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Ahstract.  An urn has balls of colors £ and (7. It is replenished (R) by balls
of bath colors and then depleted by (1)) the same number; this constitutes a
cycle. When R = D, the system is closed and equilibrium will be reached after
many cycles. The ultimate distribution is found only when the replenishment
is the same for each color. Asymptotic normal and asymptotic binomial dis-
tributions arise when the parameters reach extreme values. For the multicolor
urn an expression is given for the correlation between the number of balls of
any two colors.

Key words and phrases: Bernard’s urn, beta integral transforms, finite dif-
ference calcutus, generating functions, hypergeometric distributions, hyperge-
ometric functions, moments, replenishment-depletion urn.

1. Introduction

In a previous paper, Shenton and Bowman (1996} consider a Bernard (1977)
urn with balls of s colors, each color being subject to a certain replenishment: a
random depletion takes place in the sense that a fixed number of balls arc randomly
removed from the urn. This constitutes a cycle, the replenishment-depletion (R-
) pattern being repeated in form, identical eycles are possible. Solutions depend
on the usage of the finite difference calculus, and factorial moment generating
functions (fmgf).

The R D phase may result in a closed system; thus R=D at a cycle, so that
the total number of balls in the system at the completion of any cycle is constant.
This is the urn in equilibrivm ultimately. Under what circumstances do simple
solutions exist? How is the problem aflfected by the nuwmber of colors involved, for
example, univariate (2 colors) against 3 colors (bivariate).

We shall use the same notation as described in the 1996 paper; in particular
formula (2.2) and those in Sections 5.2 and 5.3. Note that all parameters involved
are assumed to belong to the class of positive integers—one exception is the cycle
parameter j which may be zero corresponding to the initial statc of the urn.
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750 L. R. SHENTON AND K. 0. BOWMAN
2. The 2-color urn in equitibrium

Initially there are 0 balls of color Cy, and & balls of color Ca. At the j-th
cycle the replenishments are p balls of C, and ¢ balls of Cb, with depletion p + g.

Thus the R-D pattern is (p,¢;p+ ¢). The system is closed. The fmgf is, at
cycle m, in terms of finite difference operators,

a \* o !
(2.1} fola) = (1+ ET) (l+m)

Ey Bg_y By ) T R)®

L —1

Tr=k+R
(m=1,2,..;R=p+q)

and this refers to the fmgf of balls of color ;. An operator E,, (A=1,2,...,m)

. . R
operates on the corresponding component in x,(r ).

When m — oo we set f,, = f, where
fla)=1+ay+a’y + -
where y; — p,b)/j! and is a reduced factorial moment, the factorial moment
being ,u'( -
This notation is merely a convenience device.
Now {2.1) may be faciorized. Thus

a \P I ﬂfgf’)
(2.2) Fm(r) = (1 +TM) Fm s (Emm> (k + R

and in the limit there is the finite difference equation

o s = (1 51 (5)

Em=k+R

.’II:k‘-f-R,

or equating coefficients of o”,
T P\ P\, P\, (k+R—7)®
Yy = |:yi" + (1) Yr—1 + (2),";7‘—2 + =+ (p) yr—p:| (k T R)(R)
(r=12,..;y0=1y =0,r <OQand r > k).

This equation may be further simplified to

p\ r k('f‘)
= (%)) mme

(20 Oy k7 KO0 (Dye-s
(k+ R)) — gl Sy ( )R(s)k(w'—s)'

r
3
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For example

1 =pk/R
{2.4) ' ~p k™[2pk+ R(p-1)]
PTART @kt R-1)

If p = g, the symmetric case, then

k Bk ep@

) Y2 — (Zk T 2]))(2) ) (nu'(2) = 2!]2)

Y=

oo

Higher factorial moments becowe complicated since the numerator and de-
nominator in {2.3) do not have factors in common, unless p = q.

3. | he symmetrical case, p =g

3.1  Formulas
Using {2.3) and simplifying the algebra, we find

. ARSI
(3.1) Ys = (QW’
and

Y. Ry (Rt p)
. n= ()

T'here is the obvious conjecture for the r-th reduced factorial moment ¥, when
equilibrium is reached, that

_ (K _k+p)™ .
(33) Yiry = (T)W, (S — 1,2,. v 5k-)

Inserting this in (2.3) linearized, there is the conjecture that
(o
r—& 77 r
2\ ot 2p—r)Em ¥
or, in polynomial form

P
3.4 k(a*?') ke (a*l)! €3] p e o9 (1)
(3.4) > (k+p) st )2k +2p s 47)

=0

= (k+pP k120 (s=1.2... k)

The left side will terminate if » > p or » > s. Using the Maple mathematical
manipulation language, (3.4) has been checked as an identity in k and p for ¢ —
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1,2,...,10,15. An algebraic proof appears by dividing both sides of (3.4) by
k=P k + p)*~P) to obtain an equivalent identity

(o )(3)
e (N /)

The equalily is a special case ol a more elegant poly nomial identity,

)-GO/ 6)

which is the formula (Gould (1972), p. 70, (16.3)). Gould credits the formula to
H. L. Krall, but does not cite his paper in the bibliography.

3.2 Numerical dllustrations
We can test out the formulas for the moments in equilibrium given in {2.4),
(3.1) and {3.2) by considering an urn subject to finite cycles. Formula (2.2) with
p = q, B = 2p now concerns the factorial moments for cycles of m, m = 1,2,....
Recursive schemes are easily set up and indeed are described in Shenton and
Bowman (1996), Section 5.2. For example
k

fm,l = (pfmfl,() + fmf.‘a,l)m (m =1,2,... ;)

B P P L{2)
fmpo = ((2) Sfra—10 + (l)fm—l,l + fm—1,2> G o)™

and so on for higher maoments.

It does not matter what the R-D comes to in the first set of cvcles, m =
1,2,...,m*, as long as from the (m* + 1)-th cycle onwards replenishment of each
color is the same (p — ¢) and the k-parameter is held constant. We have chogren
the scheme in Table 1. '

Thus

6 L0
X x
={14+ =) T
file) (+E$) (F ¥ 1)
4 6 (11) (14}
X (84 T T
fg(a}—(1+—) (1+ ) ! :
o Epla ) (k41000 (k¥ 1408 || o0

and so on, there being a break for 4 or more cycles.

Tables 2.1 and 2.2 show that the distributions of 7 balls are on the whole
close to normality as indicated by the skewness (/5 — HB/H3/2 — 71 ) and kurtosis
(B2 = pia/ 1% = v2 + 3), especially as cycle values increase. Moreover the last few
cycles in each case show moments with only slight differences. We shall give the
asymptotic moments in the next section.

x=k+11
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Tahle T Parameters for urns approaching the equilibrium state.

m (SS9

0 0 k  Depletion
6 5 11
4 10 14
1 11 1
m>3 p p 2p

3.3 Asymptotic normality

Cansider the equilibrinm urn (p = g) as k, the initial input of Ch halls,
becomes large. This can be done by evaluating the skewness and kurtosis; at least
this provides information on non-normality as measured by departures of /3, and
By from 0 and 3 respectively.

We start with expressions for reduced factorial moments, given in (2.4}, (3.1)
and (3.2). These are transformed to factorial moments, then to non-central mo-
ments, and finally to central moments. Using [L(S), h, and pg, for these moments,

we have for example
3

= 3280,

r=()
where Si7 s a Stirling number of the second kind, and with

r

#T‘:Z( 1)( )p"rs

S==}b

Now a glance at the expressions for ¢, (r = 1 —4) shows some common factors.
In fact the basic denominators are (2k | 2p 1) and (2k + 2p — 3). So we look for
geometric type series terms in the parameters of {2p — 1)/ and (2p — 3)/k, since
kE — oo.

(11 =k/2,

Jo = gz + ph — g =

col?r

1, 2p— 1)\
—62 1)(2p+1)(_2k )

WE‘;_ k(2p + 1}
8 8(2k+2p—1)

(3.5) (T ,
_3K _kBp+ ) Qe+ D(6p-T)  (p+ 1)2( 1)°
H4= 51 32 256 512

P [(2;}24—5)( —%) —3(2p — 1)(2p + 3) (p g)s}
(k'>p%;p:l,2,...)
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Table 2.1.  Convergence of moments to limiting form.

k=16
Input p Cycle Mean o Vi 32
3 1 13.0370 10107 0.1246 2.7236
2 9.0864 1.47556 —0.0066 2.9386
3 57637 1.5264 0.0544 2.9336
4 6.3736 1.0186 0.0515 2.9403
5 6.8171 1.5218 0.0404  2.9437

10 7.7593 1.5398 0.0087 29435
L5 7.9510  1.5420 0.0018 2.9432
20 7.9900 1.5422 0.0004 29432
25 7.9980 1.5422 0.0001 2.9432
30 T.99906 1.6422 0.0000 29432
35 7.9994  1.5422 0.0000 2.9432
40 B.0000  1.5422 0.0000 2.9432
45 B.0000  1.5422 0.0000 2.9432
30 8.0000 1.5422 0.0000 29432

1 13.0376 1.0107 0.1246 2.7236

2 9.08064 1.4753 —0.0066 2.9386

3 5.7637 1.5264 0.0544 2.9336

4 6.6238 1.55634 0.0427 2.9422

5 T.1331 1.5726 0.0284 2.9431
10 7.9253 1.5923 0.0027 2.9416
15 7.99314 1.5927 0.0002 2.9416
20 T.9991 1.5927 0.0000 2.9416
25 7.9999  1.5927 0.0000 2.9416
26 8.0000 1.5927 0.0000 2.9416

[

25 1 13.0370 1.0107 0.1246 2.7236
2 9.0864 1.4755 —0.0066 2.9336

3 5.7637 1.5264 0.0544 2.9336

4 7.457T9  1.7869 0.0254 2.9194

b} 7.8686 1.8041 0.0060 2.9169

19 7.9999 1.8053 0.0000 2.9167

11 8.0000  1.8053 G.0000  2.91067

50 13.0370  1.0107 0.1246 2.7236

1

2 9.0864 1.4755 -0.0066 2.9386
3 57637 1.5264 0.0544  2.9334
4 7.6915 1.8744 0.0157 2.9034
5 7.9575 1.881% 0.0022 2.9021
G T7.9941  1.8520 0.0003 2.9021
7 7.9992 1.8320 0.0000 29021
8 7.9999  1.8820 0.0000 29021
9 8.0000 1.8820 0.0000 2.9021

V=, e=m 43
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Table 2.2, Convergence of moments to limiting form.

k=350

dnpuip Cyde Mew o VB B
3 1 45.9018  0.8305 0.6654 3.0167
2 38.9857 1.5256 0.1803 2.9161
3 32.2465  1.9391 0.0663 2.9528
4 31.4701 2.0648 0.0400 2.9623
5 30.7769  2.1638 0.0228 2.9688
10 282779 24327 —0.0076 2.9807
15 26.8600 2.5280 ~0.0094 29818
20 26.0654  2.56256 --0.0067 2.9815
25 25.598% 25751 —0.0041 2.9812
30 25.3398  2.5795 —0.0024 2.9811
35 25,1928 2.B811 —=0.0014 2.9811
30 25,1084 26817 —-0.0008 29811
45 25.0621  2.581% —0.0005 2.9811
i) 25,0352 2.5820 --0.0003 2.9811
1 45.9016 0.8305 0.6654 3.0167
2 389857 1.5256 0.1803 2.9161
3 32.2465 1.9391 0.0663 2.9528
4 31.0387 2.1442 0.0288 2.9671
5 30,0323 2.2836 0.0095 2.9747
10 27,0224 25588 ~0.0093 2.9821
15 25.8127 2.6109 —0.0052 2.9817
20 25,3266 2.6208 ~0.0023 2.9814
25 25,1313  2.6227 —0.0009 29814
30 25.0628 26230 —~0.0004 2.9814
35 25.0212 2.6231 —0.0002 29814
40 25.0085  2.6231 —0.0001 2.98141
45 25.0031 2.6231 0.0000 29814
50 25.0014  2.6231 ¢.0000 2.9814

23 1 45.9016  0.8305 0.6654  3.0167
2 38.9857 1.5256 6.1803 2.9161

3 32.2465  1.9391 0.0663 2.9528%

4 28.6232 26667 —0.0078 2.9806

5 26.8116  2.8355 —0.0093 2.9310

10 25.0566  2.8963 -0.0004 2.9800

15 25.0018 2.8864 0.0000  2.9800

20 25.0001  2.8964 0.0000  2.9800

21 25.0000 2.8964 0.0000  2.9800

50 459016  0.83056 0.6654  3.0167

38.98567  L.5256 0.1803 29161
32,2465 1.939% 0.0663 2.9528
27.4155  2.8535 —0.0130 2.9786
25,8052 3.0556 —0.0058 2.9769
10 25.0033 3.0695 0.0000 2.9766
14 25.0000  3.0695 0.0000 2.9766

Vi =7, 82 = +3

[S1 NN AR S

[



756

L. R. SHENTON AND K. 0. BOWMAN

w2
o
%:ﬁ
X
2w
&%
o
Ean
g2
B
oy
Lk
=3

&

Ky 25
s e, 505

'l':l
7o 0 Q
Fig. 1.

Equilibrium case—asymptotic standard deviation.
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IMig. 2. DBquilibrium case—asymptotic kurtusis.
The dominant asymptotic values can now be formed. Thus
(17 =k/2, w2~ k/8,
H3 = 01 V .ﬁi = 05
1 (2p+1) (2p+1)(10p—3)
2
iy =T ~ 3 —_— —_
(36) < 62 #4/1""2 k ng 4k3
N (2p + 1){52p* — 36p + 9)
8k
 (2p+1)(232p* — 2289 + 126p — 27)
S

16k '
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Alternative forms for jo and py are:

( ko 2p+1 (4p? - 1)
MHa = = + - e E
810 16(2k+2p—1)
3 Bp+ 1k (2p+ 1)(6p—T)
3.7 _ o -
(3.7 M= g0 T 256

(@7 - 1)(12p° +5) | 3(dp® — 1){4p* - 9)

\ 512(2k + 2p — 1) 512(2k +2p — 3)

The asymptotic expression for #; may turn out to be convergent for k£ >
p —1/2, but it is of doubtful use, since an exact value can be found (see {3.7)).
We note that the response of kurtosis relates Lo the two parameters & and p where
F is an initial value and p refers to the R-D phase. As a general descriptive the
kurtosis seems to be just less than three, with skewness zero, provided k is 4 or
more. If £ is large G2 is only slightly affected by changes in p, and near normality
exists.

If p is large compared to k, then expansions (3.5) and (3.6) are useless. Ac-
tually if p — co, then the r-th factorial moment for € balls is,

fry ~ K20 (p— oo)

which relates to a symmetric binomial distribution with index k.
Graphic representations for the standard deviation and kurtosis are given in
Figs. 1 and 2.

4. Probability generating function in the equilibrium state
From (3.3} we have for the fmgf
fle) = (B + 0l ) P2 /(2 4 2p) ) |,
g0 the p.g.f. is

P(t) = (1 + tA:E)ker:‘C(k)/(Qk + zp)(k) Em=k+p

and

wn A0 = (e ek 2.
(s=10,1,...,k)

"The reader will not fail to notice the association of this hypergeometric form to
the Vandermond expansion of (2k + 2p)'*} written as [(k + p) + (k + p)]'¥.

Table 3 gives the exact moments of balls of color €; when equilibriam is
reached. There are two values of k and 4 valucs of p. The agreement with those in
Tables 2.1 and 2.2 is remarkable, and we note that for the latter the moments were
computed from models with different initial inputs (actually the first 3 cycles; see
Table 1).
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Tahle 3. FExact moment parameters for equilibrium.
ko p v B2
16 3 8  1.5422 29432
5 8 1.58927 29418
25 8 1.8053 2.9167
] K& 18820  2.9021
50 3 25 25820 296811
5 25 2.6231 2.9814
25 25 2.80864 2.0800
50 25 3.0895 2.9766
(+/F1 = 0 through out)
5 Generalizations
5.1 Two colors and asymmetry

In the case when the reinforcements are p balls of €y, g balls of €y, and
depletion R = p + g, the fmgf when equilibrium is reached is defined by

(5.1) fla) = (1 +

a4

E,

)

8

E,

)

20

(k + R)(R)

r=k+R

This is a finite difference equation. A more general form is

)1 (

with restrictions on ¢{-) such as g(0) = 1. Little is known about solutions except
in the case of the model described in {3.1)-(3.3) with p = ¢ as given in Section 3.
Note that as far as the F operator is concerned the coefficient of a® is

&

E

(&7

s =g (5) 1 (F) e 6+ B Leirn

el 20 f(k 4 R)YO

go that this is zero for s > k. Thus if we consider the corresponding p.g.f., it will
be a polynomial of degree k.
An implicit solution to (5.1) is given by

P (s
N R W e e

(Xr=a ()

Ty — (k - R)(é‘) — R(S) .

or

(s = k)

This will simplify provided that the denominator factors into the numerator. We
are only aware of onc non-trivial case, i.e. the case p = ¢.

1,2,...
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5.2  The bivariate model
Here the reinforcements are p, ¢, r with depletion R = p 4 ¢ + r; the colors
are Cq, Oy, and C5. In eguilibrium

a \? 8 q a A (R}
{1+ =) {1+ e
reo= (g ) (v 5) (& 5) e
A search for closed solutions proved negative. So we turned to deriving the corre-
lations between balls of colors € and C5. Means are

tho = kp/R,  pp = kg/R.

For central moments after simplification, we have

x=k+HR

( kp(R - p)(k + R)
2 - : 1 "
0= ek R T Colr @)
__—kpg(k + R)
M ks -1y (G EG)
1 — Ra(B —q)(k + R) ()
T TREE T R 1) ?

and it can be seen that pqy is derived from gy by interchanging p for ¢.
T'hus for the correlation p for colors C; and Cs,

. —/Pq
; 1.2) =
(52 ML) = o

with similar expressions for p(1,3) and p(2, 3).

6. Pédlya-Eggenberger distribution

The result in {4.1) for the probability function for balls of color ' is somewhat
similar to the case of the Pélya-Eggenberger distribution as quoted by Berg (1988).
Here at the initial cycle there are a red balls and b black balls. One ball is drawn
at random and then replaced tagether with ¢ halls of same color. After n cycleg,

X referring to red balls, according to Berg

n> e+ T2 b + o)
12 (a+ b+ ic)

Pr(X:a:):( (zx=0,1,...,n)

x

or with a change of notation

Pr(X =) = (n) ofFlgm-al f(o 4 gyl

z
where al™ = a{a+1)--- (@ +  — 1), and with r-th factorial moment
(XY = nMall (o 4 glr],

Although the basic structures of this distribution and that for the urn (4.1) are
quite different. yet there is a curious similarity of probahility forms.
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7. Conclusion

A new urn distribution in equilibrium arises when there are two colors, each
reinforced by the same amount with £ = D. When R # D no simple solutions
have been found. With R = D there is asymptotic normality (k¢ > p, k¥ — o0)
and asymptotic binomiality (p = ¢ — oo, k fixed). In general the symmetric urn
is such that the distribution of balls of color €] has skewness zero and kurtosis a
little less than three.

An awkward polynomial equality awaits an algebraic solution. A new finite
difference equation turns up and is a curiosity. Some related references are Bow-
man et al. (1985) and Shenton {1981, 1983}).
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