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Abstract. This paper investigates the asymptotics of the log likelihood ratio
test for a unit root in an autoregressive {AR) process of general order. The
main result is that the expectation and variance (in fact, all moments) of the
test statistic may, to the order of T, where T is the number of observations,
be approximated by the expectation and variance of the corresponding test in
an AR(1) process. This result has obvious implications for the asymptotics of
unit oot tests for panels. An explicit formula for the approximation error of a
test in an AR(2)} process is also given.
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1. introduction
Consider the AR{p + 1) model
(1.1) X, = Xeo1+ P2 Xta+ -+ dp1Xi—p-1 &1,

where we assume that the e;'s are independent and normally distributed with
mean zero and variance o2. We may rewrite {1.1) in error correction form as

r»
(12) AX,=08X; 1+ ijAXt_j + £,

j=1

where AX; = X; — X, for all t. Now, assume that all the roots of the equation
1 pyr—---— p,r? = 0 have modulus larger than one. Under this assumption, the
only possibility fur the characteristic equation of the [X,]} process to have a unit
root is that 3 = 0, and the initial values of the process may be given a distribution
such that the process becomes stationary if.f. 3 < 0. Hence, it is interesting to
test the hypothesis Hy : § = 0 against the allernative Hy . A < 0 (a unit root
test).
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Im et al. {1996) study a situation with N independent serics following the
model (1.2), with a constant term added on the r.h.s. They consider the log likeli-
hood ratio test of the null hypothesis that the §’s for all series are zero against the
alternative that all the 3’s are negative. The log likelihood ratio statistic for this
test becomes a sum of the N independent log likelihood ratio test statistics for
the single series, and as N tends to infinity, the distribution of this sum tends to
normal by the central limit theorem (CLT). Hence, to explicitly find this asymp-
totic distribution, it is enough to calculate the expectation and variance of the
log likelihood ratio test, —2log Qr(p, p} say (¢’ déf(m,. 2 Pp)), of Hy against Hy
for a single series (such as the onc given in {1.2) with a constant term added on
the r.h.s.). Moreover, lim et al. suggest to approximate the expectation and vari-
ance of —2log QT(p, ) by the expectation and variance of the corresponding test
statistics in an AR(1) process, ~2log Q@7(0,0). (This has the advantage of giving
alt approximating distribution of the test statistic free of nuisance parameters.)
They conjecture that, for fixed initial values of the process, the errors of thesge
approximations are of order 77!, where T is the number of observations, i.e.

(1.3) BE(=2log Qr(p, p)) = E(=2log Q(0,0)) + O(T™)
and
(1.4) Var(—-21og Q7 (p, p)) = Var(—2log Qr(0,0)) + O(T ).

(As is scen below, —2log Q7 (p, p) and —2log Q7 (0, 0) have the same limiting dis-
tributions. The convergence of moments to the correspouding moments of the limit
distribution may be proved using uniform integrability arguments as in Larsson
(1997).) Hence, if 7" observations are taken from each series, Im ef al. get a CLT
saying that their test statistic is asymptotically normal with the same expectation
and variance as —2log Q¢ (0,0) has, under the conditions N — oo, T — oo and
VN/T — 0. {This is an improvement from tests proposed earlier in the literature,
which required N/T — 0.) Tn the present paper, we aim to prove the conjecture
of Im ef al., in the gpecial case where the constant in the regression equation is
ZEro.

As a proparation, consider now the special case of an AR(1) process, i.e.
p = 0in (1.1) and (1.2), with fixed initial value Xq. Introducing O, notation,
Yr = Op(T™) meaning that for each 6 > 0, there exists a constant Ag > 0 such
that P(|Y| € AsT*) > 1— 8 for all T {cf. Mann and Wald (1943)), it follows that
if 4 = 0, the log likelihood ratio test of Hy against H fulfills

(1.5) ~2log @7(0,0) — ~Tlog (1 - %ZT) ~ Zp + O (T7)

(the last equality is obtained via Taylor cxpansion}, with

7 el (3= Si—1€¢)?
’ 25t2233_1’

def

where the summation runs over {1 <¢ < T} and §; = Z 1o & for aH t. Moreover
(cf. Phillips (1987)), as T - oo (in the rest of Section 1, we put o2 = 1),

- l A 1 l .
9 7 X Seee s [ weaws = i -,
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1 1
(1.7) Est b [ Wi
0

1
(1.8) o et bl

d ] . . . . . . .
{— and - mean convergence in distribution and conv. in probability, respectively),
where {W.} is a standard Wiener process. Hence,

1
g 4, Uo WrdWo) (W7 - 1)
fiwzdr 4 Wadr

as T — oo,

and because of (1.5), the same limit result holds for —2log @7(0,0). The limit
distribution of Z7 and related quantities has been studied by e.g. Rac {1978),
Evans and Savin {1981), Larsson (1995a) and Abadir (1995).

In this context, it is also interesting to note that, as was pointed out by Nielsen
(1995), 3" 22 and Z; are independent, and as a consequence, defining

Z déf (Z Sf,flet)z
T >.82,

we get

(1.9) E(Zr) =E ((Z;Z)) E(ZD)

T
=+n

T
- (%) SQ(T))E(Z;)’ n=12,...
2

The paper is organized as follows: in Section 2, the required result for the
general (AR{p+1)) model is proved. In Section 3, an expresston for the first order
(T~ error term, in the special case of an AR(2) (p = 1) process, is derived, and
in Section 4, some concluding thoughts are given.

2. The general model

Consider an AR{p + 1) model, written in error correction form as

b
(2.1) AX, =08Xi1 + ijﬂxt.mj + £,
j=1
with AX; ™ X, —X,_), where the initial values Xo, X _1, ..., X_, are fixed and the
gg’s (f > 1) are independent and normally distributed with mean 0 and variance
o?. Assume that we have observations Xi,...,X . and that we want to test
Hy : 3 =10 against H) : 3 < 0. Moreover, assume that the p;’s fulfill
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AssuMpTION A. The roots of 1 — pyr — -+ = p,r? = 0 all have modulus
larger than one.

Guaranteeing the stationarity of the {AX,} process when g = 0, if the initial
AX,’s are given the stationary distribution. Furthermore, let Qr(p,p) be the
likelihood ratio test of Hy against Hy. The theorem to be proved is

THEOREM 2.1. Assume that 3 = 0 and that Assumption A holds. Then,

(a) E(-2logQr(p, p)) = E(—2log Qr(0,0)) + O(T ™),
(b) Var(—21og Qr(p, p)) — Var(—2log Q4(0,0)) + O 1).

In words, the theorem means that the expectation and variance ot the log
likelihood ratio test of Hy against Hy for the AR(p + 1) model in (2.1) may be
approximated by the expectation and variance of the corresponding test in an
AR(1) model, with an approximation error of order T, proving the conjecture
of Im et al. (1996) in the special case of no constant term in the regression equation.

Before proving the theorem, we start with some derivations and lemmas. In
a standard manner it follows that,

- - .0
2 def 0[2} —a

- ; o Mr .

where 52, 62 are the ML estimates of 7% under Hy and Hy, respectively, and via

Taylor expansion (M7 will turn out to be Op{1)),

M2
(2.3) —2log Qr = My + O, (—Tz) :

Furthermore, denoting the ML estimates of 3 and pg, k = 1,...,p under Hy by ﬁ
and pg, respectively, we get

( BZ:X?—I = th—lAXt W Zﬁj ZXt‘—lAthj:
it t J t
(2.4) (S5 S AX L AX, Ly = Y AKX, AKX,
) £ t

~BY X aAXik, k=1
t

\

(Iere, we denote the sum over {1 <t < T} by >, and the sum over {1<j<p}
by ZJ) Under Hp, the ML estimates of p, k = 1,...,p, denoted fyo, satisfy

(25) ZﬁJOZAXt ,e/\X't j:ZAXtmk-AXt; k‘:l.,p
3 t t
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Now, if 3 = 0 which we henceforth assume, (2.4) implies
62 XPq+ }:(ﬁj — pj) ZXHAXt_J = meez,

(2.6) BZXr :AXt kJrZ(PJ—Pq)ZAXg AX

_ZAXt kEt, kila-"apa
\

and by defining the p-dimensional vectors AX (AXt 1r-, AXi—p), Ydﬁf

IZt‘Xt IA)H: ngfT 1ZtA}\rtt P - g) — (p1 — Plr---aPp - p): the
p X p matrix FT tef T3, AX,AX," and the scalars Up def -2 >, X}, and
Vip def p—1 St Xt 1e¢, we may rewrite (2.6) as
o (1ir 12 -,
BY +Tp{(p—p) =2

and solving (2.7) for 3,

(2.8) T3 =

But by (2.4) and (2.5}, we have

Z(f)JO — f)j)EA)Q iAXe i = BZX:E—IAXt—k-. E=1,...,p,
7 £ t

or in matrix form, letting (QO -pY déf(ﬁm — Pl Pp0 — Pp)s

(2.9) Cr(p, ) = BY

To find an expression for My (ef. (2.2)) in terme of these quantities, note that

2
(2.10) TBE-6% = (AX: -3 @MAXM)
k

t
2
-3 (Axf N LEEDY ﬁkAXtﬁk)
¢ k
=2 Z (A-Xt — Z f)knAXt—k)
: k
: (BXIH —> (hro — f)k)/—\Xt—k)
k

2
-3 (3)(}4 — Y (ko — fne)Ath) :
t k
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Here, via (2.9) and {2.8),

b

Z (:éXt 1— Z(f)fco — pR)AX g

£t
2
L - VAKX, )

(i

1

A2 (Xe- lfyr TAX )X, - YTHAXY
: t

(Vr Y'T71Z)2

Tﬁ(UT—Tyrly) : .
Ur — TXT;?lf_

and similarly, since by (2.5) and arguments as above,
(2‘]‘1) (ED_E) :P’;]£7

we find

> (Axt - Zﬁkoaxt_k) (BXH — > (B — ﬁk)AXt_k)

t &

= Z (Ea - Z{ﬁko - Pk)Ath) ([:}th - Z(ﬁko - f}k)Athk)

k

=B (e — ZTAX )Xy - YT AX,Y
t

(Vip — Y r ;14)2

=TH(Vr —Y'T73'Z) =
Ur — mY I ly

Thus, by (2.2) and (2.10),

1 (Vp—Y'T 2)?
(2.12) My =200 2)

2 1 :

In the following, the plan is to study the convergence of different components of
Mz in (2.12), starting with

Lemma 2.1, If 5= 0 and Assumption A holds,

a1 _
65 =72 e+ 017,
£
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Proor. Using (2.1) with 4 = 0, it follows that, via (2.11),

2
(213) Taf=>_ (AXt - ZﬁkoAXt_k)
k

t

= Z (Ea - Z(ﬁko - Plc)Ath)
t k

= (e — ZT7'AX) (e — ZTFAX,Y =Y &>~ TZ'T ' Z
t t
— > =T, ~ p)'Tr(p, — p)-
t
Now, by the results of Anderson {1971), Chapter 5, we have that if 3 = 0 and
Assumption A holds, p, - p = O,(T~1/?) and as T — oo, T'r converges in prob-
ability to I' (say), the covariance matrix of {AX),...,AX,}. Hence, the lemma
fellows. O

Now, let 5, def Z§:1 g;, where the ¢;’s are independent and normally dis-
tributed with mean 0 and variance 2. In the following, we may without loss of
generality assume that ¢2 = 1. It will turn out to be useful to consider the moving

average representations of X; and AX, given in

LEMMA 2.2, If 3 =0 and Assumption A holds,

(a) AX; = Cy(L)zy + ay,
(b) Xy = C(L)S; + by,
where

P 4
def def def
Gy = é thsdsa ds - (psAXO +--+ ppAXs-p)7 bt = E Ci—s5€s5,
s=1 s=1

t—1
def def i
es S (psXot -+ ppXap),  CHL)ED ol
=10

where L is the lag operator, ¢g = 1 and ¢, is defined recursively through

min(p,n}

Cn = E Cn—3Pj, RZI,Q,....
i=1

Moreover, we have the representations

t—1
(c) (L) = () + (1 oLy, o) =34V,
i=0
t—1
() oLy =Py + - e, oP@) =340

1=0
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1) def 2) dof .
where c( ) def —Zj i1 G ( ) ““Zj i1 J ,1 =0,...,t—1. Furthermore, for
some 6 > 0, the sums

Coo(L)E hm Cy(L) =) all

L—ruoa

o0
CM(L)E Jim Cf(L) = ™, m=1,2
=0

(1)

)

are absolutely convergent for |L| < 1+ 8, and ¢;, ¢
nentially fast as i — oo.

and c ! tend to zero £rpo-

Proor. Theorem 2.1 of Johansen (1995} yields (a), and {b) is obtained by
summation in (a). For (¢}, just note that

t—1 t—1
CUL) = Ci() =D a(l' =)= =1~ L)Y e(1+L+---+ LY.
i=0 j==()
Now, let
t—1 t—1
M =) = =Y L+ L+ -+ LY,

i
o
-
il
[

i

and by equating coeflicients,
t—1
-3 e, i=01,.,t— 1
J=itl

By repeating the same argument, (d) follows.
The convergence of ... (L), ol (L) and C(‘!)(L) follows from Theorem 2.2 of

Johansen (1995), and the exponential decay of ¢;, &Y and (:52) is an immediate

&
consequence of this convergence. O
We will also need

LEmMma 2.3.

(a) > (Ci(1)Se1)er = Cr(1) Z Sp-161 + Op(1),

t

(b) Z(Ct )5)? = Cr_1{1)* ZS ~y + Op(1}.

Observe that, hy (1.6) and (1.7), 32, 8¢ 16; = Op(T) and 3, S2 =0T,
respectively.
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Proor. To prove {a), we have for a start

41

Z(Ct Sr 1 Et Zcz Z Si18¢ = CT(I)ZStAEt—U,
£

t =0 t=u+1

where

1

. fT—l T-1 T-1

e

v = E C{ZS{._-!E#_: E Sf—igtzciv
t=1 =t

i=0 f=1

We want to prove that v is Op(1). But because the ¢;’s decay exponentially fast
as i — oo, we ay write ¢; ~ ¢ for some |y| < 1, where f, ~ gn means that
fo/gn — 1 asn — oo, and so

T—1 -1 1 T-1
v~ Z Si-1€4 Z'Yi ~ 11—~ Z’YtSt—ﬁp
t=1 i=t v =1

Hence, v is asymptotically normal with mean zero and variance (assuming g2 =1
for simplicity)

1 -1 1 T-1
2 2t 2 2y 20y
E(U ) (l _ 7)2 tz::i Y E(St—lgt ) (1 _ ,Y)g ; ¥ (t 1):

which is finite as 7" - oo, and we conclude that v is Op(1).
Looking at {b), we get

T-1 T-1 ft-1 \ 2
Z(Ct(l)st)Zz (Z%) St2

=1 t=1 1==0)
T-2T-2 T-1
2 2
= CiCy E St = CTfl(l) E Si - U,
i=0 j=0 t—ivi+1 ¢

( V § means the maximum of ¢ and j) where

T-27T-2 vy T—2 T—24i—-1
df
2 E E €;Cj E 52 = E S2 E ¢ +2 E E e;c;
i=0 g=0 i=t =0

But arguing as above, it is easily seen that all moments of v remain finite as
T — o, hence u is Op(1) which was to be shown. C

The next thing to show is
LEmMMa 2.4. If 8 =0 and Assumption A holds,

(% Simie + Coo()THR - Ty T2
251

G(Q)MT +OP(T#1)1
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where I' is the covariance matriz of {AX 1|,

d f'T’—] T
) 1 .
R= Cz(- ) E Ep— -3t = Op(j 1/2),

i=0 t=it1
and y and z are p-dimensional vectors with components

T*lT 1 T
€565 Sp1egtt kg = Op(T)

=0 5=0 iVi+1

e

and
def
2 = E G
i=0 =

fork=1,.. .p. (We regard all &, t <0, as fized.)

Z Ep_k—ifs = Op(TI/Q)
i+1

ProoF. We will start by showing

1
(2.14) Up = 3 Cr 1 (1)? ) 87, +0,(T7).
t

(Note that, by (1.7}, T72%, 82 | is Ou(1).) To this end, using Lemma 2.2, we
get

T—1

(2.15) T*Ur = ZXt 1= D (CilL)Se +b;)°

=1

= Z((Ctm + (1= L)CO(L)S)? + 7

T-1

:Z(Ct 1502 +2 Y (C1)8)C (L)ey)

t=1

+ Z Ct(l)(L)zEt2 +ri,

t=1

where
-1 T—1
™ déf?Rl + Z h%, Rl (iéf Z (Ct([“)‘gt)bt—
t=1 t=1
The first termm on the r.hs. of (2.15) is treated in Lemma 2.3(b). As for the second
term, Lemma 2.2 implies

T—1 T—-2T-2 T—1
(216) Y (CSHC Ly = 3N ad? S S
t=1 i=0 j=0 t=ivi+1
T-2

Z SHCP (YL,

1=0 t=i+1
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where
T—27-2 T-1 T-2T-2 T—1
2.17 (1) S N~ g
( 1 ) (’t(’ t&¢ = (,‘LC,- &t
i=0 7=0 t=ivit+l i=0 j= t=1
T Vg
1)
E f’e(’( E Sieq,
=0 =0 t=}

which is O, (T), since via (1.6) and (1.8),

ni

—1

Sye, = ZSL \&r + Zet = 0,(TY,

t=1

and because the second term on the r.h.s. of (2.17) may be proved to be O,(1) in
the same fashion as the rest terms v and « in the proof of Lemma 2.3.

Furthermore,
(2.18) Zst(c L)Ag,) = Zr(2 Z SiAe;_;,
t=i+1
and by partial summation,
T
(219) Z StAEt_,,g = STET—-l-—'i — Z Et+1Et—i-
t=i+1 t=i+1

The r.h.s. terms are < OP(TI/ 2), the first one since St is normally distributed
with mean zero and variance T, and the second one because of the central limit
theorem for m-dependent sequences (cf. Chung (1974)). Hence, via (2.18),

< Z Ei Z SiAey_;

i=0 t=i+1

T-1

3 SHCP (L) Aey) < 0,(T?),
t=1

since Y ooy \c§2)| is convergent by Lemma 2.2, so by (2.16) and {2.17), the second
term on the rh.s of (2.15) is O,(T). For the third term, letting CISU(L)2 =
(328 L L2 def Z?(to D El 2L we simply note that

+=0 ¢
T—1 T—12{t-1) T-1 2(T-2)
Ol = 3 3 ¥ = Yot 3 A =0y
t=1 t=1 i=0 i

from (1.8) and the convergence of C‘t(i}(L). Moreover,

T-1t-1

T-1 T—2
=3 N a8 abo= > S Y e,
t=1 i=0

t=1 i=0
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and as above, ¢; ~ ¢ for || < 1, implying

by ~ E ey fyt—?’ep as t— oo.

Hence,
T-1 T-2
By ~ vy Pep Z 7S, Z ¥ -0
t=1 i=0

arguing as in the proof of Lemma 2.3. Similarly, as for the sccond term in the r)

exXPression,
T-

T-1
St 3 - 0,

t=1 t=1

completing the proof of (2.14).
TLooking at Vr, we have via Lemma 2.2,

(220) TVy = ZXt 18¢ = Z(Ct(L)Stfl -+ bﬂ&‘i

£

“Z Cy(1)S:-1) Et+R+thEt7

where the first term on the r.h.s. is dealt with in Lemma 2.3(a), and where

T 1 T
{2.21) R= Z(Cfl)(L)Et—l)ft = Z ffgl) Z Et—1-ifis
: =0

t=1+1

(the “initial” ;’s, {e¢}¢<0, may be regarded as fixed), which is O o (T/2) by the

CLT for m-dependent sequences and the convergence of 3_7° 1( } The quantity
Lf bie, is normally distributed with mean zero and variance >°, b7 = O(1), hence

Op(1}.
Moreover, by Lemma 2.2 again we have that, for the k-th component, Y, say,
sza 1" - 1:"'1p7

(2.22)  TYi = (CL)Sor + b ) (Cil{L)esp + ar—)
t

=y + th{L)Stflat—k + thﬂ(Ct(L)Et—k + ae—),
A L

where, in the same manner as above, the socond and third r.h.s. terms are seen to
be Op{1). Moreover, via Lemma 2.2,

T-1T-1 T

R ES S e Y Secimisen =S (OIS O L)eus)

i=0 =0 f=iVi+1 [
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1811 )(Ce(L)er—k) +Z(C( L)er-1)(Ce{1)et—)

(C(1
+Z (CD)Se-)(C (L )Ast_k +Z (€ (L) (O (L) Aer )

T-1T-1 T T-1T-1 " T
1
= C;C4 E Si-164—k + E E C; E Et-1-ift—k
i=0 j=0 t= ’th+l 1=0 j=0 t=ivj+1
T—-17T-1

(’@C(l) Z Si1Aey_ 7

'M.
M

i=0 j=0 t=ivj+1
T—-1T~1 a
() (1) E : .
+ C; Cj Et—l——iAEt—k—j < Op(l ),
i=0 j=0 t=ivji+1

because of the convergence of Y7 |cil, etc., and since

&
Z Sp 18k = Z Spok-151—k + Z Zéft—.!f?c—k < O,(T)
' t =1

(all St, t < 0 are interpreted as zero), 3, 6i-1-46—x < Op(T) (indeed, the order
s Tiff k =1+ 1, otherwise it is T]/z) Yo St1Agi g O (TI/Q) by partial
summation as in (2 19}, and finally, by the Hélder inequality,

1/2
< (Z ef_L_ime;,-)?) < O(T),

Moreover, from Lemma 2.2, the k-th compaonent of Z, Z, satisfies

—-'Agt—k—j

(223) TZR = Z(Ct(L)Et_k + at_k:)é't = zE + Zat,kat,
t

t

where

T-1 T
def
k= E C; E Er—k—ifty

=0 t=i+1

which, for the same reasons as R {cf. (2.21)), is O,(71/?), and where ¥, a;—ge, is

normally distributed with mean zero and variance of order 1, hence O,(1).
Furthermore, as before, 'y converges to the covariance matrix I in probability

as T — oo, 80 via Lemma 2.3, insertion of (2.14) and (2.20)-(2.23) into (2.12) and

from the convergence of Oy (1) (of. Lemma 2.2), the proof is completed. O

Looking at the magnitudes of the terms in the numerator of the main term of
Lemma 2.4, (1.6) yields 3, 5y 16y — Op(?), and from Lemma 2.4, we know that

R = 0p(T"?), y = O,(T) and z = Op(T"/?), hence the term R*'= (1) YR -

T 'T"12) is O,(T*/?). However, when taking moments, R* gives a slighter
impact than what would be expected from this, because of the following lemma.
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LeMMA 2.5, The correlation of R with >, Sy_1eq, 3., 6% and 3., 871 as
well as the correlations of the components of z with 3", S,_xer, Y., &2, >., 574
and the components of y are all at most of order T~/

ProoF. We will confine ourselves to handle Corr{R, Y, S; 1), the rest
of the proof being similar. (In fact, the correlations of the components of z
with 5. 2,2 equal zero.) As is easily seen, FR = 0 = E(3., Si—18,), VarR =
O(TY and Var(}>, S;_1¢,) = O{T?) (cf. (1.6)). Hence, we need to deduce that
E(RY, Se-184) < O(T). But this follows from the calculation

(s ) (e )

=0
t—1
= Z Z Cgl)E(Ef—l—i)E(Etz)
t i=0

t—1
=Y 3 dv =om),
i=0

t
the last equality following from the convergence of >~ lcgl) .0

As a simple consequence of the lemma, the correlation of R with any almost
surely smooth function of 3, 8,1, 3., &% and »°, S¥_| is at most of order 1"~ !/2,
and similarly for the components of z. Using this argument, we may now readily
prove

TueoreM 2.2, If 8 =0, Assumption A holds and n is an arbitrary positive
integer,
E(MP) = B(Z}) +0(L™1),
where 8 2
—1&
Fp=Tx=t 70100
PIFED I St

ProoOF. Lemma 2.1 and Lemma 2.4 imply

(X Si—ree + RY)? 1
Mg =TIt 218 T V) g opely,
’ Lt Eith Sffl P( )
and since 37, 57 1 is O,(T?) (by (1.7)), >, &¢® and 5, Sy_q24 are Oy (T') (via (1.8)
and (1.6), respectively) and R* is O,(T1/?), a binomial expansion yields

(2.24) E(M}Y) = E(Z}) + 2nE(A,R*) + O(T™Y),

letting
def (> S_1e )2t

Ay = Tm \ = O, (T71).
(ie? 2, SEm rl )
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However,
E(AR") = BE(A.R) - T E(A,y'T™'2),

and, as is implied by Lemma 2.5, Corr(A,, R} = O,(T~1/?), so because ER = 0,
Var R = O{1") and Var A,, = O(T~%),

E(A,R) = Corr{A,, R)v/Var A, Var R = O(T™").
Similarly, by applying Lemma 2.4 componentwise, it follows that
T E(A. YT 2) =0T ).
Hence, (2.24) yields the result of the theorem. &

Finally, via (2.3) {observe that M} = O,(1)), we may translate the result for
My to corresponding result for the log likelihood test statistic —2log Qp:

COROLLARY 2.1. If 8 =0 and Assumption A holds,

(@) B(-210gQr) = B(Zr) + O(1" ),
(b) Var(—-2log Qr) = Var{Zr) + O(T1)

In conjunction with (1.5), the corollary immediately implies Theorem 2.1.

Remark 1. Because of (1.9}, it is clear that the results of Theorem 2.2 and
Corollary 2.1 may be rephrased as
g
r{=
(2)

\" N
(2.25) EMY) = 5 ) —m— < E(Z]) 1 o(TT),
(2 ) r (Z + n)
(2.26) B(—2log Qr) — I{{Z7) + O(T™"),
(2.27) Var(—2log Q) = Var(Zy) + O(T7Y),

where

G 2ut Sp160)?
> S

Remark 2. In fact, it is evident that all moments of —2log Q¢ may be ap-
proximated by the corresponding moments of Z7 up to an error of order 1771,
This fact strongly suggests that also the distribution function of —2log Qr (and
M) may be approximated by the distribution function of Zz up to order 7! (cf.
Larsson (1995b) for this kind of result for unit roof testing in AR(1) processes).
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3. The AR(2) case: The size of the error term

Naturally, to get a better feeling for the size of the O(T ') approximation
errors of Section 2 (e.g. in connection with Bartlett correction, cf. Larsson (1994)),
one could try to compute these terms numerically. However, a problem is that
these error terms will depend on the nuisance parameters py,..., g, of the model
(2.1).

To simplify matters, let us study the special case of an AR(2) process (p = 1),
with fixed initial values Xg and X _;. Under Hy : 3 = 0, p = p; is the only
parameter, and Assumption A translates to the condition |p| < 1. We are able to
deduce the result

THEOREM 3.1. If 3 =0 and |p| < 1, we have for a process {X,} satisfying
(2.1) withp =1, p= p1,

R
EMr=FEZp + %p) +O(T™ %),

where
R{p) = R(0) + pR'(0) + O(p*)
with

RO0) = Jim. (TL’E (o) e (3 - (Ree)
(32, Si18)? o f D0 Se180)®
1 (gt ) v (TG

v (Tabae)

e | 2e Sto16¢ . (32,8180
—2T'E | ==——— £s.16¢ | — 2E E4-.1€¢
(z:tszq?“‘ s, 2
. 1 >, Si-iee (37, Si18 )
R0 =21 WE(MWAJ+TE(J———)+ CWtM_
© Tl_r'noo( 2 St2—1 Ztstz—l p St2 L

(3 Se-184)° . (3, St-12e)®
*TQE( RN )”TE( 5, 52,0 )

(Zt Sefl'?t)él
e ()
()« (e
- TFE ( St 1Et Zi‘-t 2<:t)

St 1€¢
(O )

and
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Remark 3 Ohserve that the initial valnes enter nome of the terms R(0) or
R(0).
Remark 4. Via the Taylor expansion (cf. {2.3))
My M7 2
—2log Qy = —Tlog (1 — T) = Mr + o + O (T7),

a similar result for —2log @ is easily obtained.

Remark 5. In Larsson (1994), Laplace transform methods were employed
to calculate R(0) to be =1.241. Moreover, from the numerical results of Larsson
(1994), giving all but the last three terms in the expression for R'(0) of Theorem
3.1, and the simulation results (using 7" = 800 and 1.000.000 replications)

. Z Se_ 12t .
lm TE{ &£ ——— Ey_nEr | =2 0.6
T—oo ( Zt Sf—l Z

4

2

2
T—oo Zt St—l t

(as an alternative, these terms may be calculated more accurately by generalizing
the method of Larsson {1994)), we arrive at the approximation R’(0) ~ 3.7.

and

Proor oF THEOREM 3.1. The proof consists of Taylor expansions of the
components of (2.12) in p, which are then inserted into (2.12), giving the result
by a final Taylor expansion.

For a start, we see that, from the proof of {2.14) (somewhat generalized),

(3.1) T2Ur = Cr(1)? Y S8, + 207 ((DUR (13D Sies
£ t

+eP2Y &2 + 0,0,
t

Here, because ¢; = p*, we have by Lemma 2.2,

T-1
(3.2) =3 P

j=t+1

41
P

1—p
= signifying equality modulo exponentially small errors in T,

T-1 1
(3:3) Cr)=) o~
=0 - P

and
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() = ptt! p
3.4 Cy (1Y = —  — ]
(3.4) (1) ; i e

Now, insertion of (3.3) and (3.4) into (3.1) yields
1
o 2 _ 2
(3.&) TUT*(lAp)Q t St,1 *Z tt+ 42& +O
1
t t

As for Vp, we have in view of (2.20),

Z(C’,(l )Si-1)er = ZP Z Si-1e tN_LSt 1€,

i i=( =41

ad by (2.21) and (3.2),

Zpa-{-l Z Ep1 g = _]_ip (chz—lct f O(p2)):
t

t=i+1

o (2.20) implies

. - 1 :
(3.6) TV = m ( E St-16¢ = p E €118 + O(Pz)) +0,(1).
t t

As for the covariance matrix I, it consists, in this special case, of one element only,
which is easily shown to be

1
3.7 R
(3.7) s
and moreover, (2.22) implies
T—-17T-1
(38)  TYi=) > o Z Se-1-i1-1-5 + Op(1)
=0 =0 t=ivVji+l

= Z S+ p (Z Sy_igs + Z Stst—l) + O(,OQ) + O,(1),
t ¢ ¢

and via (2.23),

T-1 T
(3.9) TZ, = 2_: o' Z: gi—1-i&t + Op(1)
3=A{) t=1+1

=S e 1 pY aize | O(p®) 1 Op(1),
4 t
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Finally, by inserting (3.7) and (3.9) into (2.13) and using that T (Y &;_1;)?
tends to one in probability as T' — oo,

2 E 2
(3.10) 0’0 — . - Et ~ _"_2 —

Ze; _T T an 1&2&: 260 + Olp ))

+ Op(l‘ 2,

and the result of the theorem is obtained by imserting (3.5)-(3.10) inlo (2.12),
Taylor expanding in p, taking expectation and neglecting terms of the type

1 Si_1€¢)
EE:E( Zztt ig?it Zﬁr 1€:ZEt 25t)

for reasons as in Lemma 2.5. (Details may be provided from the author at re-
quest.} O

4. Concluding remarks

The results of the present paper may be generalized in many diflerent direc-
tions. The obvious one is to study the contribution of nuisance parameters (as in
Scction 3} further, perhaps using transform methods as in Larsson (1994, 1997).
Oune way also try W include a constant term, a linear term and so on in the model
(cf. Larsson (1997} and Nielsen (1996) for related results for AR{1) processes). Yet
another line of generalization is to study vector-valued autoregressive (VAR) pro-
cesses, where the unit root test carries over to a test for cointegration (cf. Johansen
(1995)).
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