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Abstract. Akaike’s information criterion (AIC) is widely used to estimate
the best model from a given candidate set of parameterized probabilistic maod-
els. In this paper, considering the sampling error of AIC, a set of good models
is constructed rather than chooging a single model. This set is called a conli-
dence set of maodels, which includes the minimum £{AIC} model at an error
rate smaller than the specified significance level. The result is given as P-value
for each model, from which the confidence set is immediately obtained. A vari-
ant of Gupta’s subsct selection procedure is devised, in which a standardized
difference of AIC is calculated for every pair of models. The critical constants
are computed by the Monte-Carlo method, where the asymptotic normal ap-
proximation of AIC is used. The proposed method neither requires the full
model nor assumes a hierarchical structure of models, and it has higher power
than similar cxisting methods.

Key words and phrases:  Akaike’s information criterion, model selection, confi.
dence set, multiple comparison with the best, Gupta’s subset selection, variable
selection, multiple regression; bootstrap resampling.

1. Introduction

Since Akaike (1974} advocated the model selection criterion AIC = —2 x
(maximum log-likelihood) + 2 x (the number of parameters), the minimum AIC
estimate (MAICE), the model which minimizes AIC, has been widely used as a
simple and practical estimate of the best model. MAICE is said to be free from
the following problems of the classical hypothesis testing: (A) The arbitrariness of
the choice of signiticance level, and (B) the limitation on the structure of candidate
models.

However, the arbitrariness in (A) may be seen as an advaniage of testing;
the significance Ievel can be chosen according to how strictly the error should
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be controlled. On the other hand, the “significance level” of MAICE cannot be
prescribed by the user, because it is implicitly adjusted as pointed out by Bozdogan
(1987).

In this paper, we consider a model selection procedure which has the advan-
tage in (A} of leading to a quantitative measure of its reliability. At the same
time, it is free from the limitation in (B). The key idea is to consider tests on the
magnitude of £{AIC}, then to find a confidence set of models. This set includes
the (unknown) best model at a high probability while the number of models in it
is kept small. MAICE will be always included in it at a reasonable significance
level («1/2). The confidence set is not to replace MAICE; rather it provides us
supplemental information on model selection. The confidence sot is regarded as
an “interval” estimate of the best model, and MAICE is regarded as a “point”
estimate.

Here note that the best model is defined as the minimizor of £{AIC) rather
than MAICE. This is natural if we remember that AIC is derived as an estimate
of the expected prediction error unbiased up to its second term. Note also that the
expectation is taken with respect to the unknown true distribution, which may
not be included in any of the candidate parametric models.

To illustrate our approach, consider the simplest case where we have two
(possibly nomnnested) models M) and M7 to be compared. Fist, test the null
hypothesis £{AICo} < £{AIC;} against the alternative £{AIC;} > E{AIC;]},
and include My in the confidence set. unless the null hypothesis is rejected. Next,
tepeal Lhe sae bul the roles of My and M, are interchanged. The confidence set
will be one of {My}, {M;}, and {My, M;}. A standardized difference of AIC will
be used as the test statistic, which is asymptotically the standard normal N{0,1)
if E{AICo} = £{AIC;} as shown in Linhart (1988}, and more generally in Vuong
(1989}.

Qur approach is different from the significance test of My against M. Cox
(1962) derived a sigmficance test for separated two models, and it appears to be
similar to the procedure described above. However, the undetlying concept is very
different; Cox tested the null hypothesis that My includes the true distribution
against the alternative that M, does, whereas we test £{AIC;} < £{AIC;} against
E{AICU} > E{AICl}

It is not difficult to extend Linhart’s test to the case where we have many
possibly nonnested models. Denote the set of candidate models by {M, | a €
M}. For each « € M, consider a test of the null hypothesis H, : £{AIC,} <
Mitige ayfa) E{AIC3}, against the alternative E{AIC, } > mingcan oy E{AICH},
and include M,, in the confidence sct unless H, is rejected at a prescribed signifi-
cance level. This construction makes sense since

(1.1) Pr{«” € T} = Pr{H,+ is not rejected} > 1 — level,

where 7 is the confidence gset and a* is the minimum E{AIC} model.

Multiple comparison techniques (Gupta and Panchapakesan (1979), Hochberg
and Tamhane (1987)) are used to test H,. For every pair of models, a standardized
difference of AIC is calculated, and then a variant of Gupta’s subset sclection
is applied to the testing of H,. Monte-Carlo calculation is used, since AIC,’s
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are correlated and have different variances. We will use an asymptotic normal
approximation to reduce the huge computation.

The result of our procedure will be given as F,, the P-value of testing of H,,.
The confidence set at a given significance level is easily obtained from P,:

{1.2) T={ac M| F, >level}.

P, is informative, since showing P,, o € M is equivalent to showing all the
possible values of T as a function of the level. P, is regarded as a quantitative
measure of the reliability that M, is the best in the candidates.

The concept of the confidence set of models itself is not new. Several methods
have been proposed in the literature, which will be discussed in Section 2. The
method proposed in this paper has the following advantages in contrast to them:
(1) Free from the limitation in (R); no need for the full model, nor the hierarchical
structure. (ii) Applicable to any smooth probabilistic models. (iii) Relatively high
power of the test of H,; this is because the variance estimate of the AIC difference
is computed for every pair of models. (iv) The clear probabilistic interpretation
in (1.1). (v) P, is informative.

The construction of this paper is as follows. In Section 2, the confidence set
of models will be derived using multiple comparison technigques. Related methods
are also discussed there. In Section 3, two cxamples are taken from the variable
gelection problem of muitiple regression. In Section 4, the bootstrap estimate of £,
s given, and its normal approximation will be discussed in Section 5. In Section 6,
a problem regarding higher order terms is discussed. In Section 7, a simulation
result is given to illustrate the accuracy of the normal approximation. Remarks
are made In Section 8.

2. Confidence set of models

Linhart {1988) derived a test of the null hypothesis H,s : £{AIC,} <
E{AICz}, against the alternative £{AIC,.} > £{AICa} for each pair o, 3 € M as
follows. Let Vi, 5 be an estimate of var{AIC, — AICz}, where the variance is taken
with respect to the true distribution, and let 1,5 = (AIC, — AIC3)//V.p be the
test statistic. Note that a specifie form of V, 5 will be given in (5.2). Consider a
test to reject H,p iff 1,4 > cog, where cupg is the critical constant. It has been
shown that S,g = T3 ~ E{AIC, — AIC4}/\/Vas is asymptotically N(0, 1) under
mild conditions. Thus defining ¢,p by ®{e,p) ~ 1 — level, where ®&{z) is the stan-
dard normal distribution function, one has Pr{reject Hos} = Pr{l,g > cas} <
Pr{Sup > cop} = level under H, 5 asymptotically. A detailed discussion can be
found in Vuong (1989).

Similarly we will have a test of H, as follows. For each & € M, reject H,, iff
I > Cq, where Ty, = maxge pp o) Log 18 the test statistic, and ¢, is the critical
constant determined from a prescribed significance level. Suppose we know the
value of ¢, defined by

(2.1) Pr{8s < ¢a} =1 — lovel,
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where the probability is taken with respect to the true distribution, and S, =
MAXge (o} Seg- Lhen it will be easily seen that Pr{reject H,} = Pr{7, >
ta}t < Pr{Sa > co} = level under H,. The confidence set is 7 = {a € M |
H, is not rejected at the given level}. The test of H, described here can be seen
as a variant of Gupta’s subset selection for unequal sample sizes case (Gupta and
Huang (1976)). However, the correlations of AIC’s are to be estimated in our
situation, we will caleulate the probability in (2.1) approximately by the Monte-
Carlo method, which will be described in Sections 4-7.

The above construction of 7, denoted by Gupta’s confidence set in this paper,
is not the only possibility to control (1.1). If all H,’s are tested simultaneousky
rather than separately, we will obtain 7 which corresponds to Tukey’s multiple
comparison for unbalanced designs (Hochberg and Tamhane (1987), p. 85). This
T controls the error rate to include all the tied best models simultancously. To
increase its power, the sequentially rejective procedure can be applied to it. This
T will be denoted by Holm’s confidence set in this paper. Practically, Gupta’s 7
is preferable to them, since the size of T gets larger in the order of Gupta, Holm,
and Tikey.

Besides our construction of 7, several procedures have been proposed for the
variable selection of multiple regression. Spjgtvoll (1972) derived a confidence set
to control (1.1), using the simultaneous confidence ellipsnid of regression coeffi-
cients for the full model. Also, a comprehensive model formed from the competing
nonnested models can be used to construct the conventional statistics {Atkinson
(1970}, Dastoor and McAleer (19089)). On the other hand, Mallows (1973) and
Aitkin {1974) derived a simultaneous significance test of all M,’s against the full
model, and Spjétvoll (1977) applied the closure method to it to increase the power.
A limitation of these approaches is to require the full model; the use of large full
model as a reference may lead to small power of testing, or inversely rejecting all
the candidates except for the full model (Shimodaira (19975)).

Arvesen and McCuabe (1975) coustructed 7 which controls (1.1) for the regres-
sion case. They employed a Gupta's subset selection, asymptotically equivalent to
the form of 7 = {a € M | AIC, — ming AICs < (:\/?}, which is obtained from
our /it T,p is replaced by (AIC, — AICg)/ V'V. However, their 7 is larger than
ours, sinee a pooled variance estimator V' and a single eritical constant ¢ are used
for all the models.

3. Examples

Defore going into detailed discussion, here we look at numerical examples.
The regression data set HALD is taken from Draper and Smith {(1981), p. 629),
where the sample size is n = 13. The response variable is heat evolved in calories
per gram of cement, and the four predictor variables are Lhe amounts of four major
ingredients in percentage. We are to find a good experimental formula to predict
the response; each subset of predictors corresponds to a model denoted by the
predictors in angle brackets. All the possible 2% = 16 subscts arc used as the
candidates M. See the Appendix for the statistics,

A plot of P, against AIC is shown in Fig. 1. Gupta’s P, as well as that of
Tukey and Holm are shown. These are obtained from a single Monte-Carlo run,
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Fig. . AIC vs. Py for the HALD data set. The eight models which have Gupta's
P-value greater than 0.01 are shown. Seven models are selected for the confidence set of
Gupta or Holin at level = 0.2; they are all the models which include one of (1,2}, (1,4},
and (2,3,4). In addition, (3,4} is selected by Tukey’s P, at the same level.

in which the nnmber of replicated simnlations is Ny = 10,000, Specify the level,
say, (.2. Then, Gupta’s confidence set is

T = [{1,2,4),{1,2,3),{1,2),{1,3,4),{1,4),{1,2,3,4), (2,3, 4} }.

(1,23, {1,4), and (2,3,4) are the minimal models of 7, which generate the seven
models by inclusion. Interestingly, the same threec models arc chosen as the mén
imal adequate sets by Aitkin (1974) and Spjetvoll (1977) in analyzing the same
datasct.

The small sample size made 7 large. Not only MAICE (1,2, 4) is thought as
a good model, but every model in 7 is possibly the best model; AIC values for
the models in 7 are not significantly larger than that of MAICE. The simplest
models {1,2) and (I,4) may be chosen, if parsimonious selection is preferred.

All the models which include three of the four predictors are found in 7.
This is a consequence of the multicollinearity; the sum of the four predictors are
approximately 100 in this data set. 'L'has any sct of three predictors works fine as
the full model. Simply selecting MAICE does not lead to this observation.

Next, the data set BOSTON is taken from Belsley et al. ((1980), p. 244), where
n = 506. The response variable is the logarithm of the median valuc of owner-
occupied homes for cach area in Boston. There are thirteen predictor variables. For
example, z;, is per capita crime rate by town, or z)3 is logarithm of the proportion
of the population that is lower status. We consider 286 candidates; they contain
three of the thirteen predictors. The result is shown in Fig. 2. At level = 0.2,
every madel in 7 includes {1, 13}, which may be selected as a consensus model to
summarize the result.
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Fig. 2. AIC vs. P for the BOSTON data set. Plotted for the 23 models that have
Gupta's P-value greater than 0.01. Six modecls are sclecled at the level 0.2, At the same
level, [T] = 13 with Holm, or |7T| = 25 with Tukey.

Model (1,12, 13} has P, = 0.25, and so it is a good model relative to the candi-
dates. But ite ATC minus that of MAICE is 32, which seerns quite large. Consider-
ing its variance, we have P-value of this pairwise comparison: 1 — ®(32/v218) =
0.015, which is significant. When comparing many models simultancously, we
have to consider that some of the candidates may have small valucs of AIC just
by chance. This probability is not reflected in AIC, nor in any single pairwise
comparison.

4. Bootstrap estimate of P,

In the subsequent four sections, we will discusa how to obtain an approximate
value of the critical constant ¢, defined in (2.1). This is equivalent to approxi-
mately evaluate the function

{4.1) P.(s) =1-Pr{S, < s},

from which P, = P.(7%.) is obtained.

First, we consider a straightforward application of the bootstrap method.
Assume we observed n iid. samples of random variable z, and denote A’ =
{21,22,..., 2, }. Let AIC,[X] be the AIC value for M, computed from &X' Simi-
larly V,5[X] denotes the estimate of var{ AIC, — AIC;} computed from & Having
X, a bootstrap resampling of size n drawn from X', we obtain a bootstrap repli-
calion of 95:

- ATC, [X] — AIC4[X] — Ex {AIC,[X] — AIC,|X]}

S, = max .
semMi{a} V'a-’:ifX]
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Note that £x denotes the expectation with respect to the resampling from X', and
Ex{AIC,[X]} above can be replaced by AIC,[X| — m,, where m, denotes the

dimension of M,. The bootstrap cstimate of (1.1) is
(4.2) Po(s) =1 —Pry{S§, < s},

where Pry denotes the probability with respect to the resampling.

In actual calculation, bootstrap resamples X Ly --, X N, are generated for a suf-
ficiently large Ny, and replicates Sat, ..., S'QN,, are computed to find an estimate
of (4.2): P,(s) = 1 — #{S, < s}/N,. Unfortunately, it requires huge compu-
tation in most applications, though. In the next section, we consider a further
approximation of the simple bootstrap to reduce the computation.

5. Normal approximation

Let p,(z | #,) be the probabilistic model M, parameterized by 6, € ©, C
R™eand Ly(f,) = (1/n}>.,  logpa(ze | 8a) be the log-likelihood function
(divided by ). Let f, denote the maximum likelihood estimator {MLE), the
maximizer of L,(#,) over ©,. Then, AIC, = WQRLQ(E)Q) + 29y

Under mild assumptions, 8, = 67, + O,{1/v7), and so L,(8,) = La(67) +
0,{1/n), where &7, is the maximizer of £{logp.(z | #4)} over 8, (White (1982)).
Then, it follows from the central limit theorem that La(éa) is asymptotic normal
with mean £{logp,{(z | 82)} and variance var{log p,(z | #2)}/n, simce log p{x; |
#x),t=1,...,n are i.i.d. samples.

Quite similarly (L,(6,) : a € M) is multivariate asymptotic normal, and
then

1= Py(s) = Pr{\/a(*Lu(éa) + Lﬁ(éﬁ) - 5{_La(éoz) + Lﬁ(éﬁ)})

< 5y Vag/dn, VI e M\ {a}}
(5.1) = Pr{lU, — Up + Op(1/v/n) < 54/ Via/dn, V3 € M\ {a}}],

where (U, : o € M) is multivariate normal with mean 0 and var{U, — U} =
Vg /an = var{logp,(z | 8),) — logpg{z | 0})} for @, 3 € M. Note that Vyg/n =
Voa/n+ Op(l/ +/1) was assumed in the last equation.

A normal approximated I (s) is obtained from (5.1): Replace S, in (4.2) by
Maxacan o3 (Un — Ua) [/ Vi /4n, where (U, : a € M) is multivariate normal
with mean 0 and varil, — Ug} = V,3/4n. Note that the probability calculation
of (5.1) does not change even if all U,, a € M are replaced by U, + W using
any random variable W = O, (1). Thus, an estimate of the covariance matrix of
log p,(z | 6%}, which has |M|(|M| + 1)/2 degree of freedom, is not needed, but
only |M|{|M]| — 1)/2 elements of V,4’s are needed for the Monte-Carlo sampling
of (J};s.

The estimate of var{AIC, — AICz} will be the form of

{5.2) Vag = dnvary {log p, (% | Oa) — log pa(Z | 83)} + 2vag,
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where vary denotes the variance with respect to the resampling from &', or an
estimate of it. Higher order terms may be included in the second term 2uv,g =
0O, (1), which is discussed in the next section. It is shown in Shimodaira {1997a)
that the addition of 2v,g improves the accuracy of the normal approximation
considerably, at least in the case of a single comparison. The improvement results
also in the multiple comparison case as can be seen in Scction 7.

6. Higher order terms

The discussion of the previous section is not complete. If Vap = 0, or equiv-
alently pa(z | 63,) = pa(x | 83) ae. in x, for some pairs of models, then the error
torm O, (1/4/n) in (5.1) will make the probability calculation meaningless (Vuong
(1989)). In this paper, we assume 0 < VZ3/n < oo for all the pairs in M. Then,
the O,(1/4/n) term goes out of the probability statement in {5.1), and we obtain

(6.1) 11— Pa{s) =Pr{lU, - Up < s,/Vzg/4n, VG € M\ {a}} + O(1/V/n),

which justifies the normal approximation of F,.
In practice, it is unusual that Vj; = 0 strictly holds. Thus the normal ap-

proximated Pa(s) estimates F,{s) consistently as n — oco. 'L'he problem is that n
is finite. If \/V75/4n in (5.1) is not large enough compared with the Op(1 /)

term at a fixed n, the O(1/y/n) tern in (6.1) will not be negligible.
To remedy this problem, we added an estimate of v} ; to Vag in (5.2), where

'v;ﬁ = M, +mg — 2tr G;ﬁGgﬁlGBaG;ﬂ, and the elements of m, x mg matrix
G’;ﬁ are

P g dlogpalz | 6) dlogpg(z | 03)

afiy At 39{’ '

To reduce the calculation, v,z may be replaced by its upper bound m, + mg —
2dim{M,, N Mg). It is shown {Shimodaira (1997a)) that var{AIC, — AICg} =
V;ﬁ + 2ulg under local aliernatives, and v, in V,pg does work as a safeguard
against the case V5 = 0; vag makes the testing of H, be conservative rather than
violate (1.1). For two nested models, the smaller model tends to be included in 7
than expected from the level. Note, however, that this introduction of v,z is rather
heuristic, because the asymptotic normality is derived under fized alternatives, not
lacal alternatives

7. Numerical simulation

Here we see distributional behavior of MAICE and P, for artificially generated
regression data sets. The covariance matrix of HALD data set was used as that of
the true distribution. The sample size for cach data set is n = 13 unless epecified.

First, Fig. 3 shows how many times each model was selected as MAICE in
1,000 replicated simulations. We observe that MAICE was scattered over the
models of relatively small £{AIC}, MAICE is not necessarily the best model.
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Fig. 4. Plot of Pr{P, < level} vs. level for the simulated data sets. Pr{FP, < level} is
the probability that M, is excluded from 7 at the given level. a* = (1,2,4) has the
lowest probability of rejection, but (1,2,3}, (1,2}, {1,3,4}, and {1, 2,3,4) are also very
likely included in 7. The rejection probabilities are larger than level for (1,4}, (2,3, 4},
(3, 4), and the other ecight models.

Next, Fig. 4 shows the distribution functions of F,, a € M, computed from
1,000 replicated simulations. P, is calculated by the method of Section 5 with
Ny = 1,000, We observe that Pr{t, < level} < level tor several models other
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Fig. 5. {a) Normal approximated P, vs. real value of it for 20 replicated simulations.
P, is calculated with N = 1,800 for all M. The approximated value approaches its real
value as the sample size increases n = 13, 39, and 130. (b) Approximated P, calculated
without v, 4.

than o*. Note that Pr{l’, < level} is the probability of rejecting H,; it should
be equal to or less than the level for «*, and it is expected to be larger than
level for the other models. So, the result mplies that the confidence sot derived
from this P, is conservative and includes many models than expected from level.
One of the reasens is the normal approximation as scen in the next paragraph.
Another reason is the multiple comparison itself; the critical constant is evaluated
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at the least favorable configuration, where the £{AIC,}, o € M are assumed to be
equal. This disadvantage of 7 may be overcome by making use of the information
on model structures.

Last, Fig. 5 shows plots of the normal approximated P, given in Section 5
against the P, computed from the true distribution given in (4.1). We sce the
normal approximation 13 working fine in Fig. 54, where V, 5 18 calculated with v,g.
However, relatively large deviation is observed for P, < ().1. This slow convergence
is caused by some pairs of Vg = 0 in the HALD data set; (6.1) would be dubious
if V,p = 0 for some pairs, as discussed in Section 6. The convergence is much
slower in Fig. 5b, where V,,5 is calculated without v, 5. Comparing the two panecls
of Fig. 5, we recognize that v,g in V,g is working as a safeguard.

8. Concluding remarks

The shared purpose of MAICE and 7 is to find the minimum £{AIC} model.
It should be noted, however, that the proposed method can be easily applied to
any criterion of the form IC = —{maximumn log-likelihood) + (penalty term), where
a* is replaced by the minimum £{IC} model. The penalty term should be o0,{\/n})
to make the asymptotic calculation valid.

As mentioned in Section 1, MAICE is always included in Gupta’s confidence
set with level < 1/2. This is because Tyvarck < 0, and thus Pyaice(Tmaice) >
1/2. Note that P, (s) is monotone decreasing, and that ,(0) > 1/2 since S, is
the maximum of (approximately) standard normals. Similarly, MAICE is always
included in Tukey’s coufidence set with any level.

Models can be ranked by AIC as well as P,,, and these criteria may secm not
so much different. 7 may be constructed by looking at AIC’s; the difference of
AIC for nested two models has a probabilistic interpretation (Bozdogan {1987)).
However, this interpretation does not apply to nonnested models, and the overall
error rate for many models is hard to decipher from AIC without calculating the
covariance structure.

Dealing with the problem of finding the tree topology in phylogeny,
Felsenstein {(1985) and Felsenstein and Kishino {1993) gave a bootstrap estimate
of the probability for each model (tree) to be selected as MAICE. This is another
quantitative measure of the reliahility. Althongh the confidence set they gave lacks
a clear probabilistic interpretation, their “bootstrap probability” can be seen asg
an approximation of our P, as mentioned in Efron et al. (1996).

In the regression case, “bootatrapping the residuals” method, instead of “boot
strapping pairs,” can be used for resampling 5, as suggested by one of the referees;
that s, resarapling the residuals under the full model while the predictors are fixed
(Efron and Tibshirani (1993}, p. 113}. This method significantly reduces the com-
putation of Section 4, and the normal approximation discussed in Section 5 may
not be needed. Although, this should be discussed further in other place, we
employed the normal approximation to make the discussion general rather than
special to the regression case.

The size of 7 will be large if n is small. In this case, it is Important to
summarize the characteristics shared by good models. Akaike (1979) gave an
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answer to it within the Bayesian framework. On the other hand, a visualization of
structural patterns in good models is proposed by the present author {Shimodaira
(1993, 19975)).
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Appendix: Statistics for regression

Lot 21, ..., 2y be Lhie predictor variables and y be the response variable. As-
sume we have n Lid. samples of £ = (y, 1, ..., %}, which is unknown normal. In
the log-likelihood function, log p(y | z1,. .., 2n,) is used rather than log p(z). The
full model is ¥ = Ng + 12| + ** + YmZm + £, Where £ ~ N(0,0%). The parameter
is0=1(0%m,...,m) . M, uses a subset of the predictors. Let 6, be the MLE of
a for M,. Then, AIC, = 2nlog 6, + 2m,, without a constant common to all the
models. ‘Lhe first term of V,,3 will be obtained from vary {log p,{z | o) —log pa(Z |

Os)} = nt i (logpa(ze | 0a) — logpa(ze | 69))° — (n ' 320, (log palae |
B, — logpalz: | 000? = 1 — (37, éasén/(ndada))?, where é,; is the resid-
ual. This is casily caleulated from B, ég, and the observed covariance matrix of
z. Note that the above quantity will be 1 — (6,/63)° if M3 C M,. The second
term of V,,; will be obtained from

Glonro2 = 1/2034, * =0, G? = S{zizj}/aff,

Qoo co-ain; wo-T N
;ﬂ_ﬁzgz = (5{5352})2/203‘02‘;}, G;ﬁ_dgm = g{E;EB}E{&;Zj}/U;LlJEz,
and

* w ol # O F L *2 %2
Gaﬁ"n«:nj = (S{eacﬂ}g{zlzj} + u{@azj}u{é"ﬁaq‘})/o'a g5
where o}, s 0, at 87,, and £}, is the associated residual.
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