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Abstract. Dxistence and nonexistence for moments of limiting random vec-
tors of normalized, lightly trimmed sums of random vectors in the generalized
domain of normal attraction of non-Gaussian operator-stable laws are stud-
ied. The idea of representing the limiting random vectors by infinite series is

essentially used in the proofs.
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1. Introduction and results

A probability reasure g on R? is said to be operator-stable if it is infinitely
divisible and there cxist a lincar operator B on R? and a function b : (0, 00) — R4
such that for every t > 0,

A = p{tP H)et O forall 8¢ RY,

where fi is the characteristic function of g, B* is the adjoint aperator of B, #4 =
exp{(Int)A} = 302 (k)" {lnt)* 4% and {,) stands for an inner product in R%.
B is called an exponent for p. It is not necessarily unique. It is known that every
eigenvalue of B has a real part not less than %, and that if u is purely non Gaussian
in the sense that ¢ does not have a Gaussian component, no eigenvalue of B has
a real part equal to % Throughout this paper, we assume that g is full, namely,
p is not concentrated on a proper hyperplane in B? and is purely non-Gaussian
operator-stable.

Let {X;}22, be asequence of i.i.d. R valued random vectors belonging to the
generalized domain of normal attraction of a full, purely non-Gaussian operator-
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738 MAKOTO MAEJIMA

stable law with an exponent B, namely for some vectors {¢,} in R?, as n — oo

n
(1.1) n P Y Xj—en | 28,
J=1

where Zg ig a purely non-Gaussian operator-stable random vector with the expo-
nent /2, and 5 stands for the convergence in law.

Throughout this paper, the norm | - || in B¢ means the special norm defined
below. Let |-]lo be the usual Euclidean norm in R%, and let &{y) be the symmetry
group associated with p, that is, the group of all invertible linear operators A on
R?, such that for some a € R?, i{8) = a(A*)e >0 Since p is full, S(w) is
compact, and there exists a Haar probability measure H on the Borel subsets of
G(p). Then we define a norm || - || which depends on the operator-stable law g,
hut not on the chaoice of exponant:

: Vg dt
||| = llgt IHOTdH(Q):
S(u) J0

(sec Hudson et al. (1986) and Hahn et al. (1989)). Let S be the unit sphere with

respect to the norm || - ||. The norm has the following properties:
(i} || - || does not depend on the choice of the exponent B.
(ii) The map ¢+ {|t8x| is strictly increasing on (0, 00) for z # 0.
Define the norm of the lincar operator A on B* as ||Aff = SUPy -1 [|[Az]}. Then

by property {ii) above,

(iii) the map ¢ ~ ||tP|| is strictly increasing on (0,oc), (equivalently t
It~ 71 = ||(¢" )" is strictly decreasing on (U, 00)).

(iv) The map @ : (0,00) x § — R\ {0}, defined by ®(t,z) = tfz, is a
homeomorphism, where (0,00} x § has the product topology.

It follows from (iv) that one can express every vector x € R®\ {0} as
x = 1{x}?(x), where 7(z) € {0,00) is a “radial” coordinate, and #(x) € S is
a “direction”. For each n > 1, let X,En) be the k-th largest among (X1,...,Xx) in
terms of the radial coodinate 7(-), namely

(X{M) > () 2= (),

where ties are broken according to priority of index. We then consider the lightly
trimmed sum

o) S () - 3

where r > 1 is a fixed number of trimmed terms.

Hahn et al. (1989) gave a necessary and sufficient condition for the validity of
(1.1} by using the idea of series representation of operator-stable random vectors
by Lelage (1981). Without any change of the proof of Ilahn et al. (1989), we can
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conclude that the trimmed sum (1.2) also converges weakly to a random vector Z,
{which will be defined in (2.1) in the next section}, under the same normalization
as in Hahn ef al. (1989). This idca was also used for the same convergence problem
for Banach space vahied random variables by the author (Maejima (1993)).

In this paper, we shall show the following result on moments. Let Ap and
Ap be the minimum and maximum of the real parts of the eigenvalues of B,
respectively. Qur assumption of pure non-Gaussianity is equal to assuming that
A 8> %

THEOREM 1.1.
(i) Forp < ﬁ(?‘ + 1), E{|Z,||F] < .
(ii) Forp > Klg(r+ 1), Ell|Z.]|F] = o=.

Remark 1. A general non-Gaussian operator-stable random vector is the
eotvalution of a purely non-Ganssian random vector and a Ganssian random vec-
tor. Therefore, the conclusions of Theorem 1.1 arc also valid for general non-
Gaussian random vectors.

Remark 2. Note that Zg = Z,. For a full non-Gaussian operator-stable
random vector Zg, it is known that E[|| Zg]?] < o0 or = 00, depending on whether
P TIG or p > leB {Sce Luczak (1981), Corollary 3.1.) We expect that for general
r > 1, E[||Z,||"t1/A48] = oo. This cannot be proved in this paper, but a partial
result will be discussed at the end of Section 4.

If an exponent B, of an operator-stable law p, is of the form B = 11 (necos-
sarily 0 < o < 2}, p 1s said to be a-stable, and if o # 2, then p is non-Gaussian
a-stable. In this case, we can get the exact tail behavior of the distribution of Z,
as follows:

CoroLLARY 1.1. If p is a-stable, 0 < a < 2, then us & — o0

1 alr
P(||Ze]| > x) ~ mm alr+1),

When d = 1, this corollary can easily be obtained from the exact form of the
characteristic function of Z, given by Hall (197%). In the final section, we will give
a proof for Corollary 1.1 by applying (i) of Theorem 1.1.

2. Series representation of Z,

Our proof in this paper is based on the LePage type series representation
of the limiting random vector Z,. We explain it in this section by following the
argument in Hahn et al. (1989).

Let p be a purely non-Gaussian full operator-stable measure with exponent
B. The Lévy measure M of i can be represented as

M(AY = fsfow ItBe € A 2dev(de), A c BRI\ {0}).
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where v is a finite Borel measure on S, and I[- is the indicator function. The
measure v does not depend on the choice of exponent. The measure g is char-
acterized through its characteristic function by a triple (v, B, v}, where « is the
centering constant, £ is an exponent of gy, and v is the mixing measure of the
Lévy measure M. Define {U;} as a sequence of L.i.d. random vectors having the
common distribution v(-)/v{S), and let {T';} be Poisson arrival times with unit
rate, namely I'; = e; +- - -+¢;, where {€;}22 | areiid. random variables having an
exponential distribution with mean 1. We asswme {U;} and {T';} are independent
of each other. Then under assumption (1.1), we have as n — o

(2.1) n~B N x™ o x ™M) < yx M)y
g=r+1

52y = f (T80, - g1, = 415 "1 E[U,)}.

J=r+l
(See Hahn et al. {1989).)
3. Proof of (i} of Theorem 1.1
LEMMA 3.1. Lett>0. If j > tAg, then E[|I; P !] < oo.
Proor. Note that for any ¢ > 0, there exist 'y > 0 and (', > 0, such that

lz=8| < CLe~ 28+ for O<a<1
and
2 B < Cox™@2=9  for 2> 1.

Then we have

1 20
Ei“‘;”l‘lﬂf—lﬁ(/ﬂ +[ )Jth*xf ‘e “ds
C !

/ PR GV Ral) DVU b P

=G
e,
G

o0
+ / gt AB=e) pi-lg—w gy o 00,
L

if 1 > tAp. 0O
LEMMA 3.2. Lett > 0. Then there exists Cy > 0 such that for all j

F;—7
j1/2

D)

4
}gcb
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Proor. This lemma is probably already known. However, for the sake
of completeness, we give the proof below. Note that E[[';] = j and Var([l';] =
E(T; —j*] =j. Let 0 < ¢ <2 Then

E(IT; - jI' < (BT, - 4P)Y° = 572,
Next, suppose ¢t > 2, and put
r,—j
Fj(m)zP{ ;1/2 Sx}.
Since E[I'*"] < oo, by the nonuniform central limit theorem (see, e.g. Petrov

{1975}, Section 5.4),
lim sup(! + =) Fy(z) — ®{z)| = 0,
SN e R

where ®{2) is the standard normal distribution. Thus, there exists j; such that

for every j > jg
sgg(l + [z Fy(z) - 2(2)] < 1.

Therefore, for each j

F;U"Qj } :t/mm Ixtt_le(:c)dert/Ooo|;v1t_1(1Fj(:c))d:r:

< tf; 1 (q)(.r) + W) dz

oo - 1
‘+‘t/0 ‘.’L‘|it 1 (l—‘I‘($)+W> dx
= foo || d® (x) + L/OC Ld;ﬂ < X,

—o0 oo (L |2y

E

This concludes the lemma. O

We proceed to the proof of (i} of Theorem 1.1. We use the idea of decompo-
sition of Zy which is used in Hahn et al. (1989). Then we have

4
Z‘r‘ - z Ii}
i=1

where

L= Y @;%-i 8,

L= Z J7P(U; - EWUy)),
K= 3 POy <15 PEIL)
L= E[G* 1,1, > 1B,
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Almost sure convergence of all I;’s are shown in Hahn ef al. (1989). Also note that
I3 and I are non-random. Hence, it is enough to consider E[||L;||?] for i = 1 and 2.
However, I, has all finite moments because it is a convergent series of independent
random vectors that are uniformly bounded. (See e.g., Kwapienl and Woyczyiiski
{1992), Corollary 2.2.1.} Therefore, it is enough to show that E[{|I; ||’} < oo for
p< i (r+ 1)

First consider the case when 3-(r+1) < 1. Since p < f-(r+1),if j > r+1,

A
then 7 > pAp. Thus by Lemma 3.15,) we have

—B . .
{(3.1) BTy 2Pl <oo i j2r+1
and
(3.2) E(IT; 7| <o if j> Ap.

Fix § € (3,Ap). By Lemma 1 {ii) in Hahn et al. (1989), we have
E{Ir;® - 7P| = oG~ 129).

This, together with (3.2), yields that for some K; > 0,

(3.3) EIT; % i Bl < Kyj W) for > Ap.

Since p(< ﬁ(fr + 1)} is strictly less than 1, we have

- 21
T

Joo=E || (1,7 - 578,

f—r+1

[Ag]
<E{DY @ -

| [[i=r+1 J
v
T
P& Z (ry® 8y,
i=lAp]+1
== (Jnl + Jng).
By (3.1}, Jn1 < 00. As to Jua, since p < 1,
n P
T < |E || Y (077 -5
[As]+1 .
n P
< > ElryP-i"m)
J=[Ap]+1

which is dominated by some constant M, independent of n, because of (3.3).

(Recall 6 > 1)
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Next, consider the case whoen "[\"15 (r+1) > 1. Iu this case, it s enough Lo prove
that J,, < oo for p € (1, ﬁ(r-l— 1)). Fix p € (1, ﬁ(r%— 1)}. Then by Minskowski's
inequality

P
n

(34) Tnsq D0 (BT 5P
1=r+1

Following the argument in the proof of the Lemma 1 (ii) in Hahn ef al. {1989}, we
also get

(3.5) E([T5 - §72ip] = O —V/A,
For some Cy > 0,
(36) E[ILT? — 5721 < Gy E[IL, — 3P| min{ry, 7)) #*10)]

< Ca(B(T; = JPP)Y2(E] min(Ly, ) 22,
Here, as in Hahn et al. {1989), we have
(3.7) E{| min(T;, 5)|72P0+O] = =21+,
On the other hand, by Lemma 3.2
(3.8) E[L; - jI*P] = O@?).
Combining (3.6)-(3.8), we get (3.5). Then, by (3.1) and {3.5), for some K3 > 0,
(3.9) ET;7 — j7B|P] € Ky P40 for j>r 41
It follows from (3.4) and (3.9) that

" »

Ip < Z (Kz.j_P(1/2+5))1fP ,
J=r+1

which is dominated by some constant My, independent of n again. Altogether, we
conclude Ef||I}||P] < oo, and hence the proof of (i) of Theorem 1.1 is completed.

4. Proof of (i} of Theorem 1.1 and a remark

If we let 2-(r+ 1) < p < £=(r + 2}, we shall prove E[||Z.|?] = oc. Note
that for R%-valued random vectors X and Y, if E[|| X||P] = oo, and E{||Y||?] < oo,
then E[||X + Y]?] = oc.

Let,

X = 1";‘_81 Urt1

and
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Y = Zry1 — B[ 2 E[Un 4],

Since p < Kl;;—(r + 2), by (i) of Theorem 1.1,
(4.1) BJY ] < .
Thus, it is enough to show that
(4.2) BT Up 7] = oo.

Recall the series representation for Zy(= Zg):
(4.3) Zo =TT BU, — E[I0 > U BB + 2.
It is noted in Remark 1 that
(4.4) E{[|Zo|'/*#] = oo
By (i) of Theorem 1.1 with r =1,
@5) E(| 1] < oc.

It follows from (4.3)—(4.5) that

B0y B0, — UL, > 10y P JE[U]]]Y/A%) = oo

namecly
E[T; BUy|| /A2 = o,
which is
(4.6) s [ [l e — oo

Remark 3. Recall that our B and v are ingredients of a purely non-Gaussian
full aperator-stable measure p. (4.6) is not necessarily true if p is not full. For
instance, if v is concentrated on ££* € §, where £* is the eigenvector of Ag, and if
Ap < Ap, then the left-hand side of (4.6) is finite. In this case, the corresponding

operator stable mecaurc must not be full.

We now go back to the proof. Since

[ u]
f () / BN e wdz < oo,
S 1

we have

1
f V(de) ] e Bel/A% ez — oo,
5 0

b
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Then by Hblder’s inequality,

1
o= [ [ leoe) e iy

i
:/f “m""Bén1/1\3e*xxf‘/(PAB)x—T/(PAB)V(d&“)dm
S .J0

1 1/{pAR)
( fs fo ileél"’e“”‘”w’"V(df)dm)

1 {pAn—~1)/{pAR)
x(ff I*’"/(pAB_I)u(df)dx) .
540

Since the second integral in the right-hand side is finite, the first integral there
must be infinite. Hence, we have

1
-B Po®ml dp
fg w(de) / |~ BelPe a7 dz = oo,

concluding (4.2), and completing the proof of (it) of Theorem 1.1.

I A

Remark 4.  As mentioned at the end of Section 1, it is expected to hold that
E[||Z,]|r+1/As] = 0. Here, we give a partial result for that.

THEOREM 4.1. Suppose Ag > 1, and let v be such that 1 < r < 2Xg — 1.
Then E[||Z.||"t1/48] = oc.

ProOOF. Asin (4.2}, it is enough to show that
(4.7) B, AUz |THD/A5] = oo,
1

Let B* = ﬁrB. By the assumption that 1 < 7 < 2Xg — 1, we have Ags > 5
Thus, it is possible to construct a purely non-Gaussian operator-stable random
vector Zp- with the triple (v, B™, ), where v and v are the same for Zg5. Since
Zp is full, so is Zp-. Then, by the same argument used for (4.6), we have

S [ [ e s — o,

which implies
1 / B+ 1/An,—
—— | v{dt / g B0+ 0HL/As =5 gy o,
5 [ [T !
By the change of variables z!/("*1) =y we have
1 oo , ]
—,/V(dé}/ ly =Bl Aee 3™y gy = oo,
v(5) Js 0
which is equivalent to
1 0
—— | w(de f y~ B¢ (T+1)/Age—yyrdy = 0.
g v [Tt

We thus conclude (4.7) and complete the proof of Theorem 4.1. 17
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5. Proof of Coroltary 1.1

Note that in this case

Zo= Y {1y, - B, VeI, 2 B}

Jj=r+1

LEMMA 5.1. P(Pj—l/a > x) ~ J,%;r:_‘”' as & — 0o.

Proor. Easy O
LEMMA 5.2, Let X and Y be two random vectors. Suppose that the distri-

bution of | X has a regularly varying tail, namely there exicts 8, such that for any
e>1

- P{X| >ex}

and that the tail of the distribution of | X || dominates that of |Y||, namely
o P{Y] > =}
(5.2) lim ————— —
z—eo PYIX]| > 2}

. PIX+Y| >}
lim =
z—oo  P{|X] >z}

Preor. This can be proved by exactly the same way for Lemma 1.1 of
Samorodnitsky and Szulga (1989). O
We now have
P2l > 2} = P{LT " Unis — ELTH{ N0 2 WEUra] + Zea || > o).
We apply Lemma 5.2 to
X = F;i{uUFH
and
Y = Zpg — B0 1 [Drgy > 1] BU 1],
By Lemma 5.1, {5.1) holds with # = a(r+1). Furthermore, if z > 2||E[U, 1]},
x
P{iY| > o} < P{1Z1ll > 3}
and by (i) of Theorem 1.1 (with the replacement of r by r + 1), the above is
=0z ") (foranyp<alr+2))
(5.3) = o{z~elrrh)y,

Thus, by Lemma 5.1 with j = 7 + 1 and (5.3), {5.2) is given. Therefore, by
Lemma 5.2, we can conclude that the distribution of | Z; || and I',. J:{ “ have the same
asymptotic tails, and the conclusion of Corollary 1.1 now follows from Lemma 5.1

with 5 = r + 1.
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