3.2, we have

(3.7) Pr{lUy = u, V) < v}
= Pr{U(m_z-_H) =N-u+ 1}
- PI{U{m—z’+l) =N-u+ 1:V(n—j+1) <N —v}.

Puti’ =m—it1, 7 =n—j+l, ' =N-u+l,v’ =N—-vand N = N-m—n+

i'+j —1. Then, (3.7) = l—zq)q()u—l Pr{Ugy =o', Viyy < v'}. Since (u,v) € Ch,

wehave i’ 43/ <o’ < N-m+7¢, ) <v' < N’ and v’ > v'. From these 1nequal1tles
it can be said that {u’,v') belongs to As in the case of (i, i Ny = (@, N") in
(3.4). Therefore, we can apply Case 4 to Pr{Uyy = v/, V() < v} and obtain an
exprossion corresponding to (3.5) Substituting i/ = m —i+1, 7 =n—-3+1,
W =N —u+1and v = N — v for this expression, we obtain (3.6).

This completes the proof.

From this theorem, we obtain the following corollary.

COROLLARY 3.1. Suppose (u,v) € O. Then,

=1, (U,U)EA]_UClUE

(h—l) (th)
min{u-—-t,v, N —m—n+j} , .
_ Z i—1 (|
B N-—-m
n
vy fu—1—v
minf{u—i,v} (a) (’LL —i_ (I)
> 2, (u,v)€ A4
u— 1
a=max{hv+1—i} ( )
U—1
(h — 1) (N m h)
u—1i 1 n 73-
- Z J (w,v) € B

Y
h-j
n

h=j

=
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(hl) (th)
min{ N—u—m+i,N—v,N—-m—j+1} n_ i i
1 3 s

‘ N-—-m
h=n—j+1
")
(N N v} N —v v
Xmm RZ?::H’ ! a N-u-m+i-a
A Tee)
a=max[h,N—v—m+i} .
N-—-—u—m+i
=0, (u,v}eD.

(u3v) < 02

The following lemma shows a stochastic ordering between hyper geometric
distributions and is essential for the proof of Theorem 3.2.

LEMMA 3.4. Suppose that v, M and L are positive integers and v < M + L.
For any k satisfying max{0,r — L} < & < min{r, M},

e () 7)o ()00 )
min{r, . min{r+1, N
a r—al Z aj\r+l—a .

I R B A
- T : r+1

PRrROOF. Let ¢ = max{0,n — L}, di = min{r, M} and d» = min{r + 1, M}.

Define
()5
a r—a
— <a<d
pi(a) = M+ L chesa
r
L 0, otherwise,
( (M)( L+1 )
a r+l—a
, e<a<d
pa(a) = 4 M4+ L+1
r+1
. 0, otherwise,
and

pla} = pala) — pi(a).

For e < a < dyp,

(};I) (rffJ {(M+L+1)a—M(r+1)}.
(M+L) (M+L+1){r+1~a)

pla) =

T
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Put ¢ = ﬁ_ﬁ_”; H It is easily checked that ¢ < ¢ < d3. Therefore, we have

pla) <0, if e<a<yg,
play=0, if a=g,
(3.8) pla) >0, if g<a<d

and particularly,

ple) <0,
p(dg) >0 it do=d;.

If dy > di, then pa(ds) > 0 and py(da} = 0, therefore, p(dy) > 0. We can now
replace dy in (3.8) by dz. Then, it is obvious that

2
Sjp(a)>0, if k>g
and, noting that .% _p(a) = 0,

d2 k-1
Zp(a):—Zp(a)>0, if c<k<y.
a=k a=c

This completes the proof.

Before proceeding further, we define several subsets of O as follows:

O={{(u,v)€ 0 |u¥N—m+i},
A=AnNO,
E—-EnO,
Ay = {(u,v) € Alv =N},
Ay = A— A,
C, = {(u,v) € C — C |u# N},
Cy=C-—C -y,
D ={{(w,v)eD|u=i+j—-1},
D,=D— Dy
and
F=EUC UA;.
Then,

O=A,UBUCUDUE,

where ;i;, B, C, D and E are mutually disjoint.
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THEOREM 3.2. V{;y is negatively regression dependent on Uy); that is, for
(u,v) € O,

Pr{Vi, <v | Uy =u} < Pr{Vy <o | Uy =u+ 1}

Furthermore, we obtain the following results on when egquality will hold.
(i) Fori =1, equality holds if and only if (u,v) € Do UF U As.
(ii) For i — m, equality holds if and only if (u,v) C D U F U C..
(iii) For 1 < i < m, equality holds if and only if {u,v) € D U F.

Proor. From Lemma 3.1, it follows that

Pr{V <v|Uy=u} =Pr{V;, <v|Uy=u+1}=0 for (u,v)€ Dy,

Pr{Vijy <v| Uy =ut =Pr{V;y<v|Uy=u+1}=1 for (u,v)€F,

Pr{Vijp SvlUy=u} =0<Pr{Vij <v|Uy=u+1} for (uv)eD
and

Pr{Viy <v|Usy =u} <1=Pr{V;; <v|Uy=u+1} for (u,v)€ Cs.

(a) The case of (u,v) € B. Note that v = v in this case. If u = N, then by
Lemma 3.1, we have

Pr{Vi; < N | U iN} <1 =PI‘{VU) < N+1 | Uy :NJrl}.
Suppose that « < N. From Lemma 3.1, we have

PI‘{VU) §u\U(,-)=u+1}zPr{V(j) <u+1 ‘ U(t-}:u%—l}.

(h—1\(N-m—h
— \Jj-1 n-—j

Pr{V(j)Su|U(i)=u}:Z N -1
=0
n

From Corollary 3.1,

<Pr{Vy <v| Uy =u+1}
h—1\{N-m— h)
u+l—i . .
o / (N — n) '
h=j
n
(b) The case of (u,v) € A,. First, note that (u + L,v) € As. By Corollary
3.1, we have
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h—IN/N—-—-m—h
min{v,u—i, N—-m—-n+j5} | . .
_ )y j—1 n—j
- / (N - m)
h=j
n
my/u—1—1v
min{v,u—1i} (a) (u g a)
x>,

e=max{h,v+1—i} (u N 1)

U3
and
(3.10) Pr{Vijy <u |l =u+1}

(hl)(Nwm—h)
min{v,u+l—i,N—m—-n+j5} | | .
P (N — m)

mn

o u+1 -1
min{v,ut+1—i} .
Z a u—1r—

_ (u +1-— 1)
a=max{h,v+1—i} K
u+1—1

x

If £ = 1, then it is easily seen that

h—1N(N-m-—-~h
min{v, N —m—n+j} 51 n—j
(3.9) = (3.10) = , (N - m) ‘
h=j
n

Now, suppose that ¢ > 2. For v = j, we have

(310)  {uw—j)u+1-i)
Go) " wwri-i—g b

Let v > j + 1. First, we consider the case of v < i+ j — 1. In this case, we have

A—1\N/N—-—m—~h
minfv,u—i,N-m—n+j} (] _ 1) ( n— j )
(3.11) (3.9) = Z (N - m)
h=3
T
vy fu—1—w
min{z,u—i} ( )( . )
Z P ) k7 T [#1
(75)
a=h .
U —1

and
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h—I\N/N-m-h
min{v,u+1l—i, N—m—-n+j} . 1 n j
. J b —
312 310 = . -
(312)  (310) D A
h=j
i)
(1}) (u +1 -1 'n)
min{v,u+1-—i} i
« Z a,\u+l—1—a
u+1-1
a=h .
u+1—1
If w=wv+1, then we have u = i + j and v = i + j — 1, therefore, we can

show (3 10} < (3.11) by direcl calculations. I w > w + 1, then putting M = v,
L=u—1—wvand r=u-iin Lemma 3.4, we have

vy fu—1—w
min{v,u—1} a w—i—a
2 (u - 1)
a=h .
u—1

nyfu—-1-v+1
min{v,u+l—i} y M—idt]—n

1 < h < mi LU — 1t
——— , or j<h<min{v,u—1}
a=h ]
u—i+1

Therefore, (3.12) > (3.11). Now, we consider the casc of v > i+ j. Then {3.9) can
be decomposed into two terms;

h—IN/N—-—m—h v fu—1—w
v+i—i j 1 n— j min{w,u—1} a h—i—a
Z (N m) Z . (‘J — l)
h=j a=v+1—1 .
n —1
h— N-m-—~h
111i1'1{v,u7i,1\'*m n J} j " l
+ Z (

)

(3.13)  (3.9) =

h=v+1—i+1

u—1—w
min{v,u—4} i —a
* Z u—1
a=h
U—1
where the second term of the right-hand side of (3.13) disappears for v = v + L.
Similarly, (3.10) can be written as

' h—1N/N-—-m—h
inl:'t j*]. TL—j

0
h=j
n

(3.14) (3.10) =
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(v)(u+11v)
min{v,u+1—%} .
af\u+l—i—a
AT
, wu+1-—1
a=vt+1—1
(u + 1 z)
h.—l) (N—'m.—h)
min{v,ut+l—4i,N-m-n+j} , .
3 (J‘ -1 n—j
_ (N — m)
h=v+1—i+1
n
i 1‘}(?})(%4-11?))
min{ v, u+1l—12 .
nj\un+1—i1-—-a
X Z u+1-1
a=h
u+1—1
Because the quantities in { } of (3.13) and (3.14) are 1, the first terms of (3.13)
and {3.14) are equal. If v = u — 1, then the second term of (3.13} = 0 and the
second term of (3.14) > 0. Therefore, we get (3.14) > (3.13) for v = u — 1. Now,

assume that v <u— 2. Pt M =v,L=u—1—v, r =u—i{and k = h for the
expression in | | of (3.13). By Lemma 3.4, we have

_I_

the second term of (3.13)

N h— N—-m-—-nh
min{»,u+ zz m—n+j} B 1 n—j
) N-m
h=n+1—i+1
n
) s vy fu+l—L1—-wv
y mm{qi:_i’ﬂ} af\u+l—i-—a
u+l1-1
a—=h
u+1-—-1
< the second term of (3.14).

Thus, we have (3.13) < (3.14).

(c) Thecaseof(uv)ecg Leti'=m i+ 1,7/ =n—j+1L,u =N -u,
v = N—w, and N' — Nom—n+i' 45— 191n(91<7r<N1+g<1J<N n+i—1,
and u < v, we have i’ +j <o/ < N-m+i -1, 3 <v < N' —1land v <.
Therefore, we can use the result of case (b} for (7', 5/,%',v'). Hence, we have

PI‘{I/(JJ) S 'Ur | U(.,;l) = u’} S Pr{‘/(jf) ﬁ ’Uf ! U(.L'J) =y + 1}

<

with equality holding if and only if ' = I, that is,
Pr{Vin_j+1y SN =0 | Upnivry = N —u}
<Pr{Vingi1) SN =0 | Upmoigy = N —u+1}
with equality holding if and only if m — i +1 = 1. By Lemma 3.2, we have
Pr{Vi <v| Uy =u} =Pr{V; <v|Us =u+ 1} for i=m
and
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Pr{Vij <v | Uy =u} <Pri{Vyy <ol Uy =u+ 1} for i#m.
This completes the proof of the thevremn.

Remark 3.1. If (u,v) € D; U BU Cs, then
Pr{V;, <v|Usy =u} <Pr{Vy <v|Uy=uv+1} forany 1<izm.

Now let us consider the general case 2 = {T1,..., 21,82, L2, -, Bre e ey
x;}. We easily obtain the following lemma.

LEMMA 3.5. Fori<a,b<l

Pr{Xp) < 24, Yy < m} = Pr{ly < fu, Vi) < fo}
and
2
Pr{X) = =, Yy S 2} = ) Pr{ln =5,V < fo}.
s=fa

Lot Ly = {(u, fo) | fa S u < farr}-

THEOREM 3.3. Let 1 < i < m and L < j < n. Then, Y| is negatively
regression dependent on X;); that is,

(3.15) PI‘{Y(J;) < zp ] Xy = o} < Pr{Y(j) <y | Xy = Tatl}

where i < fo < fapn SN—m+iandj < fo <N-j+1 Furthermore, the
following results with equality hold:
(i) Fori— 1, equality holds if and only if Iy, C Dy U F As.
(ii) For i = m, equality holds if and only if 1oy < DyU FuU G,
(iii) For 1 < i < m, equality holds if and only if I, & D,UF.

PRrOOF. First, note that i < f, < farn SN-—-m+i & Pr{X; = xa} > 0
and Pr{Xg, = g1} > 0, and j < fo <N —j+1< Pr{Yy, =} > 0. Using
Lemma 3.3, it is scen that (3.15) is equivalent to

fo o fat1
(3.16) ST Pr{Uy =6V € S} Prili =t}
-9:fu t=fu +1
fa  fatr
< Z Z PrilUg =t Vi = [y Pr{Un) = s}
s:fa t:faﬁ—l

From Theorem 3.2, we have

(3.17) PI‘{U(Z') = ul,V(j) < fb} PI‘{U@) = u2}
< Pri{lUy) = u2, V(5 < i} Pril = m},
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fori<uy <us K N—m+i Forl <uy <i—1oruy > N—m+1, hoth sides of
(3.17) are 0. Summing the inequalities (3.17) over f, < u; < fa, foy1 € U2 < farts
we obtain (3.16). It remains only to check the conditions for equality. From (3.16)
and Theorem 3.2, it follows that
the equality holds in {3.15)
& the equality holds in (3.16) for all (s,t) such that f, < s < f, and
far1 €L faa )
& (8. fn) (s + 1, fa), ... {t fr) € x for all (s,t) such that f, <s < f, and
fa+1 <t < far1, where y denotes Do UF U Ay fori=1, D U F U Ch
fori=m, and Do U F for 1 < ¢ < m.
(s, fo)Exfor fu <8< fapr—1
s Ia.b - X-
This completes the proof of the theorem.

4. Covariances of two order statistics from one sample and from two samples

Let {¥1,Y5,...,Y,} be a simple random sample of size n without replacement

from @ = {z1,....,z1,72,...,20,...,%1,..., 21} of size N. Let Y5y < Yy <

- < Yiny be the order statistics of {Y),Y%,...,Y,}. We define A,,., and B by
{s|i<s<N-n+i}land {fi |1 <k <I}, respectively.

THEOREM 4.1. Letl <1<« 5 <mn. Then we hauve
Cov(Yy, ¥(5)) 2 0
with equality holding if and only if A, NB=0 or A, "B =10{.

PROOF. It A,; N B =0, then Yy, is constant, theretore, Cov(Y(;), Yi;) = .
Similarly, if A,.; N B = @, then Cov(Y(,),Y;;,) = 0. Suppose that A,; N B # @
and A,,; N B # 9. Let f, = min{A,; "B} and let fi = max{A,; N B}. Then,
(i, fo) € Gy NS and (fo + LN —n+J) € Gay1yp11y N S. By Theorem 2.1, we
get

Pri¥i = 2o, Yig) = 20} Prilys) = @as1, Yi) = @041}
> PriY(s) = 2a, Vi) = @1 Pr{Y(s) = 201, Y5y = @}

Hence, Y{;) and Y(;) are not independent. Since, by Theorem 2.1, (Y, Y;)) is
positive likelihood ratio dependent, (Y;y,Y(;) is positive quadrant dependent (See
Lehmanu (1939), p. 74 and Lehmann (1966), p. 1144). By Lemma 3 of Lehinann
(1966), we have Cov(¥(;, ¥(;y) > 0. This completes the proof of the theorem.

Let {X1,X5,..., Xn,Y1,Ys, ..., ¥,} be a simple random sample of size m +
n without replacement from €. Let X < X5 < --- < X(4n) be the order
statistics of X, Xa,..., X, and Yy < Yy < -+ < Y, the order statistics of
Y1,Y, ..., Y.
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THEOREM 4.2 Let1 <i<m and 1< j<n. Then we have
Cov( Xy, Yi) <0,
with equality holding if and only if A B =0 or A,; NB = 0.

Proor. If A,,; NB = § or A,y "B = @, then Xy or Y, is constant,
therefore, Cov(X (), Y;) = 00 Assume that Ay B # @ and A, ; M B # 0.
Since, by Theorem 3.3, Y{; is negatively regression dependent on Xy, (Xpy, Yi;)
is negatively quadrant dependent (See Lehmann (1966), p. 1144). By Lemma 3
of Lehmann (1966), we have Cov(X;, Y < 0 and if Xy, and Y(; are not
independent, then we have Cov(X(y;,Y(;3) < 0. Now, we shall prove that X,
and Y(; are not independent. Suppose that I, N (B U C3 U Dy) # §. Since
(BUG;UD])O(AQU CQUD2UF}:V}, we have I, ¢ A, U Cy U D UF. By
Theorem 3.3, we have

PI‘{YU) < ay, ‘ X(i) = l‘a} < PI‘{Y(j) <z, | X(i) = ma+1}.

This implies that X, and Y}, are not independent. Therefore, it suffices to show
the existence of (a, ) such that L,N(BUCsUDL) # 0. Let 7 = A, NA,; N B,
Cr={k|max{i,j} <k <i+jh,Co={k|i+j<k<NyandC3={k|N<k<
min{N ~m+i,N —~n+j}}

Case (i): T # 0.

(a): CoB #£B. Let f, € CanB. Then, i +j < f, < N. It follows that
(fo, fa)y € B. Thus, I, " B # 0.

(b): CoNB =@ and Ct NB # 0. Let f, = max{Ci N B}. Then, max{i,j} <
fo<itjand fo <i+ji—1< for1. It follows that (i +j — 1, fu) € I, 0 Dy.
Thus, 1'rm N Dy £ 9.

() OB =0 ConNB=0and Cy # @G Tet f, = min{Cy "B} We have
N+1 < fa <C mm{N m+i,N-n+j}—1and fu, < N < fat1. It follows that
(N, f)€ L, N Cs. Thus, I, N Cs # 0.

Case {H): J = 0. Note that, under the assumption A,,; "B # @ and
An; NB # 0,4 = j implies 7 # 0.

(a): ¢ < j. There exists f, € Bsuchthat 1 < f, <jand N-—m+:1 < fop1 <
N —n+ 3. It is scen that (N, f,) € Ltas1y N Cs. Thus, L,11) N Cs # 0.

(b): © > j. There exists f, € Bsuch that j < f, <diand N -n+j < foq1 <
N —m+1. It is scen that (4 +7 ~ 1, fu) € Lo, N Dy, Thus, L, "Dy # ¢

This completes the proof of the theorem.
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5. Lower bound of relative precision of RSS from a finite population

We draw a simple random sample {X; | 6,7 = 1,2,...,mk=1,2,...,v} of
size n?r without replacement from a finite population £ of size N, with mean p
and variance o2. For each ¢ and k, the n units { X1k, Xiok, . - » Xink} are ranked

by a visual inspection. The unit with the i-th smallest rank 18 quantified. This
procedure involves the quantification of nr units out of the n?r units originally
drawn.

Let Xk be the i-th smallest order statistics of { X15, Xi2k, . . -, Xink }- Then,
the ranked set sample obtained by the above procedure can be written as { Xp |
i = 1.2 ...mk = 1.2,...,7} and the ranked set estimator figgg of p is the
average of Xpp (1= 1,2,...,nk=1,2,...,7):

. - 1 ”
ftrss = Xnlr = — ZX[z‘]k-

This is an unbiased estimator of u (Takahasi and Futatsuya (1988), Patil el ul.
(1995)). Let X, be the sample mean of a simple random sample of size nr drawn
without replacement from 2. The definition of relative precision (RP) of X'[n]r
(Patil et al. (1994)) is _
rp = YarlXer)
Var{X{,1,)

In this section, we show that RP > 1 for almost all populations, and RP =1 for
very exceptional populations. The corresponding result in infinite population can
be found in ‘Takahasi and Wakimoto (1968).

Let {X1, X2, o X0, Y1, s, ..., Y.} be a simple random sample of size 2n
without replacement from §2. Let X1y < X(z) < -+ < X(p) be the order statis-
tics of X1, X2,...,Xp, and Yy < Yoy & -0 = Yy be the order statistics ol
Y1, Ys, ..., Y, We shall use the following notations:

M — E(X(z)) = E{Y(z})1
iy = Cov( Xy, Xi5y) = Cov(Y), Yii),

and
LEMMA 5.1. Let 2n < N. Then,
) ~ R o
(5.1) ZZ%:@ = "N_1
i=1 j=1
and

(5.2) Zn: Qriii = %MZ - ): Z (i
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Proor. It is well known that

2

(5.3) Cov(X,Y) = fNU_ ]
and

_ N -—nc*®
54 Var X = —
(5.4) MAETN 1w’

where X = .0 X, and Y = >, Yi. On the other hand, we have

{5.5) Cov(X X, Y)= 2ZZ'YH ij

i=1 j=1

(5.6) Var X = Zan i +Zzan i

i]
From (5.3) and (5.5), we have {5.1), and from (5.4) and (5.6), we have (5.2).
THEOREM 5.1. Let n’r < N. Then,

(57) Var(X[n T} = Vrll‘(XnT) QT Zzan g ZZ’)’R 1i

i#] 173

ProOF. By some simple calculations, we obtain
6.8) VorlXims) = o3 Zan IRES 3) S IR ) Bt
i i=1 j=1

Substituting (5.1) and (5.2) for the right-hand of (5.8), we obtain (5.7). The proof

is complete.
Now, we can prove the following theorem.
THEOREM 5.2. Let n’r < N. Then,
RP > 1,
with equality holding if and only if one of the following conditions for populations
is fulfilled:
(i) {m <zp=23=- =N}

(11) {ZU] =Ly = =EN_1 <.’I,‘N};
(iii) {.’El :(BQ:--':?L’N}.
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Proor. By Theorem 4.1 and Theorem 4.2, we have

(5.9) DD iz = DD Anas 2 0.

i7j )

From this and Theorem 5.1, we have Var(X[,,.) < Var(X,,,). Therefore, RP > 1.
The equality in (5.9) holds if and only if &,.;; = 0 and 4,,,;; =0forall1 <4, <n
(i # 7). Now, we assume that dp.i; = 0 and 7., = O0for all 1 <47 <n (i £ j).
Then, from Theorem 4.1 or Theorem 5.1, we must have A,,;NB =Y or A, ;N8B =
for any (é,7), such that 1 < 4,7 < n and 7 # j. Suppose that, for 1 < k < n,
Ane MB #£ 0. From this assumption, A, N B =0 and A,...o1 N B = 6. Recall
that App = {s |k <s< N-n+k}. Because Ani € App_1 UAnks, it follows
that A,.x N B = 0. This is a contradiction. Therefore, under this assumption, one
of the faollowing cases must hold:

(a)y ApaNB#Qand Apy "B =0 for 2 < k < mn;

by ApnnB#band A, NB=0forl <k<n-1;

{c) A, NB—Bforl <k <n.
It is obvious that (a) implies (i), (b) implies (ii}), and (¢) implies (iii). Conversely,
it is clear that (i), (i) or (iii) implies RP = 1. This completes the proof.

From Theorem 5.2, we can say that BRP > 1, unless N — 1 elements of the
finite population of size N have the same value.

REFERENCES

Tutatsuya, M. and Takahasi, 1. {1990). Dxtremal liuite pupulatious waximisiog relative efficien-
cies in ranked set sampling, Sci. Rep. Hirosaki Univ., 37, 152-150.

Lehmann, E. L. (1959). Testing Statistical Hypotheses, Wiley, New York.

Lehmann, E. L. (1966). Some concepts of dependence, Ann. Math. Siatist., 37, 1137-1153.

Patil, G. P, Sinha, A. K. and Taillie, C. (1994). Ranked set sampling, Handbook of Statistics,
Vol. 12: FEnvironmental Statistics (eds. G, P. Patil and C. R. Rao), 167-200, North Holland
Elsevier, New York.

Patil, G. I*, Ginha, A, K. and Taillie, €. (1995). Fiuile pupulation correclions for 1anked sel
sampling, Ann. Inst. Stalist. Math., 47, 621-636.

Takahasi, K. and Futatsuya, M. {1988). Ranked set sampling from a finite population, Proe.
Inst. Statisi. Math., 36, 5568 (Japanese with English summary).

Takahasi, K. and Wakimoto, K. (1868). On unbiased estimates of the population mean based
on the sample stratified by means of ordering, Ann. Inst. Statist. Math., 20, 1-31.



