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Abstract. Berry Esséen bounds of the optimal O(n~/?) order are obtained,
under the null hypothesis of randomness, for serial linear rank statistics, of the
form ¥ a1 (Ri)as(FR: &} Such statistics play an essential role in distribution-
free methods for time-series analysis, where they provide nonparametric ana-
fogues to classical (Gaussian) correlogram-based methods. Berry-Fsséen in-
equalities are established under mild conditions on the score-generating func-
tions, allowing for normal (van der Waerden} scores. They extend to the serial
case the earlier result of Doos {1982, Ann. Probeb., 10, 982-991) on (nonserial)
linear rank statistics, and to the context of nonparametric rank-based statis-
tics the parametric results of Taniguchi {1991, [figher Order Asymptotics for
Time Series Analysis, Springer, New York) on quadratic forms of Gaussian
stationary processes.

Key words and phrases: Berry-Esséen bounds, serial rank statistics, time se-
ries.

1. Introduction

Denote by H[gn) the hypothesis under which X — (X fn), e 7X£71)) is an n-
tuple of independent and identically distributed random variables, with continuous

distribution function F' and probability density f. Let X((_?;} = ( ((?)), . § ((:; )

and R0 — (Rgn),...,R%n)) be the corresponding order statistic and vector of
ranks, respectively. Linear rank statistics, of the form

. s
(1.1} T(J(n) 172 Z Am alny (plm)y,
t=1
where alm (1),..., ol (n) and cg”), S c_g?’fi), n € [N respectively denote a collection

of scores and a triangular array of regression constants, have been studied exten-
sively. In particular, Berry-Fsséen bounds have been obtained for the distribution
function of {1.1) by several authors, among which Jureckova and Puri (1975),
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von Bahr (1976), Huskovd (1977, 1979), Ho and Chen (1978). The most general
result—providing a bound of the eptimal O(n™/?) order under mild conditions
on the scores which are satisfled by the van der Waerden or normal scores——has
been derived by Does {1982). The proof of this result itself relies on earlier work
by Albers, Bickel and van Zwet (1976), and a bound on the characteristic function
of (1.1) which is due to van Zwet {1980).

Nonserial linear rank statistics of the form (1.1) are known to provide locally
asymptotically optimal tests for all classical testing problems arising in general
linear models with independent observations (i.e., two-sample location problems,
analysis of variance, regression analysis, etc.): see Hajek and Siddk (1967), Puri
and Sen (1971, 1985). In the statistical analysis of time series and other stochastic
processes, the obscervations are no longer independent, and more gencral rank-
based statistics, taking into account the serial dependence structure of the data,
are noeded: the serial rank statistics.

Serial rank statistics actually have a long history, and can be traced back as
far as Fisher {1926) or Wald and Wolfowitz {1943). A systematic study of the
class of linear serial rank statistics, of the form

(1.2) T = (n~K)"Y2 3" o™ (RM, LR

t=HK+1

has been initiated in Hallin et al. (1985); the scores al™{..) here depend on the
ranks of K + | successive observations. In Hallin ef al. {19587} and Hallin and Puri
(1994), it is shown that simple linear serial rank statistics, of the form (the scores

ag”)(-} and a,g”)(-) are defined as in (1.1))

n
(1.3) T}({’}) — (n _ K)—1/2 Z agn)(REn))agn)(Ri(:)K
t=K+1

provide locally asymptotically optimal tests in the general context of linear models
with ARMA error terms—and thus constitute a rank-based, nonparametric and
non-Gaussian alternative correlogram-based methods; see Hallin and Puri (1992)
for a nontechnical survey.

A prominent role in this context is played by the so-called van der Waerden
or normal scores

(1.4) d™y =76/ (n+ 1)), i=1,...,n

It has been shown indecd (Chernoff and Savage (1958) for the nonserial case;
Hallin (1994) for the serial one) that the ARE of the corresponding tests (based
on (1.1) or (1.3)) with respect to their normal-theory counterparts (¢~ and F-
tests, correlogram-based methods) is always larger than or equal to one, with
equality under Gaussian assumptions only. It is thus very important that all
results concerning statistics of the form (1.1) or (1.3) be valid for a class of scores
which includes {1.4).
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In this paper, we prove a Derry-Esséen resull for the distribution function
under Hén) of (a standardized version of) T}? ) given in (1.3). Our bound is of the
optimal O(n~'/?) order, and the assumptions we are making (roughly, the same as
in Does (1982)) are satisfied by the van der Waerden scores {1.4). Our derivation
is based on a scrial extension (Hallin and Rifi (1996)) of van Zwet {1980)’s result
on characteristic functions. The parametric analogue of our result was obtained,
for Gaussian stationary processes, by Taniguchi ({1986), see also (1991))

2. Notation and main result

Closcd-form expressions for the exact mean ,ug( and variance (cr )2 {under

H(ﬂ)) of T( ™ are easily obtained from corubinatorial arguments: letting S(n _
Z? l[aln)( )]p[a(n)( )19, we have, forn > K + 1,

2.1 g’ = [n(n = Ly(n — K)727 (S 86 - 1)
and, with [z]* = max(z,0), z € R,

(2.2)  (o3)% = [n(n — 1)] 1 [$55) 555 — 853
(7” — QK)+ -
R — -2
———[n(n — 1)(n - 2)
x [S1) Ser st — i s — s st — (8(7)7 + 255
(n—K)n—-K-1)-2(n-2K)*
n—K
x[n(n 1){n 2)(n 3)1
x (S SEVY +2(8(7) + 85085y — 655y
—asiVs{ sl - SR (si? s sy
+aS5Si + 48l s
— ()2

Then, for n > K + 1 (the case of degenerate scores ot (i) = o™ i =1,...,nis
tacitly excluded), T4™ = (i — g?))/ 0!™ iy exactly standardized under o™
As usual, we are assuming that the scores agn}(-), j = 1,2, are derived from

score-generating functions J; 0 (0,1) — R, j = 1,2 in either of the following two
ways:

+2

+

(2.3) oM (i) = ELL(US)] (exact scores)

(2.4) agn)(i) =J;(i/(n+1)) (approzimate scores),

where UV denotes the i-th order statistic in a n-tuple 7 (™ of indepen-
{4) 1

dent variables uniformly distributed over [0, 1].
The following assumptions are made throughout.
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ASSUMPTION (Al} The score-generating functions J; have integrable
fourth powers: :

1
/0 JHuw)du < 00,  j=1,2.

Without loss of generality (in view of the fact that TI({n)

ized), we then also assume that

can be exactly standard-

1 1
(2.5) / Ji(uydu =0 and / JHudu=1, j=12
i 0

AssuMmPTION (A2) The score-generating functions .J;, 7 = 1,2 are contin-
uously ditferentiable on (U, 1), and there exist strictly positive constants M and
a < 5/4 such that, for all u € (0,1)

(2.6) L) < Mu(l—w)]™, Jj=12

Note that, letting § = 2 — «, (2.6) takes the more convenient form

27) )] < Miu(l - w)FM, 0<s< % j—12

AssuMPTION (A3) The score-generating functions J; and Jp are concor-
dant, i.c. for all (u,v) € (0,1)2,

(2.8) Ji(u) < Ji(v} = Ja(u) < Ja(v).

AssuMPTION (A,) Let 0 <7 € R. We say that the function h: (0,1) - R
satisfies assumption (A,) if h is twice continuously differentiable, and

lim anp [1{1 — a)|A” (m) /B (uw)]] < 1+ %

w—0 or 1

Assumptions (A2) and (A,) are the same as in Does {1982). Assumption (A1)
is slightly stronger {Does (1982) only requires [ |J(u)|*du < oo); this is motivated
by the fact that products of scores are to be handled. The concordance assumption
{A3), of course, being specific to the serial context, is new.

We now may stay the main result of this paper (hereafter referred to as the
“mmain” theorem); here and in the sequel, unless otherwise specified, all O(-} and
o{-) quantities are to be understood as n — o0.

THEOREM 2.1.  Let TI({") be given in (1.3), with exact (2.3) or approzimate
(2.4) scores assnciated with score-generating functions J. and Jo sotisfying as-

sumption (A1), (A2), (A3) and (A,) with r = 1. Denote by F\* the distribution
function under Hé") of the standardized version 7 of TI({"). Then

(2.9) sup 1F£n)(zr;) — ®(z)| = O(n~ V).
zeR
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3. Some preliminary lemmas

Some preparation is required before turning to the proof of the main theorem.
For simplicity, let A; =3¢/{(n+1),¢=1,...,n. The notation U, ((,S) is used with the
same meaning as in {2.3).

Lemma 3.1. (i) Let J : (0,1) — R satisfy {A2). Then, there exists & €
(0,1/4) such that

q
(3.1) Z E[J(U((S)) — JO? = O 4 (1 - 2, %1/
i=p
and
(3.2) ZVar U((zn) = O(n 261172y,

uniformly in 1 <p < g <n.
(iiy If J ulsv salisfies (Ay) with v =1, then

(3.3) Z{F‘[ TN = T2 = O(n 1A2073/2 L n=1(1 = 3 )26-1/2),
(3.4) E{E[J([I{(:;')) (m(§)]231/2 = 0(711/2/\5+1/4+n1/2( — 2,0y,

{3.5) Z{E J([T((:; _ a(n)(i)]4}1/2 _ O{’)\gﬁfl/? +(1— /\q)26-—1/2)7

(3.6) Z{E[ U)W @A) = O | /21 68/,
and

(3.7) Z [T() = BIUEN = 00874+ (1 2)074),

still uniformiy in 1 <p<g<n.
(iii) If J moreover also satisfies (Al), then, as n — oo,

i=1

(3.8) Z J(A) —=n”! Zn: JOG)| = n+0n=2P2
and

(3.9) Zq: E{J(U(( ~ E[J( U(n) )32 O(A?f*”? F (1 A1),

still uniformly in 1 <p < g < n.
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PROOF. Relations (3.1}, {3.2), {3.3) and (3.8) are taken from Does (1982}
The remaining ones can be established along the same lines from lemmas A2.3,
A2.4 and A2.6 in Albers, Bickel and van Zwet (1976).

LEMMA 3.2. Let Tffn) be given in (1.3), with either (2.3) or {2.4), and score-
generating functions Ju and Ja sefisfying (A1), (A2) and (A.) for r = 1. Then

{for ,u(f?) and rrg?) defined in (2.1} and (2.2}, respectively)

(3.10) g =0m VY and (60D = 14 0m 2R,

Proor. See Hallin and Rifi (1995).
LemMa 3.3 Let <,,£, ™ denote the characteristic Junction under HO of the

standardized version T of T K") . Then, under the assumptions of the main the-
orem, there exists a constant ¢ > 0 such that

(3.11) /
Jlog n<fu|<nt/2eal?)

PROOF. Letting ™ (u) = E{cxp[vﬁu(]’,(?) n))]} we have <,o*n) (u) =
t,o(")(u/ag?)), u € R; (3.11) then readily follows from Lemma 3.2 if Proposition 2.2
in Hallin and Rifi (1996) holds. It is thus sufficient to show that the two assump-
tions underlying this latter result are satisfied. One of these two assumptions is
the concordance assumption {A3). The sccond one requires the existence of two

positive constants b and B such that, letting a ( =n" 1y, a§n) (i),

(n}
LAY (u) duzo(n_l/z).

U

T

(3.12) Sl ~aP b and Y (@) —alv)? < B,
i=1

i=1

for 7 = 1,2 and all n € N. Now, a sufficient condition for {3.12) to hold is the
existence of two positive constants ¢ and C such that

n

(3.13) SaME) -al)? > en and Z( iy &™)t < o,

i=1 =1

7 = 1,2, n € N. Indeed, we may assume without loss of generality that agn) — 0
(3.13) then implies

" 1/2
1 . 1 . )
>l ) < (;Z BRIG] ) <ol =12,
=1

arnd
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1 n '-1 T 7 1/2 1 it 1/2
c< =Y ol ORGP
T e un =1 | T
Ly )
11 J
L =1 i
- -
S S MORION B
L™ i=1 i

so that (3.12) holds for b = c2C3/* and B = C'/2.
Next, let us show that (3.13) is satisfied for exact and approximate scores,
under the assumptions of the main theorem. For exact scores, it follows from {A1),

(2.5) and (3.2) that

7 1
(3.14)  na™ =3 BTN = Z E[J(UM)] / J(uw)du = 0,
i=1 o

and

AN

[

Th

(3.15) Z Z E2U)] Z Var(J; (U$)

:n+o(n—25 1/2)7

whence the first part of (3.13). The sccond part is a consequence of (Al) and
Lemma A2.6 in Albers, Bickel and van Zwet (1976), which imply

1
_Z al™ (i an&/(U(”’)} (fo J;(u)du)

i=1

= 0(1).

In the approximate score case, {3.3) and the triangular inequality imply the first
part of (3.13). On the other hand, from (3.7) and (3.14},

2: ag,”) (i) = ‘Z?:; J; (%ﬂ)
i[@ (ﬁw—w&%ﬂ

so that 75 - = O(n=%-%/1), Applying again Lemma A2.6 of Albers, Bickel and
van Zwet (1976}, we obtain

(3.17) %é[agn)(i)ﬁ _ ii}Jf (n jr 1) -0 ([01 Jf(u)du) — 0(1);

j=

(3.16)

( w§+1/4):
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(3.13) then follows from noting that

Bl
S

> (@M @)t + (af,-“))‘*} .

=1

S @) — iy < 8{
=1

4. Proofs

The proof of the main result (inequality (2.9)) consists of a series of eight
lemmas. Lemmas 4.1 through 4.3 show that if

(4.1) f E[(S%) - T) expliuT )] |du = O(n™1/2)
Jlu|<log n

holds under Hﬂn), then {2.9) also holds. Lemma 4.4 provides a sufficient condition
for (4.1) to hold in the exact score case, and Lemma 4.5 shows this sufficient
condition is satisfied, which concludes the proof fur exact scores. The approximate
score case is more complicated, and an indirect approach is required: Lemmas 4.6
‘through 4.8 establish that the effect of substituting approximate scores for the
exact ones in (4.1} is gmall, so that the approximate score case follows from the
exact score one.

Lemma 4.1 can be interpreted as reinforcing the Hdjek projection result for
serial linear rank statistics proved in Hallin et al. (1985). Associated with TI(;")
given in (1.3), with either (2.3) or (2.4}, let

S = (- K)V2 YT RUM)RUT),
t=K+1
with Ut(”) =F(X fn)) Under Hon), Uln), ... U of course are independent and

uniformly distributed over [0, 1}; if moreover assumption (A1) and (2.5) hold, S‘(,,?)
is exactly standardized. We then have the following result.

LEMMA 4.1.  Under H[g“) and assumptions (Al) and (A2), as n — oo,
(42) E[(T{ - S = (=112,
with 6 € (0,1/4) given in {A2).

Proor. Fort > K+ 1, let

Ziy = al (RIS (Re) — (UT))
and
Zyy = [P (R — K UEMLU).



BERRY-ESSEEN FOR SERIAL RANK STATISTICS 785
Clearly,

(4.3) E[(TE - S8

gQ(n—K)*l{E ( i Zm) } + E

On the other hand,

2
(4.4) [( S 4, f)

n 2
t=K+1

@K+1) > E(Z],)

t=H i1

n—HK—1 )

+2 > D |EZ1 2|

s=K+1 t=s+K+1

In the approximate score case, (3.1) and (3.7) imply

Z[a“”{

n . 2
¢ (n)
< - ;
- i
+2; ¥ (n+1

— O(n_26+1/2).

Hence, for all K +1 < £ < n,

E(Z},] = E{[a{" (R{™)P (oS (RM) — BAUE )

x{n(n—mrl{z it }{ZE JQ(U("))P}

t1=1 fo=1}

In view of (3.15), the same inequality also holds for exact scores. The first term
in the right hand side of (4.4) accordingly is O(n='/2-2¢),
Turning to the second terin, we have, for K +1 < s <{— K <n— K,
(4.6) E(Z14%1,6) = B{a{” (R")a ) M (RE)
(a5 (R7) = B0 (B ) — (U0

=[n(n—-1)(n-2)(n-3)}" lzyy y‘ (n) al')(tgj

1<t; £tz #t3 £ta<n
% B{[a§" (ta) — J U0 (1) - B (U]}
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with

2y =[nln - 1)(n=2)(n - 3)]"" [Xj o™ (1, )} {Z al™ (m}

t1=1 ta=1
x 3 % EB{a8V(0) - LU a8 (R) - BUG)Y
1<t #la<n
%o = [n(n - 1)(n - 2)(n — 3~ [Y‘ o™ (m}
t1=1

< 3T ST A Bl )(tl)wJ(Uffﬂua(”)(tz) RV

L&t # tossn

~pm - -2m -3 33 Y (o™ (t

l<i1 ?éf.g #t;(n

x E{lad” (t2) — T(UG)]a5" (5a) = J2(UT)])

3

and

Y= -2 - Dn-Dn-3) 33 37 e )alM ()

1<ty #tz #ta<n
x B{[a§" (t2) = B(U)as" (t5) — Ja (U]}

In the exact score case, (3.14) directly implies Y, = 0. In the approximate score
case, from (3.16) and (3.7} (with p = 1, ¢ = n), we have

n

Yo a” @)

i=1

(4.7) = O(n 0T/,

It follows that

n . 2
(4.8) [n 1 ZJ_I (n i 1)} = O(n=2-%/2),

i=1

From this and the Cauchy-Schwarz inequality,

(4.9) 3 N E{0d (t) — (UGS (t2) — BUS]Y

1<ti#Fr<n

n 2
< {Z[ [”gn)(') — I (U(n})] }1/2} — O(n726+1/2).

=1

Substituting (4.7), (4.8} and (4.9} into £y yields Y| = On —3-453  The remain-
ing terms ¥, 33 and 4 can be treated similarly, and one finally obtains that
E(Z1.2:) = O(n~27?%), uniformly in sand t, K +1 < s <t <n—- K. Go
ing back to (4.4) we thus have that E{> K1 2, 42 - O(n_z‘ﬂ'”‘)‘) It can
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be shown along the same lines that E{[3_7 . Z24]°} = O(n"**"/?), which
completes the proof of Lemma 4.1. 0

Next, denote by (™ the distribution function of a normal variable with mean

g?) /JE?) and variance (0?))_2-

LEMMA 4.2, [If, under the assumptions of the main theorem,

(4.10) f IB[(S - T oxp (suTi™)]|du = O(n~1/2)
|u|<logn

under H(gn) asn — ), then (2.9) holds.

Proor. It follows from Esséen’s smoothing lemma (Esséen (1945); see, e.g.,
Feller (1971}, p. 538) that, under the assumptions made,

(4.11)  wsup|F{"(z) — ") (a)]

wcR
1 2L ), (n
w2y | (u) = exp [—g(u/ofé”)‘* + wm&(’/aﬁf))]
Sf du
—pifzegtm) 7
K
+O0(n 17
n 1 n
AP0 - exp | S/ P+ iul? 00|
<[ du
lul<log n u
+0(n~ Y%

{n)
(p* (U) d
Uu

o
logn§|u|§cn1f’20’§?)
1 .
oxp |~ 0/o0)2 + inlyl foi?)
d

[ (n} n “
- n
log n<|u|<ent/ 20 )]

+O(n~1?)
= +IL+1 +O(n"1/2), say.

Lemma 3.3 above implies that I, is O{n~%/2), Similarly, I; is easily shown to be
O(n~12), As for I, an clementary Taylor expansion yields

Elexp(in( S — uie) /o)
= B[] +iulof ) B[S - T e

+ [u (o) O(BISY - T,
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Accordingly,

(412) I, = f | Elexp(iuS /o8] — exp(~12/2(5™)?) | du
|u|<iogn

H [ IS - T enp )
|| <log n
+ (6 2(logn)| O(E(SY — TV )?).

Since SEK) is a sum ol K-dependent random variables, the first integral term in
the right hand side of (4.12) is O(n~'/?) (see Shergin (1979), p. 794). The second
term, under (4.10), is also O(n~%/2). And Lemmas 4.1 and 3.2 imply that the
third term still is O(n~*/2). It thus follows that

sup [F{™ (z) — ) (z)| = O(n~'?);

reR
(2.9} then readily follows, since
@) (2) - b()| = |®(0y )z - ("”) ()
< lofe - 1) - w19 (0 e — uig) + (@),
a quantity which, due to (3.10) and the fact that z®'(z) is uniformly bounded,
again is O(n~1/%). 0
LEMMA 4.3. Lemma 4.2 still holds if T is substituted for TS in (4.10).

PROOF. It readily follows from Lemmas 3.2 and 4.1 that the effect of sub-
stituting Tﬁ{”) for 7™ in (4.10) is o(n™ /%), O

From this stage on, we need to distinguish between the exact and approximate
score cases: let Te(") and ’ILE") denote the exact and approximate score versions of
T}?) respectively. Similarly, the notation af(-), a§(-), af(-), aS(-). Z5,. Z5.,. 2%,
and Zg, will be used, in an obvious fashion, instead of a™(), ..., Zf;';) and Zg;).

But, the general notation 7", a(l )(-), etc. still will be used in statements which
are valid for both the exact and approximate versions.

LEMMA 4.4, Let the score-generating functions J1 and J; salisfy assump-
tions (A1), (A2} and (A,) with v = 1. Then, under HY",

(4.13) /
ju| <log n

implics

n—-K
(n—K)™% D" EZ5, exp(uuI ™)) du = O(n 172y
t=2K +1

(4.14) f IBISE — T) exp(iuT{™)]|du = O(n™"/2).
lu|<logn
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Proor. In view of Lemma 4.1, exp(iuTé")) can be substituted for

exp(iqu(n)) in (4.14). Thus, on behalf of inequality (4.3), it is sufficient to show
that (4.13) implies

T

(4.15) / (n—K)2 Y BlZ5, expliut™)]| du = O(n~12)
|ul<log n b K41
and
(4.16) / (n— K)Y2 S B|75, exp(iuT{V)]| du = O(n~1/2).
Ju|Llogn P

Since, forall t > K + 1,

B[Z5, exp(iuT™)] | R™]
= a§(RM)[as(RMy) — EJ(UT) | R™]exp(iuTi™) = 0,

(4.15) holds irrespectively of {4.13). Considering (4.16), the same arguments as in
(4.4) vield

2K 9K
(n K)7V2 S Bz, exp(uTM)]| < (0 - K)7V2 DD (BiZ5, )
b=KH1 t=K+1
:O(n—é—B//l)
and
2K
(n—K)y"Y2 N EZ5, expliuT{M)]| = O(n~073/Y),
t—mn— K11

Lemma 4.4 follows. [

LEMMA 4.5. Under Hé") and the assumptions of the main theorem, (4.13)
holds, as n — o0,

Proor. Let 0™ = (R{™ RI™. }: Q™ thus takes its values in N? = {w =
(wi,w2) € N? | W # wa}. Denote by Eq.,[-] the conditional expectation E- | an)},
and let ngg[] = E[ | 0 = &), n > max(w;,ws). For given n and w, denote
by 1 <l <y <--- <l 9 < nthe {n - 2) integers in {1,...,n}\{w:,ws}; put
ly = 0and I = n+ 1 let q&nt) : [0, 1] — [0,1] be o monotonically increasing,

twice continuously differentiable function such that qS:t) (L) =L/(n+1),i=

0,...,n — 1, with qffft)’(u) = dqf,’;)/du satisfving 5 < qg:}}’(u) < 3, u € [0,1].

Finally, consider the array of scorc-generating functions

(n)

J!F:?;J);t = Jl © qffg ik

and Jé?.;);t =J;0q4
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max(wy,ws) < n, K +1 <t <n. ltis easily checked that

Fiwi

(4.172)  ui, = / I (wydu = O(n 3, 5 =12

(170) (o5 = f T @Pdu— () =1-0(m™3), =12
and

(4.17¢) f U™ e = 01), 5 =1,2,

where the O{) quantities are uniform in ¢ and w, i.e. (4.17a), for instance, is to
be interpreted as

4174 limsup |n%* max max | < .
( ) P K+1St£ni§w1,wq£njp‘:"’w’t|

FL—r XD

After adequate standardization, the score-generating functions IJ( w) . thus all sat-
isfy assumptions (A1), (A2) and (A,) with r = 1.

For all given # between 2K + 1 and n — K, T can be decomposed into
15" = TP° + TEW®, with

n {n} {n)
i a — RS RS"
Tl(;L} =(n-K) 172 E Ji (n+1)J2(n+I]f)

s=K+1
s7#£E

and

Conditionally upon Qg") = w,

{n)
(n)e . —1/2 ! _ Wa R,k - w1
Tox" = (n— K) S (‘I£+1)J2 (n—l—l)’ Jl(nJrl i n+1

and
“in +1) \n +1
are fixed, and

1 (n) {n)
T)a —_ R R‘;““
T = (n— Ky~ >~ 4 (njrl) Jz(n' ’Il()

s=+1
sg{t.t+K}

R(n) R(“ﬂ)
+J1(w2)z(n+1)+ 1(n+l 2(w1)
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Letting Vi = Uii”), i=1,...,n—2, with ranks @™ = (Q{™,. LR 2) we thus
have, in distribution,

-3 . {n}

_ ,‘(-n)a £ —1/2 () Q(?ﬂ) {r) 2.5 A
(4.18) = {n— K) z T | —— Vo,

B TR Rt n+1

{n}
w2 (n) an’—l
J| =0
+ (n+ 1) Tt (n+ 1)
Q(n_)' “W
Jim 2 g,
+]*’*t(n+1 ‘\n+1

say,

=T,
where Q") is (conditionally) uniformly distribufed over the (n — 2)! possible

permutations of {1,...,n — 2}. Associated with T 1 o e consider the sum of K-
dependent variables

™ = (n - K) 1/2{ Z Ji (V)2 (Vi_k)
s=K+1

a{25) o ()

The same method of proof as in Lemma 4.1 can be used to show that
(4.19) BT - 507

_ “1f q2f W2 g [ W1 ~28-1/2
e () (o

where the O(:) quantity is uniform in ¢ and w (same acception as in (4.17a)). In
turn, (4.19} entails

(1.20) |ESlexp(iuT(™)] ~ B lexp(ms ()]
< BT - ST

1/2
— -1 | 32 w2 o [ W1 ~6-1/4
e [ (G2) 1 ()] o

where (-} again is uniform in w and t, as explained in (4.17a’). Since S} t) is
(conditionally) a sum of K-dependent qummand«; {(not all of them are 1dent1(,¢lly

distributed) with finite variance, denoting by F;) 1) . the (conditional) digtribution
of 5(n /[Var($; n))]lf 2 we obtain from Erickson ((1974) Theorem B) that

s ( u‘z)
exp| ————— | —exp| ——
[Var(S{7,))]L/2 2

‘ f g F () B(2))

(4.21) £

< ful [ 1R, (@)~ @@z = o112,
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unilormly again in w and t. Moreover, since Var(S{ﬁ)) =11 (n K)7UJF( &)+

J3(;8) — 3], still uniformly in w and ¢,
- q(n)
(n) tuSg n o aln)
22 _— B .
(4.22) Eu;t exp ([Var(Sfﬁ))]U? wst (zusl,t )

< |ufi(Var(Siy)/? - 1

— i [l |2 [ 22 B2 LT
[ ('n ilnv1) Ve \ar1) 3

Dencte by Ef,nt) the conditional expectation E[- | an); U((_;L)] taken at Qg") = w,
Owing to the fact that T 1(;’1)“ and U((.T;) are independent, and combining (4.20),
(4.21) and (4.22), we obtain

(423)  E) [expliuT{}")]
= exp(—u?/2)

1/2
~1/2426 | g2 42 2 f Wi

. O(n7(1/4)_6)‘

uniformly in ¢t and w, from which we deduce that

E\Z5, exp(iuTy];®)]
= E{{E[n) exp(.mLT1 o )]}22 " exp(mTzn)a)}

a2 . e nla
= O ([6 /2{E[Zg;t] + IU‘E[ZQ;LTZ(;t) }}

12426 | 72 R{V o { R v
& — +2 9 — . A
+|U|E ngt(]."'n (J1 (”_1_1 +J2 II+1)

B O(néml/dl)) )

Now, for 2K +1 <t <n - K,

ElZ5) = lnn = DI Y D Bllef() = h ORIV}

1<t Atz<n
—(n= 1)+ e — DI ST B{laf ()~ AU - LU

hence, from Cauchy-Schwarz’s inequality and (3.2),

(1.21) ElZ5,) = O(n 1Y),
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uniformly in £. Next,
(n— K225, 15"

e pin SNp— Ry Ry
= {af(R) = BUM) e (R (n - 1) 7 (n; ¢

— {af(R™) — Z (U Has(RD) — B0

{n) (n)
R R
J t J t— KA
1(n%—l) 2(n+1)’

where the expectation of the first term {in the right-hand side}, conditionally
upon R hence also unconditionally, is zero, so that, using Cauchy-Schwarz’s
inequality, (4.5), (3.2) and (3.13) again,

(4.25) E[Z5, T3] = On~>7172),

In a very similar way, using (3.1), (3.2) and (3.4}, we obtain

[ Rl 7
E | Z5,J} (ﬁ) =O(n"1"2%)
and j
R™ :
a8 (255 ) -o6 ),
whence

(4.26) E {Z;,;t

(/2 R AP\
1 —{1/2)+24 J2 t— J2 t

R R{™
= E[Z5,] + O (n—”“%E {zg;t (Jf (;ﬁ) +J3 (ni :

= O(n1).

Combining {4.23), (4.24), (4.25) and {4.26) yields, for |u| <7 logn and uniformly in
t between 2K + 1 and n — K,

(4.27) E{Z5, exp(iuT{™)] = e~ /20(n~") + [u|O(n~ /0%,
Consequently, after samming over ¢t = 2K +1,...,n— K,
n—K

(n—K)M? N BIZ5 exp(uT{M)]| = e P00 + WO ),

t=2H+1
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and, integrating with respect to u € [0, 1],

/

as was to be shown. O

n-—K

(n—K) % 3" E[Z5, explaud ()] du = O(n~?),
E=2K+1

The main theorem, in the exact score case, follows from piecing together
Lemmas 4.2, 4.3, 4.4 and 4.5. The approach we have been using for exact scores
however apparently does not extend to the approximate score situation. For in-

stance, we could not obtain the required O(n1) order for terms of the form (for
; R(n)
=(n—K) 'E [Jl (ntff - 1(U™)

exact scores, cf. (4.25))
n {n)
J2 RS ) J Rt—K
"Ner1 )P \n+1 /[
Another method of attack is thus necessary.

Here again, we need some preparatory lemmas (Lemmas 4.6 and 4.7). For all
B € [0,1], let m = [n'77] be the largest integer smaller than or equal to n!~#, and
denote by Z,, the set of integers {1,...,m,n—m+1,...,n}.

E(Z, 15

LEMMA 4.6. Let the (score-generating) function J safisfy assumptions (Al)
and (A2). Then, for all 3¢ [0,1] and ! =1,2,3.4,

1 i
(4.28) ~ ‘z J (n — 1)
€L,
If J moreover satisfies assumption (A,) with r = 1, then

(4.29) S| (n i 1) [J (n i 1) - EJ(U((;))] = O(n~2+1/2),

=i A,

i

= O(p~PU-W/A+I8)y

Proor. From assumption (A2),

; ! 1o N UDESE
J =0
(n + 1) n ; (n + 1)

3

€L,

i

<l

as for {4.29), it follows along the same lines as Lemma 3.1.

8

u(l/“)*’ﬁdu) . O(n—f”“ _(I/d)+.'.ﬁ));
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LemyMa 4.7, For given g € [0, 1], define

) (nﬂ)—asm& }I[R“” # Tn),
{n)
) [ (555) s

) (R(’”)} a§(ROTR™ o Ty,

(4.30a) 27, — (

R(n
(4.300) Z{5, =7 ( IR, e 7,1,

(4.30c) Zy7, = {Jl (

R(”)
(4.30d) zi7) — [J]( L) —af (R | as (RO R™ € Z,,).

-+ 1

Then, under the assumptions of the main theorem,

E{Zy3)] = O(n='=(#/2=2) [.&?hf O(n=273/%)

(431) (n) —§-1/2 —5-1/2
E[(Z3)%] = O(n ) E{(Z5)% = On )

asn — oo, wniformly int, K -1 <t < n

Proor. Starting from the definition of Zl(g;)t, we obtain, using the Cauchy-
Bl = =) 3 S (5

Schwarz inequality,
) (45) - 0| 1 e 2l
1<i# j<n n

= [n(n - 1) {ZJl(n+1)} g { (
—n -1 3 ( ) { (

JET,

2 (75)

=1

> [2(:5) —a;(j)r

J€Tm

+ [n(n — 1) { Z J? (ﬁ) }1/2

$E€L

5 () o]

JEIm

< ffn—1)] * (2m)*/?
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It follows from (3.3}, (4.5} and (4.28) that the first term in this latter expression
is O(n~1-8/2-20) "whereas the second one is O(n~ 3/ (B/N)-0048)y Gince 0 <
& < 1/4, the desired result is established. Also, from (4.29)

B2 ~lnto- 17 3 a5 [ () - o510)| = On 2912

T

and, from (3.3) and (4.5),

e o 07 {5 (7))

i=1

=O(n*"1/2);
E [(Zé;)t)z] is treated similarly. O

We now proceed to the final step. The main theorem indeed follows from
Lemmas 4.2 and 4.3 if we are able to prove the following analogue, for approximate
scores, of (4.14).

LEmMMA 4.8. Under the assumptions of the main theorem,
(4.32) f |BI(SE — Ti™) exp(iuT(™M)]|du = O(n1?),
lu|<logn '

a8 1 — OO,

Proor. First, note that
(4.33) / o B ) expliui
u|klogn
(n} _ pin) . eplm)
< |E[(S” —T.™) exp(iuT,™ )] du
[ul<log n
+ / BT — 70 exp (e i™)]|du.
ju| <log n

We know from Lemmas 4.4 and 4.5 that the first integral in the right hand side of
(4.33) is O(n~/2). It thus remains to show that the second integral is O(n='/?),

too. Therefore, decompose Tén) - Te(n) into

(4.34) TFE")—Té"M(n—K)‘”Q{ 3o+ 3 2%,

=R +1 t=H 1

" n
Pz 3 zgz;a},

t=K+1 t=HK+1
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where the ij"ls are given by {4.30), for fixed but arbitrary 8 « [0, 1]. Using the

same arguments as in the proof of Lemma 4.1, we obtain, from Lemma 4.7,

i N T
(4.35) E{ |(n-K)~'/? Z 2, = O(n =2+ (30/217285),
L =K+1 |
) . s
(4.36) Eq|(n-K)"1/? ) Z 1 b = O(n T8/ 288y
L t=K+1
hence, for Ct(n) = Zl(?;)t or Zé?;)t,
(4.37) E {(n — K)"1/? Z ¢ exp(,mgn))}l — O(n BBy
t=K-+1
and, for £ = Jfg‘}t or Z:g;";)t,
2K '
(4.38) ‘E {(ﬂ —K)7 Y e exp(iuTé”))}’ =O0(n~"%1),
l=K+1

(4.39)

B {(TL — K)_l/Q i £t(n) exp{iuTéﬂ))}‘ — O(n7573/4)'

t=K+1

The remaining terms reguire the same conditional approach as in the exact score
case. In view of (4.23) and assumption (Al), we obtain, for 2K +1 <t <n - K,

f . Ya [ . nla
E(Z{3}) = B{{ES,, lexp(iuT{%*) |} 213, exp(iuTsy )}

711:2 7 nla
= O(e PUEIZE)] + [l B2 T

+ uIE{ZE;?t 14 - (1/2+26

/2
R(n) R(") 1
1 o2 t—K 2 t —6-1/2
(J] (n-&—l)+JQ (nﬁ—l O(n )

l(n — K)2E[ 23,10

< {(n—l)_1 li‘ﬁ (nj—l)
7, (Tﬁ?) [Jg (ni]) - aE(a‘)”

where, from (4.29),

i=1
wt )

je€lm
— O(n-25—'l/2)'
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{t thus follows from (4.29) that, uniformly in f,
(4.40) EIZ{ ] = 0™,

The same reasoning as in the exact scorc case (cf. (4.27)) yields, for [u| < logn,
uniformly in 2K +1 <t<n- K,

(441) E[Zl(;,)f exp(@uT(S"))] — e—'ug/g()(n*].f?é) + Iu[O(n—l_Q'@é)’
so that
_ n—-K
plo-xn 5 zepnr)
t=2K+1

— c*”?/?()(n‘l—%) + | O(n 1288y,

Combining {4.38), (4.39) and (4.42) and integrating over |u| < logn eventually
yields

(4.43) f E{('n. K)72 N 20 exp(iuT{™) 3| du — O(n~V2),
[ul<log n t=K+1

A gimilar reasoning leads to

(4.44) / E {(n ~K)V2 Sz exp(mﬂ“))} du = O(n™/?).
lu|<log r t— K41

The end of the proof simply consists in piecing together (4.43), (4.44} and an
integrated version of {4.37), then choosing 8 = 2/3. O

The proof of the main theorem is thus complete.
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