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Abstract. In this paper we introduce a finite population version of the mean
residual life-time {MRL) function and the hazard function, and study Bayesian
estimation of these functions. The unknown parameter is the complete set
{y1,.-.,y~n} of lifetimes of the N units which constitute the complete popula-
tion. A hierarchical type prior is used, where the 9;'s are assumed conditionally
independent given a randum parameter #. The data consists of a random sam-
ple of n values of ;. The Bayes estimators of MRL and hazard functions,
respectively, are then obtained as the posterior expectations of the unknown
functions.

Key worde and phrases:  Fintte population, mean residnal life-time fimetion,
hazard function, exponential distribution, prior distribution, posterior distri-
bution, exchangeability, type [ censoring, type II censoring.

1. Introduction

Consider a finite population of N units {1,2,..., N}, with y; being the life-
time of unit 4, ¢ = 1,...,N. Under Bayesian framework, we regard the finite
population of interest as a sample of size N from an infinite or superpopulation,
and regard the stochastic procedure generating the surveyor’s sample of n units
as the following two-step procedure: Step L Draw a sample of size N from an
infinite super-population. Step 2: Draw a sample of size n < N from the large
sample of size N obtained in Step 1. Actually, Step 1 is an imaginary step and
Step 2 is the real sample survey conducted by the surveyor.

There are two kinds of reliability evaluation; one where we call for inference
on infinite population parameters and another where we are concerned with esti-
mates of the parameters of definite finite population. The conceptual or infinite
population is, by definition, in the analyst mind. The real population or finite
population, e.g., a collection of parts from a machine, is what it is.

The focus of our attention in this paper are two important parameters of the
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16 NADER EBRAHIMI

finite population namely the population mean residual life-time (MRL) function,

i = e > 1)
S Ly > 1)

and hazard function for specified interval (¢, + A},

(1.1) ()

STt <y <t+A)
‘\N *
Yok d e > 1)

(1.2) An{tt+ A)y=

Here I(A) denotes the indicator function of the set A. Physical interpretations
of (1.1) and (1.2) are as follows. The yx(t) in Equation (1.1) is the average
remaining life among those population members who have survived until time ¢.
The Ay(t,t+A) in Equation (1.2) is the ratio of the number of deaths {or failures)
in the interval ({, t+A) to the number of surviving at the beginning of the interval.
From Iquations (1.1) and (1.2) we obscrve that yn(t) and Ay (¢, 1 A) are well
defined only when 0 < ¢t < maxi<;<n ¥i. When ¢ is larger, the numerators and
denominators are zero. {(As usual we define § = 0.)

The problem of calculating Lot fluaclivus adises guite often in public health,
demography, actuarial science and industrial reliability application. Because of
limited time and limited budget, life-times of units in the entire population are
not observed, yy(t) and An{t,t + A} can not be calculated preciscly. Therefore,
one has to estimate both of them from a given sample. This paper considers
Bayes estimation of both functions which are nonlinear functions of the population
units. 'I'he prediction approach for linear functions of the population units are
developed in the literature under general assumptions; see Bolfarine (1989, 1990)
and references therein.

There are many situations of the “analytical studies” type which call tor
estimating MRL function and hazard function of the infinite population. The
MRL function and the hazard function versions for an infinite population are
known in the literature and also they are described in the next section. (For more
details see Barlow and Proschan (1981).) In this manuscript we will also focus on
these two parameters.

The outline of the paper is as follows. In Section 2 we drive Bayesian esti-
mators of both measures under finite population and infinite population. We give
general ways of deriving estimators and for illustration of our method we consider
a situation where conditioned on a parameters X the lifetimes are exponential and
where A is Gamma with parameters a and 3. Section 3 studies properties of our
proposed estimators. Section 4, applies methodalagy of Section 2 to one example.

2. Bayesian approach

In this section we present a Bayesian approach to estimation of the MRL and
the hazard functions. First we estimate MRL and hazard functions of infinite
population.
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2.1 The MRL and hozard functions of an infinite population and their estimates
In this case we think of a population consists of infinitely many independent
and identical units. From a practical point of view, it is of course hard to sce how
one can create infinitely many such units. Still conceptually it might make sense
to work sometimes with such infinite populations at least as limiting case.
Let Y be the lifetime of any unit from this population. The MRL and hazard
functions at time t are defined as

(2.1) vty =E(Y -t|Y >1t),

and

(2.2) At} = A’Lmﬂ Pl<Y <t+AlY >1),
respectively.

Assuming that Y is an exponential with the hazard function A and that A is
distributed as Gamma, distribution with parameters a and 3, we get from (2.1)
that

(2.3) v(t) = /:0 E(Y —t|Y >t gAY > t)dA,

where g(\ | Y > ) denotes the conditional density of A given that ¥ > ¢. It
should be noted that since we are conditioning on the event that ¥ > t, we
must use the conditional density of A given Y > t. It is easy to verily that
EY —t|Y > A = A 1and g(A|Y > t) is Gamma with parameters « and
3 +t. Inserting this to (2.3} we get that

o t &
(2.4) ~(t) = / (! M)\““l exp(— (5 + t)A}dA.
0 I'(e)
Assuming that o > 1, the integral in (2.4) exists and the solution is given by
B4t
(2.5) 1) = —-

By similar arguments the hazard function A(t) in (2.2} is given by

NGRS T
2.6 Alt :[ A A P exp(— (3 + t)A)dA
(2.0 0= A p(~(3+ HN)
R
Given n obscrvations ¥, ...,y from this population we can update both (2.5)

and (2.6) in the usual Bayesian fashion. Hence the Bayesian estimators of v(t)
and A{t) become as follows

ﬁ+2?:1yi+t
ov+m— 1

(27) 'YB(t l Yiy-- -ayn) -

and
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a+n
Byttt

(28) AB(tlylﬁ:yn):

respectively.

We observe that (2.5) and (2.7) are increasing functions of ¢ while (2.6) and
{2.8) are decreasing functions of . When n — oo, however, (2.7} and {2.8) con-
verges almost surely to the constants A~ and X respectively.

Suppose now that the experiment is terminated after the r smallest observa-
tions from a sample of size n have been observed. This is referred to as type 11
censoring. In this case the Bayesian estimators of 4{¢) and A{t) become

(2.9) A2 (1), () = S 2 yg):;(fl— RlIGRL3
and
a+r

@ =
(2.10) At [(0)wlr)) = 5 Syl + (n—rylr) + ¢

respectively, where y(i), i = 1,...,n, denotes the i-th order statistic.

If the experiment is terminated after a fixed time T, this is referred to as type
i censoring, and if v smallest observations are observed prior to termination. 'U'hen
the Bayesian estimators of y{t} and A(#) may be expressed as

(2.11) AP (L), u(r) = B+ 2,12(‘? :‘_(7; -rT + t,
aned

() o+
(2.12) A’ (# y(1), -, w(r)

R

2.2 Bayesian estimators of yn(t) and Ay (t,t + A)

In this case we are concerned with Bayes estimates of yn(f) and An(f,f +
A) of the finite population. Let s be a subset of {1,2,..., N} and let n{s) be
the number of elements in 8. For simplicity we shall consider only samples of
fixed size n. Let w(y,...,yn) denote the prior density or probability tunction
of the Bayesian statistician. The prior density #(y1,...,y~n) would be chosen to
represent and summarize the prior beliefs and information of staristician abount
(y1,...,yn). Given the sample (s,4(s)) one then can find the conditional joint
density of (y(,...,yn) given (s,y(s)). Here,

(2.13) y(s) = {yiiics},
and
(2.14) y(5) = {y,: ves).

Estimation in finite population sampling can now be thought of as a prediction
problem. That is, predicting the unseen, y(5), from the seen y{s).
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For estimating vy (t) under squared error loss, the Bayes estimator against
the prior 7 is

‘ . _ (£) + W(t)

(2.15) in{t) = Ex [m ! (s, ] 2
where

(2.16) m(t) =Y wl(y > 1),

€S

(2.17) bt) =) 1w > 1),
(2.18) Wi(t) =D wlly > 1),

and

(2.19) V()= Iy > t).

In Equation (2.15), given (s,%(s)), both a1(t) and b(¢) are treated as constants.

In many situations it can be quite difficult to specify a sensible prior distri-
bution 7 and then carry out a Bayesian analysis. 'This is particularly true for
problems with a large dimensional parameter space, of which finite population
sampling forms an important subset. For such large scaled problems a Bayesian
analysis seems impossible without some simplifying assumptions that allow us
to model our prior information. A naive first guess might be to assume that
v = {y1,...,un) are independent and identically distributed. Under this prior we
see from Equation (2.15), the Bayes estimator of vy (t) reduces to Er {55 :‘E}ES))
Because of the independence we see that the seen, y(s), gives us no information
about the unscen y(s'). In order to rclate the unscen to the scen, we need a prior
which makes the y,,...,yn dependent. Since in many cases, for example in relia-
bility all the units in the finite population are manufactured by the same process,
Y1, ..., YN enjoy somme similarity, therefore a judgment of exchangeability among
units is reasonable. A technique for defining exchangeable distributions which is
quite useful in finite population sampling, was proposed by Ericson (1969), see
also Ghosh and Meeden (1996). We use his technique to construct m(yy,...,¥n)-

Let 8 = (#,,...,6,,) be a vector valued paramcter. We assume that ¢ has
a probability distribution given by probability density function g. Morcover, we
assume that given @, y1,...,yn are independent and have a common probability
density function f{- | #). Unconditionally, i.e. integrating out #, this defines a
probability density for yy,...,yn given by

50 N
(2.20) r(yl,...,y.w)*f (Hf(yi|9)) g(8)de

In the Bayesian framework 6 is sometimes called a hyperparameter and is
introduced as a mixing parameter to generate exchangeable distributions from
independent and identically distributed distributions.
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For our purpose as we did in Subsection 2.1, we assume that in (2.20)

(2.21) fly | A) = Aexp(-Ay).
and
(2.22) 9 = Fg A" ! exp(-pA),

where o, 3 > 0 and are all known. It should be mentioned that % i8 our prior
guess about the mean of the population and 77 is a measure of how certain we are
about the choice of the mean.

From {2.15), it is clear that

N—n

(223) A= > 5 TOEE: Tt + EW(R) | (s,5(s), V() = k)]
k=0
x P(V(t) =k | (s,9(5))) —

The main issue now is to compute (2.23) for an exponential model. Given the
model assumptions in (2.21) and (2.22},

(2.24) P(V(#) = k| (s,4(s)))
= (N n) (exp(—kAt)) (1 — exp(— AN —n—F
T

(ﬁ"‘al
 In+e)

N-—n—k e
B (N —n)! 3+ a1{0)
—Zo CV R —n = G+ D) (ﬁwﬂﬂ)ﬂkﬂ)t} |

)\"*"‘ Lexp(—(8 + a1 (0))A)dX

Note that the first term in the integral is P(V(t) = k | A, s,y(s)) and the second
term is the conditional density of A given (s,y(s)). Similarly,

(225)  EBW() | (s,9(s), V(t) = k) = kt + kE (

(5,9(8). V' (£) = k) |

To get the expression (2.25), we use the fact that given V(t) = &k and A there
is a sample of size k from ({%R))I (y > t). Now to compute the second term in
Equation (2.25) we need the posterior distribution of A given (s,y(s)) and V() =
k. One can casily verify that the posterior distribution of (A | (s,y(s)),V(t) = k)

is

N—n—k An+cx 1
(226) ( PRCINE exp(~ (ﬁ+a1(0)+(k+3)t)/\))

2 e+ )

-1
N-—n—k
ﬁ+a1(0)+(k‘+j)t) "=T(n + a)
( Z (1! AN —n- kL) ) |
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Using (2.26), Equation {2.25) reduces to

(221)  BOW() | (5,4(), V(E) = &)
—kt+ |k(n+a-1)""

N-n—k

—1)7 (F+ar(0)+ (k+ 9yt
»";’ R T T )]
5 N-n—k (”1)7(ﬁ + (11(0) + (k +j)t)_n7‘3'
3=0 (N —n—(k+j)4!

Substituting from (2.24) and (2.27), into Equation (2.23) one finds that the Bayes
cotimator of yxn(2) is

N-nN-n—k
(228) =3 S (<Y
k=0 4=

, | praf® N
(N — n){a (£} + kt) (ﬁ tai(0) + {k+ J)t)

(RGUN —n— (G + R)D{B(E) + &)
N-nN—-n—-kN-n-k (n+a71)71(71)j+i
[j!(N —n— (k+ j))!

(N —n)!
"IN n G RNk - 1)!}

1 ( B+ f’@L)’m

+k ﬂ+a1()+(k+j)t

( a ( ) (k+z)t)fnfa+l

y (” ’“(_1)9 (8 + a1 (0) + (k + £)1) " ) o,
=0

(N —n— (k+ )

For estimating An(t,t + A) under squared error loss, the Bayes estimator
against the prior 7 is

(2.29) An(tht+A)=E [“2“) * Zb(t;(j ;(g st+4) 1 s,y(s)} ,

where

(2.30) ap(t) = > It <y <t+A)

i€s
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Given the model assumptions in {2.21) and (2.22), by reasoning similar to that
used in obtaining Equation (2.28) and after some algebraic manipulation it may
be verified that the final expression for the Bayes estimator of Ay (£, + A) is

—nN-n-k
| (N —n)laz(t)
(2.31) An(t,t+ A) ,; g By k)

P B+ a1(0) o
1) (6 T (0) - (k +j)t)

KGN —n— (j + k)!

N-nN-n-EN n k

(N —n)l
DD ; OFY:

it+j B+ a:1(0) e
(=1 (6+a1(0) + (k +j)t)

(k— DN —n — (E+ )
x [(B+ a1{0) + {k+i}t) "
— (B4 a {0} +{k+i)t+ A) "9
1
"N _—n_GrR)

Nk (3 + a1 (0) + (k+ £)t)~ "=
(Z (-1)f AN —n (L1 k) )

Now, supposing A — 0, from (2.31}, one can show thag

(2.32)  Jim S

3 3+ a—l(O) nto
N-nN-n-k az(t)(—1) (ﬁ+a1(0)+(k+j)t> (N —n)!
k=0 =0 (b(t) + K)EGIN —n — (G + k)

o yidd ﬁ-i—a-; (0) nta
S A (ﬁ+a1(0)+(k+j)t)
k=1 j=0  i=0 (B(8) + k) (& — 1)ljk!

(N =)l
(N n—(k+iNN —n—({T+ k)

x (n+ )8 + a1 (0) + (k+4)t) """}

N-—n—k -1
(B+ a1 (0) + (k+ Oty "=
: ( g -1 esulv—n— &+ 0))! ) ’
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where az(t) = lima_.g % X3 Jt <y <t+A).
Under type Il censoring one can consider the following two cases:

Case 1. 377, I(y(i) > t) > 1. Under this case by reasoning similar to that
nserd in ahtaining Equation (2.28) it may be verified that the final expression for
the Bayes estimator of ynx{t) is similar to the expression (2.28) where a;{0) is

replaced by 377, y(i) + (n — r)y(r) and a1 (£) is replaced by

;mm(yw > 1)+ (n () + (-t Ef=1ay(j)r+ (In ~rhylr)

Also, the Bayes estimator of Ay (t,t 4 A} is similar to the expression (2.31) where
a1(0) is replaced by >, (i} + (n — r)y(r) and as(t) is replaced by

r i a+r
D e O O NN AR W e

Case 1I. 3., I{y(i) > t) = 0. Under this case the Bayes estimator of vy (#)
is similar to the expression (2.28), where a;(0) is replaced by 370, y(i) + (n —
r)y(r), n is replaced by r, and b{t) = a;(t) = 0. Similarly the Bayes estimator
of An(t,t + A) is similar to the expression in (2.31), where ay(0) is replaced by
Yo y(@y + (n— r)y(r), n is teplaced by 7, and b(t}) = a(t) = 0. In this case
=q.

=1t

Under type | censoring again one can consider two cases:

Case 1. 3., I{y(?) » t) > 1. Under this case, the Bayes estimator of v (£)
is similar to the expression in (2.28), where a1(0) is replaced by 3 _| y(i)+(n—7)T
and aq(t) is replaced by

IS yi) + ()T
at+r—1 '

Zy(i)f(y('é) >t +(n—r)T+(n—

Similarly, the Bayes estimator of Ay (t, £+ A) is similar to the expression in (2.31),
where a; (0) is replaced by 3., y(¢) + {n — )T and a,(f) is replaced by

o+

ZI(t<y(i)§t+A)+(n*T)B+2::1y(i)+(n_r—1)T+t+A'

=1

Case 11 5°._, I(y{i} > t) = 0. Under this case the Bayes estimator of
yn{t) is similar to the expression in (2.28), where a,(0) is replaced by »~._, y{(¢)+
{n — )T, n is replaced by r and a;{t) = b{#} = 0. Similarly, the Bayes estimator
of An{t,t + A) is similar to the expression in {2.31), where a;(0) is replaced by
> im Y@ + {(n — )T, n is replaced by r and b(t) = a2(t) = 0. In this case ¥ = 0.
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An important difference between estimators derived in Subsections 2.1 and
2.2 is the following. The classical MRL-concept in {2.1) is defined as the expected
remaining lifetime at time ¢ given that the unit has survived time t. The yy(t}
in Equation (1.1) is the average remaining life among those population members
who have survived until time f. When estimating vyn(t), it is done based on
complete information about the lifetimes of the observed units and no information
at all about the unobserved units. Thus, the estimates provided in Subsection
22 addresses a different prohlew compared to the classical MRIL estimates in
Subsection 2.1. Similar things can be said about hazard function estimates. In
the next section we discuss in more details regarding these estimators,

Another function which certainly is of great interest is the finite population
survivor function Fy{(t},

1 N
=1

For estimating Iy under squared error loss, the Rayes estimator against the prior
18

(233) Fulty = B0 + V) | (5,5(5)),

wherce b(t) and V(#) are given by (2.17) and (2.19) respectively. By reasoning
similar to that used in obtaining Equation (2.28} and after some algebraic ma-
nipulation, it may be verified that under Model (2.21) and (2.22) the expression
(2.33) reduces to

2o b 1TSS (Y —n)l
(234) Fu(t) =7+ g; E% (k= DYN —n~ (J +K))!

(B + ai(0}) AN
X(ﬁ+aﬂm+%k+jﬁ) '

Under type 11 censoring the Bayes estimator of Fn(t) is similar to Expression
(2.34) where @;(0) = >_0_, y(@) + (n —r)y(r), b(t) = >0, I(y(i} > £} + (n —7r) if
S (y(i) > t) > 1,6(t) = 0if Y1, H{y(i) > t) uocmdn—v if 37 I(y(d) >
£) = 0. Similarly under type I censoring, the Bayes estimator of F:\r(ﬂ) is wlnilas
to Expression (2.34) where a;(0) = 3.0_, y(8) + (n — v)T, b(t) = 321, 1(y(i) >

)+ {n—r)if Z’;A Hy(@) > t)>1and b(t) =0if 3, I(y(i) > 1) =0, andn =7
if 32 I{y(9) = 0.

Optlmal predl(tlon of the finite population distribution function Fy(f) =
1 Zb_ I{y, <) is considered in Bolfarine and Sandoval (1993). They assumed
that y,...,yn are independent and their approach was non-Bayesian.

Remark 2.1. We can obtain the posterior distribution functions of yy(t),
An(8) and Fy(t) given (s,y(s)) using arguments similar to that used in obtaining
Equations {2.28), (2.31) and (2.34). However, the forms of these distributions are
very complicated. It should be mentioned that we only used the means of these
distributions in constructing our Bayesian estimators.
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3. Properties of the estimators

In this section we study properties of our estimators proposed in Subsections
2.1 and 2.2.
The results of this section are summarized as follows.

THEOREM 3.1.
(a) As N — oo, 4n(t) converges to vg(t).
{b) As N — oo, An(t) converges to Ag(t).

Proor. (a) From (2.15), for large N since the leading torms arc W(t) and
V(t) we get that y5(¢f) and Eﬂ[% | (s,y{s)}] — t are equivalent. From (2.18)
and (2.19) it suffices to notice that as N — oo,

B[S | Gs.0ts0) | -

goes to
Ex[Y =Y >, {s,4(s))] = v8(4).

This completes the proof. R
(b) Similar arguments can be said about Ay (t).

It should be pointed out that the results of Theorem 3.1 always holds irre-
spective of type of distribution. Theorem 3.1 states that for large N estimators
proposed 1n Subsections 2.1 and 2.2 are equivalent. Similar results can be obtained
for both type I censoring and type II censoring.

4. lllustrative example
The following example illustrates the procedure proposed in Section 2.

Fzample. The Lifetime Light Bulb Company makes an incandescent filament
that they believe does not wear out during an extended period of normal use. The
company takes a random sample of 100 bulbs and test them all until failure. The
sample data is given in Table 1. It should be mentioned that the company came
up with a test plan that can simulate a month of typical use by a buyer in 1 hour
of laboratory testing (using higher than normal voltages).

Tobias and Trindade {1995} state that the exponential does a fair job of
describing the survival function of a bulh.

From Equation (2.28) we find 4 (f). In (2.28), we choosc a and S to provide
a rather vague specification. In particular 3 = .002 and a = {A(0)}3, where A(0) =
Ei]n?'yi . That is, we employed data motivated guess for the prior mean for A, The
analysis is not sensitive to these choices. Figure 1 gives Yn () for various values of
N. Similarly, from Equation (2.32) we find Ay (t) = lima o ’\N—(?\f’j—ﬁl. Figure 2
gives Ax(f) for various values of N. Figures 1 and 2 also give the classical Bayes
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Table 1. Sample data of equivalent month of bulb failure.

1 2 2 3 4 5 7 8 g 10
11 13 15 16 17 17 18 18 18 20
20 21 21 24 27 29 30 37 40 40
40 41 46 47 48 52 54 L4 L5 5h
64 65 65 65 67 76 76 79 80 &0
82 86 87 83 94 96 100 101 102 104

1056 109 109 120 123 141 [50 156 156 161
164 167 170 178 181 191 193 206 211 212
214 236 238 240 265 304 317 328 355 363
365 369 389 404 427 435 500 522 547 889

155

t50

145

140

135

T R

o 500 1000 1500 2000

estimators of MRL function vg(#) and hazard function Ag(t) given by Equations
(2.7) and (2.8) respectively for the same values of o and 4. It should be pointed
N _ 13563.0024¢ ~100.0014
out that v5(t) = 55505 and As(t) = 1356300047
From Fig. 1 we see that our estimator of yn(t), 4w (t) is consistently smaller
than ~v5(f). However, as we also proved in Secfion 3, when N gets larger our

estimator approaches the classical Bayes estimator. Similar things can be said



MEAN RESIDUAL LIFE TIME AND HAZARD FUNCTIONS 27

00068 0.0070 0.0072 5.0074

00060

¢ 500 10008 15060 2000

Fig. 2.

about Ap(t) and Ax(t). However in this case our estimator is consistently larger
than Ag(t).
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