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Abstract. Some new exact bounds for the expected values ot order statistics,
under the assumption that the parent population is non-negative, are obtained
in terms of the population mean. Similar bounds for the differences of any two
order statistivs are also giveu. T is shown that the existing bounds for the
general case can be improved considerably under the above assumption.
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1. Introduction

Let X be a rv with df Fx(-) = F(:} and consider the order statistics X;., <
Xop € -+ < X,y corresponding to a random sample of size n drawn from F.
The well known Hartley David-Gumbel bound may be regarded as a special case
(i = n) of the general bound

(]-1) IE[Xau] - Ju‘ < 00y, = 1,2,...m,

where p and o are the mean and the standard deviation, respectively, of X (see
Morignti (1953), Hartley and David (1954}, Gumbel {1954} and David (1981)).
For fixed i, 1 < i < n, the constant ¢;,,, in (1.1} can be calculated with the help of
a specific value p) (= p;{i,n}) which arises as the (unique) root of the polynomial
equation

(1.2) 1-Glz)=(1-2)g{z), O<z<l,
where

1 i— n—i A P ‘ — ; ;
glzy = P—(—E—’—mx 1(1 — )t Glz) /(; glude = I (s, n+ 1 —4).
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Balakrishnan (1993) showed that the equation (1.2) can be rewritten in a much
simpler form, namely,

(1.3) (n— 1)(’:‘1_ Dx*—l = i (” —; +j)mj,

=0

and, of course, as he pointed out, finding p, from (1.3) is a lot easicr than deter-
mining it from (1.2) (the degree of the polynomial equation (1.2} is n, while the
degree of {1.3) is i — 1; see Balakrishnan (1993) for more details).

In the present paper, by using the further assumption that X is a non-negative
rv (that is, F(0_) = 0) we improve the above results. Note that several improve-
ments of the bounds {1.1) have been appeared in the literature the last few years
(see for example Balakrishnan and Bendre (1993}, Balakrishnan (1990)) but it
seems that the assumption of non-negative parent population has never been im-
posed, though this is the usual case in most applications (e.g., when the X’s
represent life times in reliability etc.).

A main feature of the new bounds is that they do not involve the standard
deviation . This fact leads to notable improvements of (1.1}, especially when o
is large (see Table 1).

Since the assmnption X > 0 alone fails to reach non-trivial lower bounds
{see Theorem 2.2), we also give the modified sharp upper and lower bounds (see
Theorem 2.3 and Corollaries 2.1 and 2.2) when it is further known that the X's
lie in some bounded interval of the form [}, o], 0 < o < 400.

In Section 3, the corresponding upper bounds for the expected value of the
difference of any two order statistics (from non-negative populations) are derived.

2. Bounds for the expectations of order statistics
Supposc X, X),..., X, arc iid rv's with df F' such that X > 0 and consider

the ordered sample 0 < X, < -+ € Xy, To avoid trivialities, we further assume
that E[X] = g > 0. Since F{0.} = 0, we have the well-known relation

+o00
2.1) b= ] (1~ F(z))ds,

and the analogue for X;.,

(2.2) B[X] = /0 "1 - G @)

(since G(F'(x)) is just the df of X;.,), where G(2) — I;(4, n+1-1) is the incomplete
beta function, defined as in the introduction.

Fix n and i with 1 < i < n. From Lemma 2.1 (1) in Papadatos {1995), the
Inequality

1-Gz) 1 Glp)

(2.3) o ST

= g (1)
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holds for all x in [0,1), with equality iff (if and only if) z = p;, where p; (=
p1(i,n}) is the unique root of {(1 — G(z})/(1 —z}) =0in (0,1); i.e., p is exactly
the point mentioned in the introduction, which alternatively one founds by using
Balakrishnan’s result {1.3). Since it is readily verified that g, (7) = g(p:) {g is the
derivative of () we have the following upper bounds.

THEOREM 2.1.  Suppose that X > 0 and E[X] = p > 0.
{i) Fiz i with 1 <i < n. Then

and the equality holds iff P[X =0 =p; =1 - P[X = p/(1 - p)].

(ii) E[X1.,| < p with equality ff P{X = p] = 1.

(iii) sup E[X,.n] = ny, where the supremum is taken over F' € F, the family
of all df’s corresponding to non-negative rv’s having mean ji.

Proor. (i) Since {2.3) can be rewritten in the form
(2.5) 1 - Gz) < (1 e)unls), 0=z,
with equality iff either z = p; or x = 1, we have
{2.6) 1—G(F{z) < (1 - F(x))pali) forall 0<z < +oc.

Integrating {2.6) over {0, +oc) and taking into account {2.1) and (2.2), we conclude
{2.4). Observe that equality in (2.4} is equivalent to

[ = P - (1 - G @) =0

and this implies, in view of (2.6}, that the integrand is null for almost all z in
[0, +oc). Thus, fiom (2.5), F(a) — 0, p1, 1if 2 < 0,0 < o < pu/{1 — p1), /(1 —
p1) < x, respectively, and the proof of (i) is complete. (ii) is trivial sinece it holds
for any df {not necessarily non-negative). For (iii) we simply have X,.,, < Z?‘:l X;
and thus E{X,,.,,] < ng. Obscrve that E[X,,.,| = nyg implics that X, = --- =
Xn-1:n = 0 which in turn yiclds g = 0 (a contradiction). Thus, E[X,.,] < ng.
However, this trivial bound is the best possible, since for the population with
PIX =0=a=1-PX =p/(1l — «)], we have E[X] = p tor all @ € (0,1) and
ElXpm| =11 —a™)/(1 — a)|pp — np as @ — 1. This completes the proof of (iii).

In the stmple cases ¢ = 2 or ¢ = J one can apply Balakrishnan’s results for
finding p; and thus u, (). For example, when i = 2, (2.4} yiclds

n*t(n— 22
E[XQ:RJ S (n — 1)27‘!‘—3 j2 n = 3.‘ 4, ey

where the equality holds (for some n) only when

n — 1)?
PIX = 0] = (nl 132 —l-PF [X - ‘f(l,(’!t. 1')2)4 )
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Similarly for ¢ = 3 we have the uppeor bound

n 9 .
E{Xsm] < m[n —n—1+/n(n—2)(2n - 3)]
n—3
9 n(2n ~ 3)
. ) TR Bt A
[n " n—2 a
for n = 4,5, ..., where the equality holds for a specific two-valued df.

Since the bounds obtained by Theorem 2.1 do net depend upen o, clearly
they may be considerably lower than (1.1) at lcast whenever o is large (of course
these bounds continue to hold when o = 400, provided g is finite, and in this
extremal case, (1.1) is not applicable, leading to the trivial bound +oo). We give
for illustration Table 1.

Table 1. Numerical comparison of upper bounds (1.1} and (2.4) for E[X2.,], F[X3.x] and
B[X4:n] ™.

Upper bounds for E{X3,,] n=3 n=4 n=5 n=6 n=7 n=

24)forp=1 1.125 1.053 1.030 1.019 1.013 1.010
(tl)forp=1,0=1 1.271  1.182 1.138 [.111 1.093 1.080
(L.1)forg=1,a=05 1.135 1.091 1.069 1.056 1.046 1.040
Upper bounds for E[Xa,,] m=4 n=5 n—6 n—7 n—38§
(2.4) for p = 1 1380 1198 1.127 1.091 1.069
(L) forp=1,o0=1 1.506 1376 1.306 1.260 1.228
(L foru=1,0=05 1263 1.188 1.153 1.130 1.114

Upper bounds for E{X4n] n=5 n=6 n=7 n=8

(24) for =1 1659 1.368 1.249 1.184
(I forp=1,0=1 1.683 1527 1.439 1.381
(1N forp=1,0=05 1.342 1.263 1.220 1.191

(*)The values have been truncated to three decimal points.

It should be noted that for a general non-negative population with mean
¢ > 0 and standard deviation o, the upper bound for E[X;.,,] provided by (2.4) is
better (lower} than that provided by (1.1) iff o/p > (pn(i) — 1)/ciin, i-e., when the
cocflicient of variation of the population df is larger than a specific value depending
only on ¢ and .

The following result shows that the obvious lower bounds given below can not
be improved without using any further assumptions.

THEOREM 2.2. Under the assumptions of Theorem 2.1,

(i) If 1 <i < n, then inf E[X;.,| = 0, where the infimum is taken over F as
in Theorem 2.1{iii).

(il) KX, = p with equality iff P X —p] — 1.
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Proor. (i) Clearly E[X,.,] = 0. Equality never holds because it leads to the
centradiction £/(z) = 1 a.e. in [0, +0¢) and g > 0. This bound is the best possible
since for the special choice

PX =p/el =e=1-P[X =0],
we have B[X| — pp and B[X;.,] — 0 as € — 0. (ii} is obvious.

So far, the assumptions X > 0 and E{X] = px do not suffice alone for the
derivation ol reasonable lower bounds for the expectations of order statistics. It
is, therefore, necessary to impose further conditions on X in order to obtain more
interesting lower (and upper) bounds. A common natural condition which arises
in the most practical situations 1s that the data are bounded above by some (finite}
constant c. This is the subject of the following:

THEOREM 2.3. Suppose that 0 < X <1 and E[X] =y, where 0 < p < 1.
Then,

(1) E[Xnn] <1—(1— p)™ with equality iff PIX =1 = p=1-P[X = 0].

(ii) Fiz i with 1 < { < n. Then, for p < | — p;, the best upper bound for
E[X;.n] is given by (2.4), while, for p > 1 — py we have

(2.7} BlX;n] €1 -G - pu),
and the equality holds iff P X = 1]=p=1—-P[X =0].

Proor. (i) Since F(1) = 1, we have from Holder’s inequality

A F"-(z)dm)un > [ Pz =1

which is equivalent to the desired result. Equality holds iff F(z) = ¢ (constant)
ae. in (0,1) and thus F(z) = 1 — u, 0 < 2 < 1 and the proof is complete. As
regards (ii), the interesting case is for u > 1 — py (for u < 1 — p; the arguments of
‘LI'heorem 2.1 (i) remain the same and (2.4) continnous to hold because the optimal
population in this case already satisfies F'(1) = 1). Suppose then that 1 — pu < pg
and consider the function (sec Moriguti (1953), David (1981), p. 63)

G((L‘): OSTSpl
1-(1-2)g9(p), m<z<l

(note that 1 — G{p1) = {1 — p1)g(pm)). It is not hard to show that for all z € [0, 1],

Geto) -~ {

(2.8) 1-Gz) <1-G.(x),

with equality only for x < p; or & = 1 (see (2.3)). Furthermore, 1 — G (z) is
everywhere differentiable witlh uon-increasing derivative
—g(ﬂ?), 0§$§P1

(- G@)) — { e EIEh
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and thus, | — G.(x) 18 concave (note that p; < (2 — t)/{(n — 1); see Papadatos
(1995) and Moriguti (1953)). Let U be a uniform (0,1) rv. Then we have

B[Xin] = ]ﬂ (1 - G(F(2)))ds
1
< / (1 = Go(F(2)))dz = B[l — Go(F(U))]

13
<1— GEFP(W)] — 1 -G, UO F(:c)da:]
=1-Ge{l - p)=1-G{l—p),

where the first inequality follows from (2.8), the second inequality is an application
of Jensen’s inequality to the concave function 1 — G.(Z) of the rv Z = F{U} and
the last equality holds because 1 — pu < gy,

It is evident that the equality holds if P[X = 1] = p=1—-P[X =0]. On
the other hand, in order to have equality in the first of the preceding inequalities
it is necessary that either F{x) < pp or F(x) = 1 for all x € [0,1]; as for the
second, it is necessary that F(z) = ¢ for those z’s for which F(z) < p; (because
1 — Ge(x) is strictly concave in [0, p;]}). Thus, the optimal solution must be of the
form P[X =U0]=¢=1—-P[X = u/(1 — ¢)] for some ¢ € [0,1 — p], and it is easily
verified that the maximum is attained for ¢ = 1 — jz. This completes the proof.

Now the general case follows immediately.

COROLLARY 2.1. Suppose that 0 < X < a and E[X] = p, where 0 < p < .
Then,
(i) E[Xnn] < a[l—(1—p/a)™] with equality if P|X = o] = p/ao =1-P[X =
0.
(i) Firi with 1 <i <n. Then, for p < (1 — p1)w, the best upper bound for
E[X;..] is given by (2.4), while, for u > (1 — p1)e we have

E[X;n] <a(l - Gl - p/a)),
and the equality holds ifF P(X = ol = pufao=1-P[X =0].

Proor. The result is evident if we apply Theorem 2.3 to ¥ = X/« € [0,1)
(phserve that Vi, = X, /o).

For the lower-bound case the following result holds.
COROCLLARY 2.2. Under the conditions of Corollary 2.1,

(i) E[X1.m] = p™/a™ ! with equality iff P[X = a] = p/a=1-P[X =0].
(ii) Fiz i with 1 < i < n, and lct py = pu(i,n) be the unique solution of

G(z)==zg(x), 0 <z < 1. Then, for p > (1 — pa)a,

ElXin] = a - g(p2){a — u),
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with equality #ff P[X = o] = 1 - pp = 1 ~ P[X = o — (o — p)/pa], and for
H< (1 - 92)0‘1
EXin] > a{l = G(1 = p/a)),

where the equality holds iff PIX = o] = p/a =1 - P[X = 0].

Proor. First note that the equation G(x) = zg{x), 0 < £ < 1, has a unique
root pa > (i — 1}/(n — 1} which satisfies the inequality

Glz) _ Glez)
£ P2

for all z € (0,1), 2 # p2 (see Papadatos (1995), Lemma 2.1 (i}). Furthermore, set
Y =a— X € ]0,a] and observe that Y, 41—y = @ — Xim, i = 1,...,n. Now the
desived result follows by applying Corollary 2.1 to ¥,, 411, and noting that the
corresponding function G*(z) = I;(n + 1 — i,1) satisfies the well-known relation
G*(z) =1— G(1 — z}, and also, the corresponding value p} {associated with G*)
ispf=pin 11l émn)=1 pu(i,n).

It should be noted that letting @ — oo in the above corollaries we get the
results of Theorems 2.1 and 2.2, Note also that if 0 < & < X < « for some b < «,
the lower bound provided by Corollary 2.2 is sharp only when b = 0, and it is very
weak for b > (. This, however, can be treated if we apply this bound to the rv
Y =X —be0,a—b

3. Bounds for the expectation of the difference of two order statistics

In this section we discuss the upper bounds for the difference E[X;., — X;.,],
i < j for the ease of non-negative parent popnlations.  Rounds of thiz form
have been studied in the general case by Moriguti (1953) and Ludwig (1960);
see also David (1981), Arnold and Balakrishnan (1989). The bounds obtained in
the present section also have the advantages described in Section 2.

Fix 1 <4 < j < n and consider the incomplete beta functions

Gi(e) = L{i,n+1-4), Gijuy=~L({jn+1—-j), 0<z<l

Then we have from (2.2) the relation
+oc
(3.1) ELX;WL—_X;H]::jC CL(F(s)) — G,(F(x))ldz.

For j = n, the following theorem holds.

THEOREM 3.1.  Under the assumptions of Theorem 2.1, sup E[Xp.,— X0 =
nw (i = 1,2,...,n — 1), where the supremum is taken over F as in Theorem 2.1

(iii).
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Proor. Obviously,
E{Xﬂ.:n - Xn—l:n] S E[Xn:n - Xi:n] S E[Xn:n] < njy

(the last inequality follows from Theorem 2.1 (ili)). However, for the population
with P[X = 0] =« = 1 = P[X = u/(1 — )], we have E[X] = u for all o € (0,1}
and E[Xpm — Xp-1:n] = na™ - ny as @ — 1. This completes the proof.

For the general case j < n, we nead the following lemma.

LEmMA 3.1, For j < n the function h(z) = (G,(z) — G;(x))/(1 —z), 0 <
x < 1, is unimodal. Furthermore, there cxists a unique point p {(— pli,j;n))

such that h(z) < h{p) for all x # p. This unique mode p belongs to the interval
[i/(n— 1), — 1)/(n - 1)].

ProOOF. By using the well-known relation between the incomplete beta func-
tion and the binomial sums, we have

i—1

Ma) = ("'S")f‘(l — )l = ghs(m)

s=1i

where hy(z) = (7)a*(1 — 2)*' 7. Since hy(x) is unimodal with mode s/{n — 1)
we conclude that the assertion holds when j — i + 1 {in this case p = ¢/{n — 1)}.
If j > i+ 1, observe that h'(z) = ZJ L1’ (z) which is positive if z < i/(n — 1)
and negative if z > (5 — 1}/(n — 1). Thu.s from the continuity of A’ follows that
the equation A'(z) = U has at least one root p in (¢/(n — L1),(j ~ 1)/(n — 1)).
Alternatively, we have

W(z) = 5(Gilx) — Gy(x) + (1 - x){gi(x) — g;(x))]

(1 95)
(where g;(z) = Gi(z), g,(z) = G)(x)) and for x € (124, L=,
[Cilz) - Gi{z) + (1 — 2)(g:i{z) - g;(x))]

“ i1 meE G (- D@ <0

Hence, the function (1 — 2)2h/(z) strictly decreases in the above interval. Since
there exists at least one root of A’ in this interval, it follows that this root must
be unique and therefore b is unimodal with mode p. This completes the proof.

Remark. This point p arises as the unique solution of the equation
Gi(z) — Gi{z) = (1 —2){g;(z) —a(z}), O<z<L

An immediate consequence of Lemma 3.1 is the following
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Cororrary 3.1. Forall z in [0,1],
Gi(z) — Gi(z) < (1 —z)(g;(p) — g:(p)),
with equality iff eitherx = p orz = 1.
We now state the main result of this scetion.

THEOREM 3.2. Fiz 1 <i < j < n. Under the assumptions of Theorem 3.1,
the inegquality

E[Xjn — Xinl < {g;(p) — g:(p))ne

holds true, with equality iff P[X = 0] = p =1 — P[X = p/(1 — p)], where p is as
in. Lemma 3.1.

Proor. By using {2.1), (3.1) and Corollary 3.1 we have
+oc
BlXpn = Xl = [ GU(F(2) = Gy(Fla))lds

00
<L (1= F(2))g5(0) — aelp))dz = (;(0) — g:(p))pe-

From Corollary 3.1, a necessary and sufficient condition for the equality to hold
(c.f. the proof of Theorem 2.1} is either F(z) = p or F(z) = 1 a.e. in [0, +00),

which completes the proof.

The corresponding lower bounds, as in Theorem 2.2, are again trivial, taking

the form

lnfE[XJn - X‘i:ﬂ] = 0:

with equality iff P[X = g = 1 (note that we can not exclude the degenerate
populations even if we assume that the data are bounded above).

An interesting application of the above theorem is given when j =i+ 1. In
this case p = i/{n — 1) and it is easily showed. by using Stirling’s formula, the
following

COROLLARY 3.2. Ifn — o0 and i/n — p, 0 < p < 1, we have the “asymp-
totic” bound
E[X?Zwl-].:n - in] S An(p)ﬂ»,

where A, (p) = #[271‘]}(1 — 2 (a, = b, means here that ay/b, — 1 as

n — 00).

This corollary shows that for large n the expected difference of adjacent order
statistics (from non-negative populations) is at most of order 1/y/n. For example,
if p = 1/2 we have from Corollary 3.2 that for large n

: 2v/2
\/HE[Xi-f—l:n - X’i‘.'n,] § c(z,n),u ~ WM
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