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Abstract. This paper deals with the estimation of the extreme value index
in local extreme value models. We establish local asymptotic normality (LAN)
under certain extreme value alternatives. [t turns out that the central sequence
occurring in the LAN expansion of the likelihoud provess is up o a rescaling
procedure the Hill estimator. The central sequence plays a crucial role for the
construction of asymptotic optimal statistical procedures. In particular, the
Hill estimator is asymptotically minimax.
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1. Introduction

Problems in extreme value statistics are mainly concerned with the upper
tail of a distribution function, which belongs to some (parametric or semipara-
metric) class of probability measures. A common view is that only large observa-
tions contain the relevant statistical information on the upper tail. One possibil-
ity to define observations to be large is to consider the k-largest order statistics
Xn—k+1n,s--+, Xnin, where Xy, <--- < X,,.,, denote the pertaining order statis-
tics of the canonical projections X; : R™ — R on the j-th coordinate, j = 1,..., n.

Since one has to extrapolate outside the range of the observations, regularity
conditions for the upper tail of the distribution have to be made. A standard
assumption in extreme value statistics is that the underlying and unknown distri-
bution function F belongs to the (weak) domain of attraction of an extreme value

distribution (EVD) G, i.e.
(1.1) Plag (Xnm + by) < 2} = F™apz + bp) —~ G(z), zeR

n

for some normalizing constants a, > 0, b, € R. Note that in our notation we
do not distinguish between a distribution function and its pertaining distribution.
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Up to a location and scale parameter, G has to be one of the [ollowing FVDs

exp(—z~*8), >0, if #>0 “Fréchet”
(12)  Gg(z) = exp(—(-z)~ I/ﬂ r<0, if B<0 “Weibull”
exp(—e™*), =zcR, if =0 “Gumbel”

(see e.g. Galambos (1987)). Condition (1.1) is a fairly weak one. Most common
text book distributions satisfy this condition.

A major problem in extreine value stalistics is Lo estimate Lhe shape parameter
3 (also called extreme value index or tail index for 8 > 0}. There is a rich literature
about the estimation of 8 based on intermediate and extreme order statistics
Xp—ko+ins- -3 Xnm, 1.6, k, — 00 and k,/n — 0 as n — oo, see e.g. Hill (1975},
Pickands (1975), Dekkers et al. (1989), among many others.

Recently, this estimation problem has been treated in a local sct-up in the
articles of Falk {1995¢,b) and Wei (1995). This means, roughly speaking, the study
of the distributions of the rescaled deviations 6! (ﬁn —(Bo+36,)) under By + V6,
9 € R, where (8.). is a sequence of estimators, S is a fixed parameter, and
(bn)n is a suitable chosen normalizing sequence tending to zero. The quantity ¥
is usually called the “local parameter”. The local approach, which was originally
suggested by LeCam (1953), has turned out to he a very general and fruitful
concept in asymptotic statistics. The most important case, which is applicable to
many situations, is the so called local asymptotic normality (LAN)-case introduced
by LeCam (1960). In the LAN case, asymptotically optimal statistical procedures
are well known. For certain extreme value models the LAN situation holds as it
was shown by the papers mentioned above. We also establish LAN in this paper
but propuse different models. For the readers’ convenience, the notation LAN is
recalled at the end of this section.

The local approach in extreme value statistics leads to interesting and partially
unexpected results. For example, consider the Fareto distribution

Wﬁ(z):l_x—_l/ﬁ: 3:21) ﬂ>01

which belongs to the Fréchet domain of attraction. Then, asymptotically, the
maximum likelihood estimator based on the k,-largest order statistics is given by

(1.3) 38, = 210 Knjrtn

ANn—Kn+Lint

which is the Hill estimator (see e.g. Reiss (1989), Section 9.5). Using conditional
techniques, it is readily seen that

(ko (32 L = Bo) [ WEY — N(0,35)  weakly.

By £(X | P) we denote the distribution of a random element X under a probability

mecoaure P.
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In the class of Pareto distributions (Wjs}s..q, the Hill estimator is outper-
formed by the simple estimator

3 L log( Xk, +1m)
o Proke = = log(nfks)

since
L(Vkn log(n/kn) (B, — Bo) | WE) — N(0,83)  weakly.

This follows at once from asvmptotic normality results of intermediate order statis-
tics (Falk (1989), Theorem 2.1}. But more can be said. If one chooses the local
extreme value alternatives 8,(¥) := fo + ¥/(vky log(n/k,)), then LAN can be
shown with the cantral sequence A, ;. (Falk (19958), Thearera 2.3). This shows
that Bn,kn is not only asymptotically normal but asymptotically efficient in the
LAN-sense. In particular, the k,-largest order statistic contains asymptotically all
the relevant information on the tail index 3, i.e. is asymptotically sufficient (sce
Strasser (1985), Theorem 81.4, cf. with Falk (19955), Theorem 2.4). Hence, the
Hill estimator is not efficient even in the class of Pareto distributions (the opposite
couclusion from Smith (1987), p. 1176).

On the other hand, Theorem 3.2 in Falk (19955) shows that the central se-
quence depends again only on the k,-largest order statistic if a scale parameter ig
added. This can onty hold it the local model in consideration leads asymptotically
to a degenerate situation (see Remark 4 in this paper). We overcome this lack
by choosing different local extreme value alternatives (thereby treating the scale
parameter also as a nuisance parameter).

In the remainder of this section we recall the notion of LAN, thereby introduc-
ing some further notations used in this work. For details the reader is referred to
LeCam {1986), LeCam and Yang (1990), and Strasser (1985). Denote by N{y,T)
the normal distribution with expectation p € R* and positive definite covariance
matrix I'. By (-, -)r we denote the inner product on R* defined by (s, tr = s'T%,
s,t € R¥. The norm induced by {-,-)p is denoted by || |lr. The statistical ex-
periment (R*, B* {N(9,I"1) : ¢ € R*}) is called Gaussian shift on (R¥, (-, )p).
Recall that (by definition) N(0,T~1) is just the standard normal distribution on
(Rka ('1 )F)

Consider a statistical experiment £ = (2, A,{Py : ¥ € ©}), where © is an
open subset of R*. In the iid set-up we embed [ into a sequence of localized
experiments Ey, 5, = (Q", A", {P§ 5, : t € Ty(d)}) with localization point
¥y € O, where 6, | 0 is a rescaling rate and T, (dn) = {t € R : 9y + 6.t € e}.
Note that T, (9p) ~— R* as n — co. Recall that the rescaling procedure is necessary
in order to get non-degenerate limit experiments. The sequence {Ey 3, )+ is called
local asymptotic normal {(in ¥4) if it converges weakly to a Gaussian shift, equipped
with a suitable inner product which is allowed to depend on ¥g. To be more precise,
we have local asymptotic normality (LAN) of (E, g, )n if the likelihood ratio with
base ¥y admits the asymptotic expansion

APy, .t Loy
Zhestet —exp ({6 Zusohrion — i Toms, ), tER,
0
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where Z,, 5, : 1" — R satisfies
L{Zn00 | P5y) —nroo N(O,T(d)7").

The notation op(1) indicates a stochastic remainder term which converges to zero
in probability as n — co. The sequence (Z,; 4, ) plays a crucial role in testing and
cstimation theory and is called central sequence. Tor the sake of completeness we
remark that the quadratic term in the LAN expansion can also be random which
leads to the so called LAMN (locally asymptotically mixed normal)-case, see e.g.
Jeganathan (1982), and that Gaussian shifts can be defined on infinite dimensional
Hilbert spaces (i.e. tangent spaces} which becomes important in nonparametric
statistics, see Pfanzagl and Wefelmeyer (1982).

The paper is organized as follows. In Section 2 we specity our local models
and present the results. In Section 3 we discuss some statistical consequences and
compare the results with related papers known in the literature. The proofs are
postponed to Section 4.

2. Local extreme value models

In the following we exclude the Gumbel case (# = 0) in our model but al-
low, in contrast to Hill, also negative values of the shape parameter. Moreover,
we restrict ourselves to certain (semiparametric) classes of distribution functions,
which belong to the domain of attraction of an EVD (1.2). To be more precise: We
consider d-neighborhoods of generalized Pareto distributions (GPDs) Wy, given by

_ .—L1/B 1 ”
R TS
1 (—=2) , «€[-1,00 B<0 “Uniform cte.”

Denote by w(F) := sup{z € R : F(z) < 1} € (—o00,0cc| the right endpoint of
a distribution function ¥ and w; the Lebesgue density of Wj3. We say that F
belongs to a é-neighborhood of a GPD for some fixed constants § > 0, D > 0, iff
w(F) = w(Wp) for some 8 and F is differentiable with derivative f on (xq,w(F))
for some xy = zy{F, f} < w(F) such that

flz)

wa{z)

(briefly F' € Qs p(Wp)). Note that w(Wjs) = oo for 8 > 0 and w{Wj3) = 0 for
A < 0. In partienlar, the FVDg (1.2) belong to a S-neighborhood for § = 1. The
importance of the GPDs is explained by the fact, that F belongs to the domain of
attraction of an EVD if, and only if, the upper tail of /' can be approximated in a
suitable sense by the upper tail of o GPD {(Balkema and de Haan (1974), Pickands
{1975)). For a review of the basic role played by §-neighborhoods of GPDs in
extreme value statistics we refer to Chapter 2 of Falk et al. (1994).

Let F be a distribution function, whose upper tail belongs to some parametric
family, that is, we assume that

F(x) =Fy(z), x>zp(8), 8B40

— 1‘ < D1 - Wy(z))b, z € (z0,w(Wp))
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for some unknown point zq(3), where (Fs}s is a paramectric family of distribution
functions. A natural choice are the GPD (2.1, i.e.

(2.2} Fﬁ(ﬂj) - T/Vﬁ(.]}), x> wo(H), B#0
or, more generally,
(2.3) Fg € Qs p(Ws).

Introducing a scale parameter o > 0 our starting model is

Fgo(z) = Fg(a/o), x> axe(B)

with Fj3 as in (2.2) or (2.3).

The asymptotic setting requires a rescaling procedure, i.e. local alternatives,
in order to get non-degenerate limit experiments. Considering first the scale
parameter as a nuisance parameter, we choose the following local alternatives

(Bo # 0,9 # 0)

B (9) = Bo + Ok, 12

2.4

where (k) is any sequence of positive integers such that k, — oo and k,/n — 0
as n — 00. We remark that in certain threshold models the shape and scale
alternatives (2.4) are independent in the sensc that they lead to a diagonal Fisher
information matrix (for details see Marohn (1995)). Our local model is then the
statistical experiment

En,k-,.,,ﬂg = (Rkn;Bkn; {E((XTAA—‘FCV,,+1:’)‘E,1 EECIPY Xn:n) l an(q_'))7(]n('0)) : ?9 = @n.})J

where

{PeR:G,(0) >0} if Fo>0
{{ﬁeR:ﬁn(ﬁ)<O} i By <0
[ (~5ok?, 0) it By>0
B {(—oo, —Bokp?) if By <0,

As in Falk (1995b) we allow that the point 2¢(5,(¥)) tends to the upper
endpoint w{Wp,) as n increases, but not too fast, since we require

(2.5) limsup(:no(ﬂrl(19)))”ﬁf‘%E <1, JeR\{0}.

n—0o

Note that nothing is said on the convergence of o, (¥). We have 0, (¢) — oy as
n — oo if, and only if, &y, 1/ logn — 0 as n — ~o. But the convergence of o, (9) is
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actually not needed to establish LAN, as a careful study of the proof of Theorem
2.1 shows.

Before we treat d-neighborhoods we consider the model {2.2), where the upper
tail of Fj3 coincides with the tail of a GPD. The following result shows that the
central sequence is up to a rescaling procedure just the Hill estimator.

THEOREM 2.1. (LAN of {E.k, g,)n) Consider the model (2.2). Suppose
that the sequence (kn), satisfies condition (2.5). Then the lkelihood ratio with
base (8o, 00) admits the expansion

dﬁ((Xn—kn+1:n: s :Xn:n) | Fﬂ;l(ﬂ)‘gn(ﬂ))
dﬁ((Xnﬁkn+1:na e an:n) ! FE;O’UO)

1
—ex0 (16, Zasio)sy 2 — 3101350 + )

with the central sequence
Zn,kn,ﬁo(Xn—kn+1:n: . aXn:n) v kn(ﬁgkn - 50);

where Af k. s the Il estimator (1.3} and the remainder term ryn salisfies for
every compact set K CR ande > 0

m L((Xn—kt1ny s Xnn) | Fiy o) {sup Irn (9} > s} = 0.
deK

T— X0

Observe that the central sequence is invariant under scale transformations.
The Theorem states the weak convergence of F, ;. g, to the Gaussian shift on
R, {, -)362). Since the remainder term s asymptotically vanishing uniforuly oo
compact sets, the sequence {E, 1, a,)n Is equicontinuous {Strasser (1985), Theo-
rem 80.13).

Remark 1. From the discussion given in the previous section we already
know that in a pure shape parameter model, i.e. the scale parameter is dropped,
the Hill estimator is no longer the central sequence which depends only on the
kp-largest order statistic (Falk (1995b), Theorem 2.3). In this case the rate of
convergence of the local shape alternatives must be of a higher order than 1/vk,,
which is intuitively clear. If one adds a scale parameter as a nuisance parameter
and cancel out the arising scale effects, the Hill estimator becomes relevant.

Remark 2. Wei (1995) considered the conditional distribution of the k,
largest order statistics Xn_g, +1:n,-- -, Xnin given X,k ., where the k, largest
order statistics are distributed according to the local alternatives 3y + ¢/+/k,,, but
Xk, n itself follows the hypothesis F3. Thereby, the underlying distribution
function w.r.t. 3y belongs to the domain of attraction of the Fréchet distribution.
Using this local model LAN was shown and efficiency of the proposed conditional
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maximum likclihood catimator was verified. Wei motivated her conditional view
by the fact that LAN cannot hold for the joint distribution of the k,-largest order
statistics under Lo-differentiability, since the score function w.r.t. the joint dis-
tribution of the k,-largest order statistics normalized by 1/v/%, is unbounded in
probability and tends therefore not a normal law. But extending the model by
a scale parameter o, i.e. making the model less informative, it is possible to get
LAN with the rate 1/v/k, as 'L'hecrem 2.1 shows.

Next we show that Theorem 2.1 remains true for the model (2.3), that is, the
condition that the upper tail of a distribution function F' coincides with the upper
tail of a GPD (2.1) is replaced by the condition that it is in a §-neighborhood of
some GPD, provided (k) tends to infinity sufficiently slow.

COROLLARY 2.1. Suppose that {Fa)a is a parametric fomily such that Fg €

Qs p(W3) and that the sequence of positive integers (k. )n sotisfies the conditions
(2.5) and
; . (1 & _
nlgr;o kn(kn/n)° = 0.

Then the LAN expansion of Theorem 2.1 holds.

If the scale parameter is no longer considered to be a nuisance parameter we
choose the shape alternatives

B (9) = Bo + 0k 12

as before and the curves of scale alternatives

—1ya Bn ()
_ tha !
(2.6) an(ﬁ,g) = on(ﬁ) (1 + o0 )

= oo(n/kn)? P (1 + £k, V2 [(Boog) )Pt

with o, () as in (2.4), where (k,), i3 any sequence of integers such that k, —
>, kn/n — 0, and ky 172 logn — 0 as n tends to infinity. Note that the local
parametrization of the scale parameter depends on the shape alternatives and that
on(9,£) — oq as the sample size n increases, i.e. o.(9,£) is a local alternative.

Again, we allow the sequence x4(8,(¥)) to tend to w(Wa,), but not too fast,
since we require again that condition (2.5} holds. Our local model is then

Ep k.. Bo.00
= (R*, BE { LKkt tins - Xoin) | By o))+ (9,6 € O X By}
with ©,, as before and
En = {¢ CR: 1+ &kt 2/ (Boou) > 0}
(—Boookt?,00), i By>0
- { ( o0, Buoukl?), if By <0.
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The next theorem shows, that the sequence (E, i, gy,m )n coOnverges weakly
to the two-dimensional Gaussian shift on (R?, {-,-r) with covariance matrix

—2
T = T{fo, 00} = (3?) 60_20052) .

In order not to overload the present paper we omit the proof. It uses similar
arguments as given in the proof of Theorem 2.1 (for details see Marohn (1995}).
Note that the asymptotic independence of the central sequences 2y, and Z; ,
given below is an easy consequence of the fact that the spacings of an ordered
iid standard exponential sample are independent (see e.g. Reiss (1989), Theorem

1.6.1).

THEOREM 2.2. (LAN of (Fp k., go.c0)n) Consider the model (2.2) and sup-
pose that condition (2.5) is satisfied. Then the likelihood ratio with base (5o, o)
admits the expansion

dE((anknJrl:n: ... :Xn:n) | an(ﬂ)-o'n(ﬁlﬁ))
dc((Xnﬁkn+1:na e ;Xn:n ‘ Fz )

Ba.oo

= exp ({0.6)7 (Zu.m, 2} = 30607+ a0, 6))

with the central sequence
Zl,n(-Xnvk:nﬁvl:n: e an:n) =V kn(Bfkn - 60)

k) ;
ZQ,n(Xn—kn+l:n) =V kn ((}f‘) (‘Xndnle:n; - UU))

where the remainder term (9, &) satisfies for every compact set K C R? and
>0

lim £((Xn"k“+lm" e ’X":n) ‘ FE;;)‘O'(I) { sup ‘Tﬂ('ﬁag)‘ > E} =0
(9.6 ek

(2 g )
Ll

If, in addition, (kn)n satisfies lim, o kn{kn/n)° = 0 then the LAN expansion
remains true for -neighborhoods {2.3).

Note that the first component of the central sequence is the central Z, ¢, a,
sequence of Theorem 2.1.

Remark 3. If the chape paramctor 3y is known, i.e. ¢ — 0, then we get a
scale model with the local scale alternatives ¢,(0,£) and central sequence Z3 .
In this case, the scale alternatives are of the order O(1/vk,). As in the pure
shape parameter model the central sequence depends only on the by -largest order
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statistic (see Remark 1), This shows that these two parameters —shape and scale—
act asymptotically very closely. If £ = 0, then 6,(9,£) = o,(9) and we are in
the situation of Theorem 2.1, where the scale parameter is treated as a nuisance
parameter.

Remark 4. Tn Falk (1995h) the local alternatives

Bu(9) == Bo — 980k %/ log(n/kn)
Fnl(€) =1k /By

were proposcd (where in our notation F; /3.7 18 considered instead of Fg ). Using
these parametrizations the expansion of the log-likelihood ratio

. 1 .
(0 + &) Zap — 5(19 + €)%+ ory |

with Z,,, as above {with ¢y — 1} was established, which shows the weak con
vergence to a Gaussian experiment G = (R, B, {N((9,£),1) : (#,£) € R*})
with ¥(9,£) = 9 + £ (in the sense of Definition 2.3 of Milbrodt and Strasser
(1985)). This is not a Gaussiau shift. The covariance of the Gaussian process

X{9,8) = +&Z — (¥ +&)?/2 with Z N(0, 1)-distributed is

Cov(X (D1, €)X (92, €2)) — (9 + £1)(9 + &)
~@neAn g 4= (] 1),

which is bilinear, no doubt, but the matrix A is not positive definite.
In particular, we have

ilﬁ((XnﬂknJrl:n; .. ;Xn:n) | F’pn(ﬂ]_&,,(_—ﬁ_)) - E((X'n,“kn+1:na LR Xn:n) | FE,,;{)“
— {0

as > o0, where ||P Q| :=supy 4 |[P(A) — Q(A4)| denotes the variational dis-
tance between probability measures P and @ defined on some measurable space
(€2, 4). Consequently, differences of the shape parameter are completely can-
celled oul by the scale transformation &, (—%). The parametrization of the scale
parameter does not depend on the parametrization of the shape parameter. The-
orem 2.2 shows that the scale effects dominate in the local model proposed by
Falk (19958). The two-dimensional starting problem is approximated by an one-
dimensional limit experiment. Note that the rate of conversence of the shape
alternatives /3, (1) is too high compared with 3. {9).
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3. Discussion

The Hill estimator has been extensively studied in the literature. Asymp-
totic consistency results are given e.g. in Mason (1982), Deheuvels ef al. (1988),
and de Haan (1994). An asymptotic normality result was first shown by Hall
(1982). Refinements can he found in Davis and Resnick {1984), Hall and Welsh
(1984, 1985), Csorgd and Mason (1985), Csorgd et ol. (1985), Hiusler and Teugels
(1985), Beirlant and Teugels (1987, 1989), de Haan (1994) among others. Asymp-
totic behawviour of the Hill estimator based on exceedances over certain thresholds
instead of order statistics can be found e.g. in Goldie and Smith (1987) and Smith
(1987).

Suwe of these papers are addressed Lo Lhe oplimal chivice of &y, . Iu the present
(unbiased) situation it is desirable to choose k, as large as possible. But the
condition ky, (k./n)° — 0, n — oo, in Corollary 2.1 rules out an optimal choice.
In practice one should take k, = cn®/(*® for some appropriate chosen constant
¢ > (). This is a general feature: If an optimal rate &} exists (in a certain sense)
one has a limiting centered normal distribution whenever k, = o(k}) and a non-
centered one (but usually with a smaller variance) for k;, (for a further discussion
see Csorgd ef al. (1987)). It was shown by Hall (1982} that the optimal rate
is given by kr = n?%/(28+1) Csorgd et al. (1985) generalizes the Hill estimator.
Their estimate achieves the optimal rate as the Hill estimator but has better
asymptotic performance by minimizing the mean square error. As long as optimal
rates are concerncd, optimality is focussed with the bias-variance trade-off. In
this paper optimality means having an optimal property within a certain class
of (asymptotically unbiased) estimators. Thereby, for any reasonable comparison
estimators must be based on the same number of order statistics.

In view of the importance of the Hill estimator, we will now discuss some
statistical consequences in estimation and testing theory in detail and tackle the
problem of joint estimation of the shape and scale parameter. Throughout we
assume that (k,)r satisfies the conditions of the previous section.

LAN-efficiency of the Hill estimator
(a) Fisher efficiency
The results of Section 2 show not only the asymptotic normality of the Hill

estimator 2I7, | i.e.

LT (BE . — Bo) | FlL 0y) — N(0,82)

weakly, but also the asymptotic efficiency in the sense of Fisher. That the Hill
estimator is also consistent for < 0 should not surprise too much. If X; is Wg-

distributed for 3 < 0 then Z; := —1/X; is W_z-distributed and ﬁgkn(Zn_anm,

R/ = —ij{kn (X kdlins .. -» Xn:n). Before we say some words on the defi-
nition of Fisher’s efficiency, we remark that

LVEn By, = B (D) | TF1y.0.08)) — N(0,53)
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weakly, which is a well known consequence of LeCam’s First Lemma (see e.g.
LeCam and Yang (1990), Theorem 1, Chapter 3). Note that the limit distribution
is independent of the local parameter .

Agymptotic efficiency in the sense of Fisher means that the variance of the
weak limit distribution of the rescaled estimation errors vk, (Y, ~ 8o} attains
the lower bound of the variance 42, 3o # 0, within the class of regular estimators
based on the k,-largest order statistics. A sequence of estimators based on the
kn-largest order statistics T), . = Tk, (Kb 4105 - - - » Xom ) 18 called regular, if
the limit distribution of the rescaled estimation errors vk, (T, — Bn(9)) under
an(ﬂ),an(ﬂ) is independent of 9, i.e.

L(Vka(Tok, — B | F () 0 09) = Qo

weakly. In this case a probability measure Ra, on (R, B) exists such that

Q,ﬁu - N(D: }86?} #* Rﬁm

where * denotes the convolution. This is the asymptotic Convolution Theorem due
to Héjek (1970), cf. Strasser (1985), Remark 83.14 (see also Section 8.4 of Pfanzagl
{1994} for an extensive discussion). Ilence, the lower bound of the variauce in the
limit distribution of a regular sequence of estimators, based on the k,,-largest order
statistics, is (3.

"This lower bound is not achieved by other estimators known in the literature,
e.g. the moment estimator (Dekkers et al. (1989)), the Pickands estimator (1975)
and its refinements (Drees (1995), Falk (1994a)). This shows the superior of the
Hill estimator for the model in consideration. But at least two points should be
stressed if one compares these estimators simply by means of the variances of their
limit distributions.

First, in our model we explicitely assume that 8 # 0, an assumption which
is not made for the other competitive estimators which have a limiting centered
normal distribution also under 8 = 0, where the von Mises parametrization of
the class of EVD (1.2) is used. But LAN does not held for 8y # 0 and 8, =
0 simultaneously (see Marohn (1995), Theorem 3.2.1). This can be seen as a
consequence of the fact that G = 0 is some kind of singnlarity pnint in the von
Mises parametrization.

Second, we assume that the location parameter is known. The Hill estimator
is not location invariant in contrast to the other ones. At the present we do not
know whether LAN remains to be true if a location parameter u is added (as a
nuisance parameter}. But if LAN holds, then Theorem 3.3 in Falk (1995b) (see
also Marohn (1995), Theorem 5.1.1) suggests that the central sequence is no longer
given by the Hill estimator. If p is known, then the Hill estimator occurring in
the LAN-expansion has to be replaced by

En—1

kn1—1 D log
J

H— Xn—j+l:n
H— Xn—kn-f-l.n

—1
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For # < 0 an unknown location parameter means that the upper endpoint of the
distribution function—which is equal to g—is not known. In this case, an apparent
idea is to replace u by the largest observation X,,., which yields the estimator

M1ZIO 7X—j+1n.

‘ﬂn_X’n. kn | 1in

This estimator was proposed by Falk {1995¢) if 3 < ~1/2 is known.

(b) Wolfowitz efficiency

The Hill estimator 37 x,, is also asymptotically efficient in the sense of Wol-
fowitz (1965). He suggeste& to compare the gquality of estimators by the degree of
their “concentration” about the true value of the parameter, that means, covering
probabilities come up in the Wolfowitz definition of efliciency.

Let Tox. = Tnk (Xn-k.+1m,- -, Xnn) be any regular sequence of cstima-
tors. For the bounded loss functions

L.=1-1.., s >0,

we get covering probabilities

F2 o (Vo (T — Bo) € [s,s]} =1 - ] L (VT — Bo))AEG, ..

By Hijek’s Convolution Theorem, I, is continuous @g,-almost everywhere and
therefore we have weak convergence

Jim L (Vea(To g, — Bo))dF, 5, = /zst(o,ﬁg)*Rﬁo.

Since I, is subconvex (i.e. I;(z) = l.(~x), {ls < a} is convex, a > 0) the Lemma
of Anderson (see e.g. Strasser (1985), Lemma 38.21) states that

flst(O,ﬁg) * Rg, > /lSdN(O,ﬁS).

Consequently, we arrive at the asymptotic upper bound
Tim B o (Vo (T, — Bo) € (0,6} <1 - /zst(o, 82)

which is attained by (Bf &, Jn. Hence, (3H ‘%, ) is also optimal in the sense of
maximizing covering pI‘Obabllltleb (cf. Reiss (1989) Section 9.3). For a further
discussion of these two efficiency concepts the reader is referred to the book by
Ibragimov and Has’minskii (1981), Section 11 of Chapter L

(c) Minimaz property

In extension to {b) the central sequence (i.e. the Hill estimator) is asymp-
totically minimax. Supposc that ! is a bounded and continuous loss function. If
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’m'n,’kn = Mn!kn (Xpkntlims - - s Xpp) Is any sequence of estimates (not necessarily

unbiased and normal distributed) for the deviations ¥ = v/kn (8,9} — Bp), then

lim inf Sup/l(fﬁ— ok )dFﬁn ()0 [ldN (0,88

nTe0 ek

for compact sets K C R. This is a special case of Hajek-LeCam'’s asymptotic mini-
max bound for risk functions. Since (E, ¢, g,)n I8 equicontinuous, the asymptotic
lower bound is achieved by the central sequence Z,, i 3,, i.e.

lim sup fl(t? — kn(ﬁfﬁkﬂ ~ BoNAER (9).an(v) = [ldN(O,ﬁg).

N—00 g i

A similar result holds within the class of asymptotically median unbiased esti-
mators {Pfanzagl (1970), of. Strasser {1985), Section 83). For unbounded and
discontinuous loss functions see the discussion 83.7 given in Strasser (1985).

Application in testing theory

Suppose that Fy € Qs p(Wy) and that one is interested in the two sided
testing problem 8 = Gy against 7 # 8o, considering the scale parameter as a
nuisance parameter. Based on the kn-largest observations, we cmbed this testing
problem into the asymptotic testing problem

E((Xn—k:n+]:?as e n n) | ?n,rm)
against{ﬁ(( nekntlins s Xnin) | FB oy ouioy) - 0 € On \ {0}

Denote by u, = ®~(a) the a-quantile of the standard normal distribution func-
tion ®. The asymptotically optimal test of level « is then given by

. { 1, if |Vka(8 f = Bo)| > |Bolui—as
" 0, if |Vk (@L — Bo)l < |Balui—ay2

i.e. (o )n attains asymptotically the upper bound for power functions

. * 19 '19
nh_}HélO Eg (9),0,0009n =P (”‘a/2 + m) +e (uu/g - |JB()|)

(see e.g. Strasser (1985), Section 82). Note that (—oo,—ifo|u1_a2) U
(18ol11 —n /2, 00) I8 an asymptotic critical region for . The proposed test ),
is in addition a level-a-test, if u)_, /5 is replaced by the (1 — «/2)-quantile of the
{(exact) distribution of the test statistic \/E:(ﬁifkn/ 8y — 1). For example, in the
case of GPDs the distribution of the test statistic is of gamma type (see the Proof

of Theorem 2.1).
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Joint estimation of (3,a)
Next we want to discuss the problem of joint estimation of (3, o) in the shape-
scale model. Suppose that 3y is known (i.e. 9 = 0). Then the efficient estimator

of o
R k., Bo
On.fBo - n an—an:n[

depends on the shape parameter. Next, we want to replace 3o by an estima-
tor 3, in order to get an asymptotically efficient estimator (ﬁf kO ) for the

shape-scale parameter. First, we consider an estimator [97; which depends only on
the k,-largest order statistic X, _x_41.n, since in this case the estimator érn, G 18
asymptotically independent of the Hill estimator. The only reasonable choice is
Brn = log | Xn_k,+12)/ log(n/k,) (cf. (1.4}), which is a consistent estimator. But
we have 5, 4, = 1. Of course, such a result is not swrprising, since the k,-largest
order statistic cannot estimate the gcale and shape parameter simultanecusly in a
satisfactory way. So we have to take into account also the larger order statistics
in order to get an asymptotically efficient estimator of the shape-scale param-
eter, if at all. We already know that the whole information on the unknown
shape parameter is (asymptotically) contained in the k,-largest order statistics
Xn-k 41y --->Ann- Recall that a central sequence is asymptotically sufficient,

see Strasser (1985), Section 81. But replacing Fo by the Hill estimator B;’f b

Py

the estimator (ﬁﬁf ko> O g ) is mot asymptotically efficient for (o, oo), since its
limit distribution is degen;_w;ate_ First, obgserve that the difference o, (9, £) — oy
is of order O(ky, "/*log(n/k,)). Straightforward calculations show the degeneracy
property

1/2

____”____(&n P
og(n/kn) ™ALk,

(1).

— a0} = 0Zin torg
The considerations above indicate that there exists no asymptotically efficient
estimator for (3, 0p) independent of (3o, q).

A degeneracy property in extreme value statistics was also recognized by Falk
(1994b). It was shown that a suitable data transformation reduces the estimation
of extreme quantiles of the unknown distribution function {which is closely related
to estimation of the shape parameter) to the problem of estimating the location
and scale parameter of a certain exponential family. 'I'he proposed estimators are
close to our ones. (The reader should be aware that “degeneracy property” means
here that the asymptotic distribution of the joint estimators in consideration is
degenerate, while Remark 5 is concerned with a degenerate limit model.)

Hopfner and Jacod (1994) showed a degeneracy property of the maximum
likelihood estimator (é..&.) (see their Corollary 2.1), where the local model is
given by a Poisson point process with intensity

Odgx_(l"—a)l((},o(}) (t)l(o,m)(sr)d?‘da?, o> 01 5 = 03

which is at stage n observed in a certain window D,,. Under suitable chosen local
alternatives {sunilar tv (2.06}) and growing conditions on D, they showed LAN.
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We remark that the intensity above dues nol arise from a scale family of Pareto
distributions.
It was recognized by Hopfner (1997) that the degeneracy property of the

estimator ( ,‘fk Gt ) turns out to be an optimality property with respect

to certain sequences of contiguous alternatives. We consider the one-dimensional
local model at (5n, 00) with the alternatives 3,.(9) and 6,(#,0) = a,(1%). The
following assertion is a consequence of LeCam’s Third Lemma (LeCam (1986},
Chapter 6, Proposition 5) and Hijek’s Convolution Theorem (Héjek (1970)), for
defails we refer to Hopiner (1997).

Optimality property of (ffn,kn, a,, BE. ):

(i) For ¥ € R the estimator (Bf k.20, am ) satisfies

£ (VR 8000, G, 7O | B0

— L(Z,Z),

where Z is N(0, 33)-distributed.
(i) If (3,,6,) is any estimator of {3,0) such that for ¢ ¢ R

L ((\/E(Bn — Ba()), w_‘/k—'”__(&n — crn(i?))) | FS (9)0m ) - LU, V),

Tq ]ng(n/kn}
where L(U, V) is independent of 9, then Var(U) > 32, Var(V) > 32, and one has
LU) = L{V) = N(0,33) if, and only if, L(U, V) is degenerate: L(U,V) = L(Z, Z).

Concluding remark. Hill’s estimator becomes relevant, for estimating the ex-
treme value index if scale effects but no location effects occur. A characteristic
and nice property of the Hill estimator is to be scale invariant—a property which
is meaningless if no scale alternatives are involved in the model. Hence, the results
of this paper clarify the role of this popular estimator.

4. Proofs

PROOF OF THEOREM 2.1. Define Y_ji1. = 8y log(|Xn ji1ml/o0), 1 <
7 <n. Then

(4.1) 2 (Yo ko sim — 108(n/kn)) —n oo N(0,1)
weakly under F3 5, which, in turn, implies Y, _¢, 41:n/log(n/k,) —noo 1 in
Fg o0 probablhty The asymptotic normality of the intermediate order statistic
{4.1) follows at. once from Theorem 21 in Falk (1089). Note that 87 ! log(|X|/c0)
is standard exponential if X is distributed according to Wp, -

Denote by wg, the density of Ws,. From the density formula of order
statistics (see e.g. (1.1.8) in Reiss (1089)) we obtain

10 dﬁ((.Xn—k‘n-l—l:ﬂ: - 'n,n) | F n 19) Gn(‘ﬂ))( )
g dﬁ((Xn,-k,,+1!ﬂ>"'sX"7n) FE;,UU) l’-."ykn

k
~. W, (9).0,(9) (¥j) Wi, (9).0n(0) (1)
= lo +{n—-k)lo
Z 8 Way, o0 (yy) ( ﬂ) & Wﬁo,dn (yl )
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provided ogzg(F, () < 41 < -+ < yg,. But the probability of this event con-

verges to one
FE),D‘lJ{Xn"'k?L+1:n 2 Uomo(ﬁn(19))} ""nw—mo 1

which is an easy consequence of (2.5} and {4.1). In the following we assume that
Xﬂgkn+1:n > Jo.rg(ﬁn(’bq)) We have

Wi, (0),0m (0} Xn—knt1m) — Wago0(Xa-ka+1:n)
Wﬂu Gc)(Xn ko, +1:n)
exXp(—Yn—_k,+1:n)
1-— exp( Yn—kn-i—l:n)

oo (0 af) e g e )

_ exp(*Yn—k"—i—I:n)
1-— eXp(_Yn—kn+l:n)

x {lexp (ﬁnl(ﬁ)ﬂk V(Y e it — log(n/kn)))}

_1_ exp(_(Yn—kn—‘r—l:n - ]-Og(n/kn)))
nl—( n/n) exp(—(Yn—k, +1:n — log(n/k,)))

x{ (0 )19»21/2(}’” ~katlin — l0g(n/kn}) + Opp au(k;I)}
= Orz, (07 |

by (4.1). Hence, by Taylor expansion, we conclude that

Wi, (8).0..06) (Xn—b,+1:n)
W.BUaUU(Xn_kn+1:n)
i

= ﬁﬁn('ﬁ) PR (Y, g i1m — log{n/k,)) + OFF .

{4.2) (n— k,)log

(1).

Furthermore,

k
- w o Xn_ R
(43) Z}-Og B (9}, n(ﬂ)( n—j+! )

Wo,,e0 (‘Xr'i‘b“‘_j*‘l . n,)

K 1/3.(9)
o — " ﬁﬂ Jn(ﬂ)
E lo { ‘Xn i+ nl/UO)I/’B HE (ﬂ)m ( ay ) }

.”l:

kn
6n(79) 1 Jn(ﬁ) ﬁn(ﬁ)
Z{ ﬁnw Voogern + gy o8 0T BT }

—

=1

T,

kn
Z{ﬁ (r&)'&k‘ 1/ 2( n—j+ln }-Og(n/kn))

=1

s,

N e %ﬁ?ﬁ;?k;l + O(k;?'/?)}.
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Adding (4.2) and (4.3) we arrive al Lhe expausion

ﬁ (0}19]% }'/22 n--j+ln AY?‘L-—kn+l:n - 1)

1 1 1
+z9k}/2( ——)+§e92ﬁ0 +ops (1)

ﬁn (19) 60 Anon

- '19)6[) ik 1/2 Z n—j+l:n — Yn—-k‘n—f-l:n - 1)
Jj=1

_ 49230

Hence, the central sequence is given by

(1).

ﬁo 70

IBO 1/2 Z oL 108 “Yu —j+1: n| - )GU 108

‘Yn fin+1: n‘ - 1)

kn,—1
— (k:’n, - l)l/ﬂ

& |Xn k,+1: ni - 10g 1Xn—kn+l:n| . ﬂ()

+to FDU o (1)

kl/E(ﬁn Kk (Xn—kn+l:ﬂ: v 1XT2171) 'BO) + OI‘E;(J o0 (1)

The T.AN oxpansiom is shown if
kﬂ
(44) k7;1/2 Z(Ynfj+i:'n - ankn-{—l:n = 1) n—oo N(Uq 1)

weakly under Fg . Since, by assumption, the underlying distribution func-
tion is ultimately a GPD, we conclude from the first part of Theorem 5.4.5
in Reiss (1989) that the left-hand side of (4.4) is stochastically equivalent to

;]/‘2 ZJ 1 Mn—jsin — Mk, +1:n — 1), where 91,7, ... are iid from a standard
exponential distribution. It was observed by Dekkers et al. (1983) (see their first.
part of Lemma 3.4) that this sum Is asymptotically standard normal. Note that we
have equality in distribution to kn /2 Z;Cil_l (n; - 1), which is a consequence of the
well-known behaviour of order statistics of an iid sample of standard exponential

random variables (see e.g. Reiss {1989), Theorem 1.6.1).
Since, by (4.1},

1 exp (P Ak~ o) )| = o1, 1),

SUPge i /5 (0) is bounded for n large, and

sup
vek

Bu(d) [ 9knV? 192D
sup |log —
JeK o b 2 03
~3/2
< .l_k 3| —rpee O
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the assertion for the remainder term follows and the proof is complete. [

For the Proof of Corollary 2.1 we need the following lemma, which can easily
be established.

LEMMA 4.1. Suppose F € Q5 p(Wg). Then

‘1~F@)

_ 1l <« _ 8
L S 1 SCA-Wa)s € (W)
where the constant C = D/(1 + 6) is independent of 3.

Proor oF CoroLnary 2.1. First, the uniform convergence of cxtremes
(Reiss (1989), Corollary 5.5.5) implies

“[-1((Xn ~knt+lin, - - - 7Xn:n) | FE%U(I) - ﬁ((Xn.—kn-f-l;m s 1Xn;n) l W;"?g,ao)”
= O((k:aﬁ(kn/n)a + kn/n)

Hence, from the Prool of Theoremn 2.1 we conclude {hat

Wg,.(9),0m () (Xn—kut1in)
W,BDaUD (Xn—kn+1:n)

k

n o () {(Xn—jt1:
S log Wpn(8),0n(9){Xn—jt1:n) + (0 — kn)log
i=1

W00 {Xn—j+lin)
admits the LAN expansion of the Theorem w.r.t. FZ _ . So it remains to show

Fo,00(Xn—knt1n)
Wﬁu,cro(Xn—kn+1:n)
Fﬂn('ﬁ)'an (19) (X"—kn'!'l:n)

(4.5) (n — kp)log

o0 0

4.6 n — kﬂ, 10 N . 0
( ) ( ) g W’@n(ﬂ),gn(ﬂ)(Xn_k"+1:n) n o0
and

“ fao.00 (Xn—jt1in)
4.7 lOg 4 Bo.oo n—ji+ln SN 0
( ) JZ:; wﬂn,dn(Xn—j-}—l:n) *

k

5 F8a(9)on9) (X jiam)
(4.8) log =12 —pno U

jzz; Wh, () on @) (Xnogrrn)

in Wi  -probability.
Taking Lemma 4.1 into account, we have for & > z4(f)

Fpo(®) L= Wpo(z) — (1 - Fgo())

Wﬁ,g(.’ﬂ) —1= ‘ Wﬁ,a(m)
_ ‘1 1 Fpolz)| 1~ Wael(a)
1- Wﬁ,a(m) Wﬁ.a(l')

C(1— Wao(2)'*
W0 () '
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With Y, ;4 (.n defined as in the Proof of Theorem 2.1 we have

(ﬂ’ - kn)(l - W,@o,o’n (Xn—kn+1:n))1+§
= (n - kn)exp(—(1 + 6)Ya_k,41:n)

n— ky kn\°
— k. (W) exp{—(1 4+ 6){(Vo . 410 — log(n/kn)}) —n_0c 0

n

in Wgﬁsqn—probability. 'This shows (4.5) by the Taylor expansion log(l + z) =
z + O(z?), x — 0. Similarly, (4.6) follows from

(n— k)1~ Wa, 9y 0060 (X ks 1m) P
= (n — ky) exp(—{1 + 8)¥n_k, 1 1n
+ (1 + 8)08,(0) "k 2 (Yoo ko 4 1m — log(n/ky)))

== ;:,kn kn (%) exp(—(1 4+ 6){(Ya &, +1:n — log{n/k,)))

x exp{(1 + 6)06n(0)_ 1/9(}n kotln — W0Z(1/En))) 2nooc O

in Wg _ -probability.
Next, we establish {4.7) and {4.8). A Taylor expansion shows

log fﬂa()

wﬁ @) = log(1 + fao(2)/wa () ~ 1)

= (fpo(@)/wpo(2) — 1) + O((1 =~ Wpo(2))*), & — w(Wp).

Hence, we get

Zlog Stt0,00(Xn—j+1:n)

Wa,, cm(Xn —§+1: n)

K
_Z(mm njtin) )+Zq04mmawﬁm%-
i=1

Wag,a0 (Xn n—j+1: n)

Now,

i (fﬁo . K- i+1: n) _ 1)

Wag,00 (Xn—j+1:n)

/\

VAN

fin

i Z 1 - W,@n,an (Xn—j+1:n))6
=1

( Wﬁn Jn(Xn—* kn+1: ﬂ)) ?

D
k 'l
Dk, -n—) exp(—8(Y, k. +1n — l0g(n/kn))) 2no 0
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in Wi o, "Probability. Similarly onc shows

ko

ZO((l — Whyao(Xn—jgi1m))?) = Wiy 0y (1)
=1

and (4.7) is established.
Applying the same arguments we get

i (fﬁn(ﬁ),%(ﬂ)(Xn—jH:n) B 1)

=1 wﬁn(ﬂ),an(ﬁ) (Xnuj+1:n)

kn )" .
< (22) exp(-00 i, 1100 = ot/ )
X exp(Bn(9) "k (Yao ks tin — 108(R/Kn))) —nmsoe O

and

k..
> O((1 = W, (9),000){(Xn—5410))%) —nco 0

=1

in W§, , -probability which shows (4.8).
The assertion for the remainder term follows now as in the Proof of Theorem
2.1.0
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