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Abstract. A popular robust measure of dispersion of a random variable {rv)
X is the median absolute deviation from the median med{|X — med{X)]),
MAD for short, which is based on the median med{X) of X. By choosing
Y = X, the MAD turns out to be a special case of the comedian med{({X -
med(X))(Y — med{Y))}, which is a robust measure of covariance between rvs
X and Y. We investigate the comedian in detail, in particular in the normal
case, and establish strong consistency and asymptotic normality of empirical
counterparts. This leads to a robust competitor of the coefficient of correlation
as an asymptotic level-c-statistic for testing independence of X and Y. An ex-
ample shows the weird fact that knowledge of the population med(X) does not
necessarily pay (in the sense of asymptotic relative efficiency) when estimating
the MAD.

Key words and phrases:  Median absolute deviation from the median, robust
measure ol correlation, comedian, breakdown point, covariance, correlation co-
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1. Introduction

A widely accepted robust measure of location of a random variable (rv) X
is the median med(X}, which satisfies the inequalities P{X < med{X)} > 1/2 <
P{X > med(X)}. The median is in general not unique, but med{X) = F~'(1/2)
is a possible choice, where

Flg) - imf{t € R:I() > q}, g (0,1),

denotes the generalized inverse of the distribution function (cdf) F(t} := P{X <
th t € B, of X. Conscquently, we say med(X) = (or <,>) b C R, if therc cxista
at least one median of X, which satisfies this relation.

In case of a symmetric X, the median of X is the center of symmetry and
coincides in this case with the expectation E(X) of X, if it exists; the normal case
is a popular example.

A robust alternative to the standard deviation VAR(X)'/? := E{(X —
E(X))*)'/* as a measure of scale is the median absolute deviation from the median
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{(MAD), dcfined by
(1.1) MAD(X) := med{({X — med(X}|).

As Huber ({1981}, p. 107) points out, the “MAD has emerged as the single most
useful ancillary estimate of scale”. Hampel {1974), who called MAD the median
dewnation, showed it to be an M-estimate of scale, which facilitates calculation ot
the influence curve (see e.g. Huber {(1981), p. 137)}). In particular for a normal
rv X with mean g and variance VAR(X) = %, we obtain from Lemma 1.1 below
the following linear correspondence between MAD(X) and the standard deviation
of X:
MAD(X) = o med(|(X — u)/o]) = c®1(3/4),

where ¢ denotes the standard normal cdf. Our approach towards robustness
of statistical functionals relies on the data based concept of breckdown points
(Rousseeuw and Leroy (1987)) i.e., the least proportion of observations in a data
set that must be moved in order to let the value of the statistical functional under
consideration break down i.e., tend to infinity.

The MAD has the highest possible breakdown point, since roughly one half
of the data have to be pushed to infinity to let the median follow. While the
MAD or the {in case of a svmmetric rv X equivalent) interquartile range IQR :—
F~(3/4) — F~1(1/4) as a further robust measure of dispersion underlying a box-
plot (Tukey (1977)) have become quite popular in recent years and are now built-in
procedures in statistical software packages, a median based and therefore robust
alternative to the covariance COV(X,Y) = E{({X — E(X))(Y — E(Y))) as a mea-
sure of covariance between rvs X, Y is not ready at hand, though it plays a crucial
role in varions topics of statisties.

The covariance is the center of interest in correlation analysis, it is essen-
tially the (simple) regression coefficient in regression analysis and it is of cause
the componcent of the covariance matriz 8 of a random vector X . The covariance
matrix is basic to different multidimensional techniques such as principal com-
ponent analysis, where the eigenvectors of § are the (orthogonal) directions of
largest varialion or in fuctor anelysis based on principal components. The gen-
eralized squared distance (& — y)S~!(& — y) between vectors ¢, y is known as
their Mahalanobis distance, typically applied in discriminant anelysis and cluster
analysis. The linear transformation Y := § 2X is known as data sphering,
resulting in a random vector ¥ whose covariance matrix is the nnity matrix. Here
§-1/2 denotes the usual symmetric root of § 172,

The common empirical counterpart of COV{X Y ), based on n independent
copies (X1,Y1), ..., (Xn, Yn) of the bivariate random vector (X, Y'), is the empirical
covariance .

COVR(X,Y) = (n— 1)) (X — X,)(¥i - V),
1=1
where X,, := n~! Z:;l X; and Y, = n! 2?21 Y; are the sample means. The
empirical covariance (matrix) is obviously highly sensitive to oxtremc observa-
tiong as it can serionsly he affected by only one extreme observation among
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{(X1,11), ..., (X,, Yp) Le., its breakdown point is 1/n. Nevertheless it is typically
in use as a black box in statistical software packages. An exposition of robust
covariances is given by Huber {(1981), Chapter 8).

In this paper we propose an alternative measure of dependence between rvs
X, Y, which we will call comedian of X and Y. It generalizes the MAD since it
equals MAD? in case X = Y. In this sense, MAD and comedian parallel ¢ and
covariance which satisfy 0 = COV(X,Y} in casc X = Y. As the comedian is
actually a median, it also has the highest possible breakdown point.

In the following we compile several basic results for general rvs X, Y, thus
evaluating parallel and different properties of COV(X,Y) and the comedian. In
the next section we investigate the particular case where (X, Y') is bivariate normal.
We will see that there is a {continuously differentiable) one-to-one correspondence
between the coefficient of correlation ¢ of normal vectors (X.Y) and the come-
dian based correlation median. This observation offers a way to define a robust
estimator of o In Sectiong 3 and 4 we establish limit results for estimates of the
comedian and show by an example the weird fact that knowledge of the population
med(X) does not necessarily pay (in the sense of asymptotic relative efficiency)
when MAD(X) has to be estimated. By £(X) we¢ denote in the following the
distribution of X. Our first lemma is obvious but nevertheless quite useful.

Lemma 1.1, For real numbers a, b & R

med(aX + b) = amed(X) + b.

Note that the preceding equality includes a negative a. By
(1.2) COMX.Y) := med((X — med{ X))}V — med(V)))

we denote the comedian of X and Y. The comedian parallels COV(X,Y) and
is therefore a measurc of covariance. But COV{X,Y) requires the existence of
the first two moments of X and Y, whereas COM(X,Y) always exists. Take for
example X, V¥ independent, each following a standard Cauchy distribution. Then
COV(X,Y) does not exist but their comedian is zero. This is immediate from the
following lemma.

LEMMaA 1.2, If X and Y are independent, then COM{X,Y) = 0.

Proor. The assertion follows from Fubini’s theorem:
P{X - med(X))(Y — med(Y)) = 0}
<

:f P{X —med{X) > 0}L{Y — med(Y)){dy)
(0. &)

+/ P{X —med(X) > 0}L(Y — med{Y)){dy)
(—o0,0) (<)

+ P{Y = med(Y)}
>1/9
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Le., COM{X,Y)=0.0

The proof of the following lemma uses the fact that med(X) < med(Y) if
P{Y <t} < P{X <t} foreacht € R, which is in particular true if P{X < Y} == 1.

Lemma 1.3, We have |med(X)| < med(|X]) = (med(!XP)/? for any p >

PrROOF. 'The mequality follows from the preceding remark and Lemma 1.1:

0= med(X — med{X)) < med(iX| — med{X)) = med(|X|) — med(X),
and
0 = med(med(X) — X) < med(med(X) + |X|) = med(X) + med | X|

which imply
—med(|X|]) < med(X) < med(]X]).

The equality med(|X|) = med(} X|P)'/? follows by utilizing the generalized inverse:

med(|X|) = inf{t > 0: P{|X]| <t} > 1/2} =ini{t > 0: P{|X|P <’} > 1/2}
= (inf{s > 0: P{|X|P < s} > 1/2})1/7’ = med(| X|P)*/?. 0O

Lemmas 1.1 and L3 imply that MAD{(eX + b) = |e|MAD(X} and
COM(X,Y) = aMAD(X)2 if ¥ = aX + b as. for some a,b € R. By choos-
ing X =Y, the MAD therefore turns out to be a special case of the comedian.
The comedian is morcover symmetric, location invariant and scale equivariant i.e.,
COM(X,aY +¥) = a COM(X,Y) = aCOM(Y, X). A natural median based al-
lernative Lo the coefficient of correlation ¢ := COV{X,Y)/(o,0,) is therefore the
correlation median

s COM(X,Y}.
(1.3) OX,Y) 1= 8= g E e DY)

Since § = 0if X and Y are independent by Lemma 1.2, and é € {—1,1} in case
of complete dependence ¥ = aX + b a.s., the question naturally arises, whether
8 € [—1,1] in general, just like p. The answer is however “no” for general rvs X,
Y, whereas in the bivariate normal case the answer is “yes” (see the discussion
after Lemma 2.1 below). Even more, we will sce in the next section that there is a
smooth one-to-one correspondence between g and § in the normal case. Together
with the limit results in Section 3 on empirical counterparts of MAD and COM,
this observation offers therefore a way to estimate the coefficient of correlation
of bivariate normal vectors hy means of the comedian ie | by an estimator with
highest breakdown point.
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2. | he normal case

In this section we evaluate the comedian in the predominant case of bivariate
normal vectors (X,Y), i.e. LU{X,Y)) = N{p, B), where g = (p1, p2)7 € R? is the
vector of means and X = {0,;) is the (2 x 2)-covariance matrix. We assume that
o > 0,i=1,2. Since the distributions of X and V are symmetric with respect
to p1 and pg, we have med{X) = u;, med(X) = us. Lemma 1.1 further entails

COM(X,Y) = med((X — 1) (Y — pia))
X-mY Mz)

11 Oa2

= J11022 med (

and thus, we assume without loss of generality throughout this section that g = 0
and that X = (i ?) with [g| < 1. In the following we compile a list of auxiliary
results on exph(ﬁt representations of (X,Y) and XY via independent rvs.

By noting that XY = ((X +Y)? — (X —Y)?}/4, the following auxiliary result
is immediate from the well-known fact that if (X, Y") is bivariate normal N (0, X),
then X + Y and X — Y arc independent normal with means 0 and respective
variances 2(1 4+ p) and 2{1 — p).

LeMMa 2.1, Suppose (X,Y) is bivariate normal N(0,%). Then
1
coev) - £ (0 + 02t - - 97 )

where Z7, Zy are independent standard normal rus.

Lemma 2.1 implies that the comedian of X and Y, whose joint distribution is
N(0,3), is a strictly monotone increasing, symmetric and continuous function of
¢ € [~1,1]. Define the comedian function by g(p) := COM(X,Y). Then we have

olon) < glea) for 1< <0<,  gl—0)=—glo),

U 50 = med(X?) = med(IX])? = (8- (3/4))%

(2.1) bnplies the inequality

(22)  |COM(X,Y)| < med((X — med(X))*}"/2 med{(Y — med(Y))?)}/2
= med(|X — med(X)}} med(]Y - med(¥)])
= MAD(X)MAD(Y)

for general bivariate normal vectors (X, Y). This inequality, which parallels the
Cauchy-Schwarz inequality | COV(X,Y)| < B{(X~E{X N 2E{(Y -E(Y)))}/2,
is by Lemma 1.2 alse truc for general independent rvs X, Y and it is obviously true
in the complete dependent case Y = aX +b a.s. But one can also find examples of
random vectors (X, Y) such that (2.2) does not hold. Fix for example a > 1 and let
(X,Y) have the uniform distribution on the set {(z,y): 1 <z <a,1/fa <y <1
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and wy > 1Y U{{e,y) 1 -1 <2 < =1/a,—a < y < —1 and a2y > 1}. Then,
by symmetry, med(X) = med(Y) = 0, med(X?) = med(Y?) = 1 which implies
MAD(X) = MAD(Y) = 1, but P{XY < 1} = 0ie, COM{X,Y) > 1. The
comedian has therefore the drawback, that the comedian matriz (COM(X;, X))
as a robust alternative to the covariance matrix of rvs X, ..., X, is in gencral not
positive (semi-}definite. The problem of non positive semidefiniteness of estima-
tors frequently occurs in robust estimation of covariance matrices; see Rousscouw
and Molenberghs (1993), who extensively discuss and propose methods to trans-
form such non positive semidefinite matrices to positive semidefinite ones. The
investigation of the comedian matrix in bivariate models parametrized by some
association paramcters will be the content of future research work.

In ecase of arhitrary bivariate normal random vectors the preceding consid-
erations imply however that the correlation median is always between —1 and 1,
ie.

_ COM(X,Y)
- MAD(X)MAD(Y)

=glo)/g(1) € [-1,1],

where g is the usual correlation coefficient of X, Y. By (2.1), § = 8o} is
a continuous and strictly increasing function from [—1,1] onto [1,1], satisfying
8(—0) = —6(p) and 6(—1) = ~1, §(0) = 0, §(1) = 1. We will sec below that é is
continuously differentiable on [—1, 1] (Proposition 2.1).

We could therefore utilize the correlation median of normal vectors (X,Y)
as a measure of dependence between (X,Y). In particular, the obvious empirical
counterpart 8, can serve as a robust measure of the corrclation cocfficient Ly
inversion:

(2.3) on =g *(g(1)dn)

is a consistent estimate of g, if 8, cstimates & consistently. This will be the content
of Sections 3 and 4.

As a byproduct of Lemma 2.1 we obtain the characteristic function ¢, =
E(exp(itXY)), t € R, of XY. Note that the characteristic function of the x3-
distributed rv Zi is given by E(exp(itZ2)) = (1 —~ 2it)7V/2, ¢t ¢ R. From Lemma
2.1 we obtain therefore

24)  olt) = Elexp(itxV)) = £ (exo ( (0 + 02 + 0~ )2 ) )

oo (2226) o (25725

l

_ : —, t € R.
CENIEPIDNE

The representation of a hivariate standard normal vector by polar coordinates,
known as the polar method and going back to Box and Muller (1958), together with
Lemma 2.1 yields the following representation of £{XY'), which will be crucial for
our further investigations.
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CoroLLary 2.1, Let ayain (X, V) haove distribution N (0, 2). Then we have
LIXY) = L{R{cos(zU) + 0)},

where R and U are independent, U is uniformly on (0, 1) distributed and R follows
the standard exponential distribution on (0,00).

As an immediate consequence of the preceding representation of £L(XY) we
obtain the following well known fact (Feller (1971), p. 101, Huber (1981), p. 209):

P{XY > 0} = %arccos(mg), o< [-1,1].

Note that if we parametrize p = —cos(war), @ € [0,1], then P{XY > 0} = «
becomes the identity on [0, 1].

PrOOF OF COROLLARY 2.1. Let U, Uy be independent and uniformly on
(0,1} distributed rvs. The polar method implies that Z; := +/—21log U cos{27ls5)
and Zs 1= v/—2log Uy sin(27U>) are independent and standard normal rvs. As a
consequence we obtain from Lemma 2.1 the representation

c0er) = £ (3 + 022 - (- 07 )

= L(~log U1 ((1 + g) cos®(2nly) — (1 — @) sin®(27Us)))
= L£(—log Uy (cos?(2nUs) — sin(2rl0) + o))
= L{—log [T {eos{4nTly} + o).

Finally, observe that R := — log U/} has a standard exponential distribution and
that L(cos(1nlz)) = L{coe(rl3)). O

Corollary 2.1 enables us to write down the df of £{XY') in closed form. Its
density can be derived from the following formula by interchanging differentiation

and integration.

ConronLary 2.2, Under the conditions of Corollary 2.1 we have

{1/m)arccos{—p) "
/ P () du, t>0
0 cos(mu) + ¢
P{XY >t} = 1
[ f XD (————t———) du, +<0
. (1/7) arccos{—p) COS(T(U,) + 0
1
4 1
_1 \ - >
™ ]_goxp( u+g) (17u3)1/gdu, t>0
= ) t 1
_— —l &) o < )
\1 T /_1 oxp( uig) 0 u2)1/2du’ t<0
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Proor. Corollary 2.1 together with Fubini’s theorem yield

P{XY >t} = P{R(cos(nU) + p) > t}
= P{R(cos(nU) + p) > t,cos(nlU) + o < 0}
+ P{R(cos(aU) + p) > t,cos(alU) + p > 0}

r pll/w)arccos(~g) ¢
/ PIR> " gy t>0
a cos{mu) + o

— 1
= t
/ P {R < —} du
(1/m)arccos{ —o) COS(WU’) +o

\ +P{cos(nlU} + p > 0}, t<0

from which the assertion follows. O

The preceding result together with some elementary analysis implies that the
df He{t) = 1 P{XY >t} of XY is continuously diffcrentiablc at ¢ # 0 with
derivative

( r{l/%)arccos{—g) ¢ i
f exXp | — du, t>0
0 cos(mu) + ¢/ cos(mu) + ¢
1 pa—
f oxXp (w t ) ! du, t < 0.
L J(1/7) arccos(— o) cos(wu) + o/ cos{mu) + o
{ 1
4 1
! xp | - du, t>0
T fge‘{p( u+g) @t o)l -2 9

1
t 1
’fi“_j’/ axp ( ) ———du, t<0.
L o o—u/ (u—p)(l—u?)'/?

Observe that h,(t) — oo as t — 0, i.e. the density h, of XY has a pole at
zero for any p. This observation has the effect that asymptotic normality of an
empirical counterpart of the comedian in case of independent normal rvs requires
a different standardization and an extra proof (sec Proposition 4.1 and Theorem
4.2). Next we will show that the function g(g) = med(XY} in (2.1) is continuously
differentiable on [—1,1].

(2.5) hy(t) =

ProposiTiON 2.1.  The function g{g) = med(XY'}, where (X,Y} has distri-
bution N(0,3), is continuously differentiable on [—1, 1] with derivative satisfying

: g(e]) 1
Ji\ | EXP (“ f ) ” 2(] — 2 '1/2d“

g'(e) = g(lal) 19 ngalf)' ShaL) (11 Y
P ) v

and g' () = 0.
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By noting that g'(0)/g(0) is the derivative of log(g(g)), the preceding result
implies that g satisfies for p > 0 the integral equation

(2:6) glo}=(27(3/4))

(z) t
. f_lz P (_fffa:) (u+ 2)2(1 — w2}1/2 du
- exp /
o

S, e («f(fl) (w+ a:)(ll— 2yt

We are presently unable to solve this integral equation and to provide the function
g in explicit form. A Monte Carlo approximation visualizing its shape is given at
the end of this section.

Proor or ProOrPOSITION 2.1. The following proof of the differentiability
of g{g) for p # 0 is based on implicit differentiation. Define the function H on
—1,1) x R by

H{p,t):= H,(t) —1/2 = P{XY >t} - 1/2.
Then H(p,-) is a continuous and strictly decreasing function with ¢ being the

unique solution of the equation H(p,g{0)) =0, p € [-1,1].
Fix now é € (0,1 and ¢ > 0. Formula (2.5} implies

8 o ! t 1
= = —u oxp | — w < 0.
8tf](g,t) il [chp( ’U;JrQ) (U+Q)(l_u2)]/2du<

Next we compute the partial derivative of H with respect to o, By substituting
u > 7w~ " arccos(u) we obtain from Corollary 2.2 the expansion

(g+h,t)—H(le,t)
_w—lfghexp (—u+£+h) (lig)l/zdu
ﬂ—lf_lgexp (*u—f—g) (1i2)1/2du
- Wml/_lg (eXp (~u+z)+h) —o (—uig)) (1 ﬁi2)‘-/2du+o(h)'
1

Fix now a € {—p,1). Splitting up the preceding integral into the sum [ f”g +{
of two integrals, substituting « — w — h in the first integral and using Taylor’s
formula, we obtain that the above integral equals

a+h t 1
1 / exp | — du
J oin wuto/) (1 (u—h)H1/2

I t 1 J
-1 _Qexp 7u+g (l—ug)lm U
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+7r_1]1exp i exp o ‘ —1
a u+p ut+go utpth

1
. —(1 — u2)1/2 du
t 1
— -1 _
= hw exp( a+g) 1 a2y + o(h)

L f-a exp (W t ) (1— 2)1/2 (1- (U7h)2)1/2du

T (10— {u—h)? ) 2(] - 12)1/2

+r! /1 exp{ — i ) th ! du
s P\ Tuto) utouter )1 w2
i 1
_ oyl _
= hm exp( a+g) A= o212 + o(h)
o ~1 “ _ t [73
har LQSXP( u-i—g) (1—u2)3/2d”

1
t 1
ha ™t - d
o /ue"p( u+g) (w1 02(1 - u)ir ™

This representation implies

& 1
el et = pq p( 9)

a
R
i f_e ( u+g) 1—u23/2

+W—lfa ( u+9) (u+ 0)? (1—u2)1/2d

By letting now a tend to —p we obtfain

H ! t 1
—H(p,t)=7"" — du > 0.
90 (o, t)=m t/_gexp( u+9) T o = w7 10

The implicit differentiability theorem implies therefore that the function g is
differentiable on (0, 1] with derivative satisfying

;%H(@,g( )+ gf (0,9(0))g'(0) =0

ie.,
q( 0} 1
, sy exp( ut 9> (o7 0 (a2
9'(0) = 7o)
Jyexv (u-i—g) (u+ 0){ 1—u9)1/~
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Fig. 1. Approximation {obtained by Monte Carlo) of the comedian function ¢{g) =
COM(X,Y) as a function of the correlation coefficient p. Note that g(p) ranges over
[—g(1), g(1}], where g(1) = ($~1(0.75))% =2 0.455.

It remains to show that g'(g) — 0 as p — 0. Fix to this end £ € (0,1) and
split up the integral in the numerator of g'(p) into the sum JiQ + f;. Then, with
C > 0 denoting an appropriate constant we obtain for ¢ | 0 the bound

Cglo) f°, exp (_tff)g> o _: Q)Qdu + o(1)

g'(e) < ffgexp( EEQ.)_)L

TutoSutop

The substitution u — g(g)u — ¢ implies that the right hand side equals
C f(eﬂ’)/g(g) exp ! i,du +o(1)
0 w) u?
(e+e)/g(e) LY Ly,
~— | =du
o P ( u) u

ifo 0, sincc as (e+0)/g{p) — oo, the numerator is bounded but the denominator
converges to infinity. This proves ¢'{p} — 0 as p — 0.

Since g is continuous on [0, 1], the mean value theorem together with the
preceding considerations implies with ¥ € {9, g)

gle) — g{0)

— 0

=49 -0 if p—0
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ie., ¢ is differentiable at p = 0 with ¢'(0) = 0 and the prool is complete. O

Since we are presently unable to state g{p) explicitely as a function of g, its
evaluation as a solution ¢, of the equation H,(t) = 0 {see Corollary 2.2) requires
approximation methods. Figure 1 is the result of a Monte Carlo simulation of
¢ using GAUSSTw. version 2.1, based on the empirical medians of 8000 pseudo
random numbers — log{u,)(cos(mw;) + ¢), with p = —1 to 1 by 0.01. The function
g is almost linear near 0.

3. Strong consistency of the comedian

In this section we establish strong consistency of the empirical comedian,
based on independent copies (X1,Y1), (X2, ¥2),... of (X,Y). Denote by med, (X),

med..(Y) empirical medians of X4,..., X, and Y1,....,Y, and define the empirical
MAD and comedian by

MAD,(X) = med{|X, — medn(X)|,é = 1,...,n}

3. o —— —
31 COM,(X,Y) = med{(X; — med,(X))(Y; —med.(Y)),i =1,...,n}.

In the following result we establish strong consistency of CT)X/I,,,(X Y for
general random vectors (X, Y) under suitable regularity conditions. By F, G and
H we denote the cdfs of X, Y and (X — med{X))(V — med(Y)), respectively.

THEOREM 3.1. Suppose that F, G and H are continuous and strictly in-
creasing at F~'(1/2), G71(1/2) and H '(1/2), respectively. Then,

CB_MH(X,Y)T::;COM(X,Y) a.s.

From the fact that COM{X, X} = MAD?(X) for a general rv X (see the

discussion after Lemma 1.3 (i)), strong consistency of ﬁDn(X }; which has been
established by Hall and Welsh ({1985), Theorem 1), is a special case of the pre-
ceding result by choosing Y, = X,

CoroLrary 3.1, If F and H are continuous and strictly increasing ol
F~1(1/2) and H=Y(1/2), respectively, we have

MAD,(X) — MAD(X) as.
By the continuity and strong monotonicity of the comedian function g, defined

in (2.1), the two preceding results imply strong consistency of the transformed
cmpirical correlation median in the normal cose.
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COROLLARY 3.2. Suppose that (X,Y) has an arbitrary nondegenerate bi-
variate normal distribution with correlation coefficient p € [—1,1]. Then the trans-
formed empirical correlation median

N COM, (X, Y)
o= (g(l)mDn(X)MTDn(Y))’

with the convention o, = 1 or —1 if the argument is above g(1) or below g(—1), is
n. strongly romsistent estimate of o i.e.,

fn — 0 a.S.
n—>00

Furthermore,

MAD, (X)MAD,(Y) b0 — COV(X,Y) as
g(1) noo

Corollary 3.2 suggests as a highly robust and consistent alternative to the em-
pirical correlation matrix of normal vectors (Xl(l), ey Xl(k)), . (Xm,(zl), s ,Xf(zk))
that matrix, whose entries are the pairwise transformed correlation medians 9, =
6o (X @ X)) This matrix, like the comedian matrix introduced in the preceding
section, will in general not be positive semidefinite. To counteract this disad-
vantage it should therefore also be transtormed as proposed in Rousseeuw and
Molenberghs (1993).

For the proof of Theorem 3.1, which uses a truncation argument, we need the
following lemma.

LEMMA 3.1, Letay <ap < ---<a, and by < by < -+ < b, be two sels of
real numbers such that at most k < (n— 2)/4 numbers in the two sets differ. Then
we have

|med{a) — med(b)l < b[ﬂ/o]+9k+1 - b[ﬂ/r)]_mﬁ

where [2] 1= sup{k integer: k < z} denotes the integer part of x € R.

PROOF. (bserve first that med(b) € [by, /2], bin/2)41]- Choose now the integer
¢ minimal such that the interval (b, 2141, B[n/2)4+14+:) contains at least £ numbers
h; that belong also to the set {a(,...,an}. Note that ¢ < 2k. It follows that
med(a) < bln/2) v 140 = Blnyoj+1+0k-

Choose on the other hand now the integer m minimal such that the inter-
val (b o) m, Bimy2)) contains at least k numbers b; that belong also to the set
{ai,...,an}. Again m < 2k and med(a) > by, 9 —m = bjn/2)—2x which implies the
assertion. [

ProoF oF THEOREM 3.1. In the following we will make use of the quantile
transform method i.e., a sequence of iid rvs with an arbitrary common edf F' can
be agsumed to be given in the form F~Y(U,), F~1(U3),. .., where [}, I]5,. .. are
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independent and uniformly on (0, 1) distributed rvs (see e.g. Section 1.2 of Reiss
{1989) for details). Further we will utilize the well-known fact that

(3.2) max

a.s.,
1<k<n

k:n
n—0o

n+1

where 7y, < Z3., < --- < Z,., denote the ordered values pertaining to arbitrary
Ve Z1,..., 2.

Chnosge for a given small € > 0 a number A = A(e) > 0 large enough such
that P{|X| < A} > 1 —¢/2 and P{]Y| < A} > 1 ~ £/2 and define for i = 1,2, ...
the truncated rvs

A f X;>»A A if ¥,>A
Xi=¢ X, if |X;/<A and Yi:={Y, if [V;[<A.
-4 i X, <A -A if Y,<-A
ANOtG that medn(X) < [X[nIQ}inaX[n/21+1:n] - [X[n/QJ:naXEn/QI—FI:n% and
Inedn(y) € [Y'[n/Q]:nyY—[n/'ZH-L'n] = [Yv[n/ia]:nay[n/QH-l:n] ultimately a.5., provided

F1(1/2),G7*(1/2) € (~A, A) which we assume (use the quantile transformation
method, the convergence result (3.2) and the continuity of F~1, G~ at 1/2). Thus
we obtain

rr’;c_an (X) = {n'EEln (X) ultimately a.s.
and
IHE:&n,(Y) = med,(Y) ultimately a.s.

The strong law of large numbers implies that there are a.s. ultimately more
than n{1 —/2) ohservations among X1, X, as well as among Y7, ..., Y, in the
interval (—~A, A). This implies that in this case at least n(1 — )} pairs (X;, Y;)} are
in (—A, A} x (—A, A). Thus we obtain that a.s. ultimately

(X; — med, (X))Y; — med,(Y)) = (X; ~ medy, (X))(V; — med,(V))

for at least n{l — £) indices ¢ among 1,...,n. Put now for notational convenience
Zz-(") = (X — med, (X))(Y; — med,, (¥)), s =1,...,n. Lemma 3.1 then implies

O o] n (n) (n)
(33) ]COMTL(X: Y) - mCdﬂ(Z( ))| < Z[n/2]+2{5n]+1:n o Z[n/2]——2isn]:n

ultimately a.s.

Since |X;| and |¥i| are bounded by A and ﬁ;&ln()z') e FTH1/2),
r?l&in(f/) oo GT1(1/2) as. (use the quantile transformation method), we
obtain with V; := (X; — F7Y1/2))(Y; - G=(1/2)),i=1,2,...,

max ]Z_i(n) —Vi| — 0 as
1<i<n n—s00
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which implies max;<;<n \Z(n) = Viin| =n—eo 0 a.s. Thus, inequality (3.3) implies

(3.4)  |COM.(X,Y) — medn{V)| < Vinj2atenis1im — Vinsas2ienin + 0(1)

ultimately a.s.

Observe now that’___‘Vh Va, ... are iid rvs whose cdf H., say, converges to H as
¢ — 0 and that a.s. med, (V) € [H71(1/2 — 3¢), H7'(1/2 + 3¢2)] ultimately and
limsup,, . Vinjo+2ien)+1 < HIY1/2 + 3¢), liminf, Vipj2)-2[en] = HZY1/2 -
3¢); {use the quantile fransformation method, (3.2) and the monotonicity of H_ !
on (0,1)). Thus we obtain from (3.4) and the triangular inequality that a.s. {recall
that COM(X,Y) = H~1(1/2))

lim sup |COM,, (X, ¥) = COM(X,Y)|

< limsup |[COM,(X,Y) — med,, (V)| + limsup |med,, (V) — H ' (1/2)|
T—20 n—0o0
< HI'1/2 43¢y - HZYW(1/2 - 3:) + [HTH(1/2 + 32) — HH(1/2)]
+[HIN(1/2 - 3e) — H7'1(1/2)]

—
e—0

since H, converges to H pointwise, which implies the convergence H_1{q) —. .o
H~1{q) at every continuity point of H~! (see e.g. Lemma 1.2.9 in Reiss (1989)),
and since A% is continuous at 1/2. This completes the proof of Theorem 3.1. 0O

4. Asymptotic normality of the comedian

In this section we will establish asymptotic normality of empirical counter-
parts of the comedian. It turne out that in the particular case, where X, V¥V
are independent, the limiting distribution is not affected if the marginal medians
med(X), med(Y) are known. This is different to the estimation of the MAD, where
the phenomenon occurs that an estémated marginal median can even reduce the
limiting variance. For reference we state the following theorem on asymptotic nor-
mality of the empirical MAD, proved by Hall and Welsh (1985)}. Further results
for the MAD in a regression model were established by Welsh {1986).

THEOREM 4.1. Suppose that the F' is continuous near and differentiable at
FY1/2), F'(1/2) + MAD(X) and F~'{1/2) — MAD(X) with f(F~'(1/2}) >0
and A == f(F~1(1/2) + MAD(X)) + f(F~1{1/2) - MAD(X)) > 0, where f = F'.
Then,

AOTEDL() ~MADGO) ¥ (0, (11 ey ) )

where C = f(F71{1/2) - MAD{X)) — f(F~'(1/2) + MAD(X)), and B := C? +
ACF(F1(1/2))(1 — F(F~1(1/2) + MAD(X)) — F(F~!(1/2) - MAD(X))).
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If F11/2) - MAD(X)) = f(#~1(1/2) + MAD(X)), which is in particular
true if the cdf F' is symmetric with respect to £71(1/2) i.e., F(F7}(1/2} — y) =
1~ FP(F7Y1/2) + y), y € R, then B equals zero and thus, the variance of the
limiting normal distribution in the preceding result reduces to 1/(16 f(F~1(1/2) +
MAD(X))?).

COROLLARY 4.1. If in addition to the assumptions of Theorem 4.1 the cdf
F is symmetric around F~1(1/2), then

N 1
VA(MAD,,(X) - MAD(X)) - N (O* 16/(F-1(1/2) + MAD(X))Z) '

If F is in particular the cdf of the normal distribution with arbitrary mean and
variance o> > 0, then

e —1 /s 02
VA(MAD,(X) - 0@7'(3/4)) o N (0’ 16@@—1(3/4))2)’

where @ denotes the standard normal density.

Theorem 4.1 implies that under thosc assumptions on the cdf £ of X

. : a2 MAD?(X) B
Va(COMn(X,Y) ~ COM(X,Y)) = N (0’ —a (1 T m))

ifY =aX + b as. for some a,b ¢ R. The constants A, B are defined in Theorem
4.1.

If the median of F' is known and unique, then we can replace ﬁDn(X ) by
MAD,,(X) := med{|X; — med(X)|,i =1,...,n}.

If F is differentiable at med(X)} + MAD(X) and med{X) — MAD{X) with
f{med(X) + MAD(X)) + f(med(X) — MAD(X)) > 0, then by Example 4.1.4
in Reiss (1989)

(4.1) VA(MAD,(X) — MAD(X)) =N (o, Z%-j) :

Since the term B in the variance of the limiting distribution of /n(MAD, (X} —
MAD(X)) in Theorem 4.1 does not vanish in general, the limiting distributions
of MAD,,(X) and MAD,{X) differ in gencral. This is different to the limiting
distribution of the sample variance, which is not affected by plugging in the sample
meadll.

It is easy to find examples of cdfs where the term B is positive. This is what
we would expect as we replace the unknown median med(X) in MAD,(X) by
the empirical one. But one can also find exawmples, where B s negative, which
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contradicts our intuition, since in this case I\»KDTL(X ) is for large n more con-
centrated around MAD(X) than MAD, (X). The following example leads to a
negative value of B. Put

1/4, —2<zx<0
1/4 4+ 4/52% — 22, 0< 2 < =,

(42) 1) = {

where z; satisties [ 1/4 + 4/52° — #°dr = 1/2. Then the median of the cor-
responding cdf F is 0 and MAD € [1.3191,1.3192]. Cousequently, f{—MAD) —

F(MAD) = MAD? —4/5 MAD? < 0 and

B = (f(—MAD) - f(MAD))?
+4f(0)(f(~ MAD) — f(MAD))(1 — F(MAD) — F(— MAD))
— (MAD? —4/5 MAD*(MAD? 7/15MAD? MAD?* /5) < 0.

This example shows that knowledge of the population median does not nec-
essarily pay (in the sense of asymptotic relative efficiency) when estimating the
MAD. .

It is interesting to compare the limiting normal distribution of MAD,, (X}/
$~1(3/4) as an estimator of the standard deviation o with that of VAR,,(X) = (n—
DY (Xy — X.)? in the particular case, where X has the normal distribution
N{p.0?). By Corollary 4.1 we have

MAD,,(X) o2
v (W ) ") ER (0’ L6(2 " (3/4))2 0 1(3/4>2) ’

whereas Ly
VA(VAR,(X) — 7) - N(0,0°/2).

The saymptotic relative cfficicney (ARE) of MAD with respect to the empirical
standard deviation, defined as the ratio of the variances of their limiting normal
distributions equals therefore

(4.3) ARE = 8p(® 1(3/4))?® 1 (3/4)? ~ 0.368.

As an estimator of o, the MAD requires thercfore about 3n observations to perform
roughly as well as the empirical standard deviation based on n observations, if n
is large (see, for example, Section 1.15.3 in Serfling {1980) for a discussion of
the concept of ARE). This is the price one has to pay for the robustness of the
estimator.

The priee for rohnstness can actually he lowered by utilizing for example the
estimator

(4.4) Sn — Cnledlgign{lnedljjgn !.I:l — .Ij‘},
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introduced by Rousseeuw and Croux (1993) as an alternative to the empirical
MAD. It was proved that 5, is consistent for the corresponding population func-
tional

(4.5) S(X) := cmedx, {medyx, |X; — X»|},

where X, X3 are independent copics of X. Note that the constant ¢ can be
chosen so that S{X) equals the standard deviation ¢ at normal distributions, just
like the constant 1/ (3/4) for the MAD. The asymptotic efficiency of Sy, is 58%,
compared to 37%, roughly, for the empirical MAD. Moreover, S, is location-free
in the sense that it does not use any location estimator (like the sample median),
so the effect that knowing med {X) in advance may be a disadvantage for the
sample MAD does not occur for 5,,.

In view of the general equality med(|X]) = med(X?)!/? (see Lemma 1.3) one
could also extend S, to an estimator of covariance, given hy

(46) Sn(Xa Y) = (32 HledlSiSn{medlngn(ﬁlji — IEj)(yl' — y_:,)}

The author is grateful to the referee for providing this idea, whose investigation
has to be the content of future research work.

In the casc, where med(X) and med{Y) are known, we can also modify the
empirical comedian in an obvious way and obtain immediately from the asymptotic
normality of sample quantiles (see e.g. Reiss (1989), Example 4.1.1) its limiting
distribution, stated in the following result. In practice it is often assumed that X
and Y are rvs which are symmetric with respect to some known real numbers, In
this case, these conters of symmetry are med(X) and med(Y').

PROPOSITION 4.1. Suppose that med(X) and med{Y") are unique and that
the cdf H of (X —med{X))(Y —med(Y)) s differentiable at COM(X,Y') with posi-
tive derivative L(COM(X,Y)) > 0. Put COM,,(X,Y) := med{{X; —med(X})(Y;—
med(Y)),i = 1,...,n}, where (X{,Y1)(X3,Y2),... are independent copies of
(X,Y). Then

o 1
V(COM(X,Y) — COM(X,Y}) > N (O’ 4h2(COM(X, Y))) '

Let now (X, Y} have an arbitrary bivariate normal distribution with positive
variances 0%, o3 of X and Y and correlation coefficient ¢ # 0. In this casc, the
preceding result implies

e o gl
. COM,(X)Y) - COM{X.,Y N{0 XY _},
@1 VRCOMX,Y) ) v ( 4,%(9(9)})
where h, is given in (2.5). If X and Y are however independent, Proposition

4.1 does not entail nondegenerate asymptotic normality of Cf)—Mn(X ,Y), since in
this case ¢ — 0, g(g) = 0 and thus, hy{g{o}) = oo, sce the remarks after (2.5).
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The independence case requires therefore an extra investigation, provided in the
following result.

THurorEM 4.2.  Suppose that the cdfs I, G of X and Y are differentiable near
med{X), med(Y') with derivatives f, g that are Hélder-continuous at med(X) and
med(Y'), respectively, and satisfy f(med(X)) > 0, g(med(Y)) > 0. Then we have

Vnlog(n)COM, (X, Y) — N(0,1/(4f (med(X)Yg(med(¥))?)).

The proof of Theorem 4.2 indicates that 2v/nlog(n) f{med(X))g(med(Y)) (1 +
2log log(n)/ log{n)}COM,, (X, Y} approaches the standard normal distribution
much faster than 2y/n log(n) f(med(X))g(med(¥ ))COM,{X,Y). Lhis is also ver-
itied by numerous Monte Carlo simulations.

COROLLARY 4.2, Suppese that X, Y are independent normal rus with posi-

tive variances 0%, 02. Then, based on n independent copies of (X, Y, we have
X Y ? ) d
v

Y log(n)COM, (X, Y) = N(0,0%ad).
T

This result entails that in the case g = 0, the empirical comedian COM,, (X,Y)
as an estimator of COM(X,Y) = 0 outperforms the sample covariance
Cﬁvn(X, ¥ of normal vectors with known means, sinee \/H("T(YVR(X , V);
N{0,0%0%).

Proposition 4.1 and Corollary 4.2 indicate that the emplrlc‘ﬂ comedian is

“superefficient” at the parameter p = 0. Whether COM,, (X.,Y) 1s actually su-
perefficient in the sense defined for example in Section 8.6 in Pfanzagl (1994},
requires knowledge about its limiting distribution along a sequence of alternatives
Pr— p € (—1,1). But this is an open problem to the best of our knowledge.
The same applies to the sample comedian C@IR(X ,Y) with estimated marginal
medians defined below and to the test for p = 0 defined in (4.12).

Proor. We utilize again the quantile transformation technique and assume
the representation X,;Y; = H-1(U;), i = 1,...,n, where U,...,U, are indepen-
dent and uniformly on (0, 1) distributed rvs and H denotes the cdf of XY . Without
loss of generality we can suppose med(X} = med(Y) = 0.

Fix t € R. From Example 4.1.1 in Reiss (1989} we obtain

P{\/ﬁlog(n)CB_MH(X,Y) <t}
= PPVa(F 7 (1/2) — 1/2) < 2/n(H(ta,) — 1/2)} + o(1)
= &(2v/n(H(ta,) — 1/2)) + o(1),
where F, denotes the empirical edf of Iy, ... U, and a, :— 1/(y/nlog(n)). It
remains to show that for £ ¢ R

(4.8) Vn(H(ta,) —1/2) o, f(0a(0)e.
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Fix therefore ¢ € R. Fubini’s theorem hmplies
(49)  Vn(H(tan) — 1/2)
= \/T_I/W Glta,/z)L(X)dz — \/7—1-/ Glta,/z)L(X)dz
1] —0o0
=va | " Gltan/z) - GO)L(X)(dz)
0
— \/ﬁ[ Cltag/z) — C(O)L(X)(d=).

Choose a large constant K > 0 such that ¢/K is so close to zero that it is in
the domain of Holder-continuity of g. 'T'hen we have

(410)  vm [0 " Gltan /) — GIO)L(X)(dz)

— Vi [ Gltan/z) — GOLX)(dx) +o1)

Ka.

a7 g0t /z)tan J2L(X)(dz) + of1)

Kan

_vn [ g0)tan/oL(X ) da)

Ka,

- fK " (9(Wtan/z) — g(O)jtan/L(X)(d2) + 0(1),

where 9 € (0,1). Fix £ > 0 small such that the interval [0, <] is in the domain of
Halder-continuity of f. The first integral then equals for large n

&
(4.11) 9(0)t 1

fog(T) o Ef(a:)da: + o{1)

= g({))t ) 1 (x} — T
= toa0n) S, 7O+ (@) = JON)de +0(1)

GO0 [T 1,
o log(n) Lan Edﬂ,‘i‘O(l)
— L8 togte) ~ og(Kar) + of0)

= S F(0)t +o(D)

By the same argnments ome shows that the second integral in (4.10) is of
order o(1). Together with (4.10) we have thus shown that the first integral in (4.9)
equals g(0}f(0)t/2. In complete analogy one shows that the second integral equals
—g(0) £(0)2/2, which yields {1.8) and thus the asscrtion. O

In the next result we establish asymptotic normality of the empirical comedian
in the casc, where med(X)} and med(Y') are unknown.
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THEOREM 4.3. Suppose in wddition v the assumplions @ Thevrerm 4.2 that
the derivatives f, g are Hélder-continuous in o neighborhood of med(X} and
med(Y'), respectively. Then we have

Vnlog(n)COM,, (X, Y)—)N(O 1/(4f(med(X))?g(med(¥))?)).

The wvariance of the limiting distribution of the comedian with unknown
marginal medians is therefore the same as in the case with known medians.

Formulas {4.16)—{4.19) in the proof of Theorem 4.3 indicate that with b, :=
1+ 2loglog(n)/log(n), the distribution of anf(med(X))g(Ined(Y))CﬁMn (X,Y)
approaches the standard normal distribution much faster than without the vari-
ance correction term by, .

Theorem 4.3 offers a way to test independence of arbitrary normal rvs X, ¥
by means of the comedian. Denote again by MAD, (X) = med{|X; med,(X)|:
i=1,...,n} the empirical MAD with estimated median of X, based on n inde-
pendent copies of X. From Corollary 3.1 we obtain M/XDn(X) —noe MAD(X) =
ox P 1(3/4) almost surely and thus, the following result is an immediate conse-
quence of Theorem 4.3.

CoroLLary 4.3. For independent but arbitrary normal rvs X, Y we have
Vnlog(n)COM,L(X,Y) SN0, 7 0% a})

and thus,

@"1(3/4

)2 Lo () COM,, (X,Y)

MAD,, (X)MAD,(Y) P

N0, 1).

Again, it is preferable to multiply the left hand side above by b, = {1 +
2loglog(n)/log(n)) in order to accelerate the rate of convergence to N(0,1). If
we denote again by 8, = COM,(X,Y)/(MAD, (X)MAD, (Y)) the empirical cor-
relation median, then the preceding result implics that

(4.12) Pn(0n) 1= 1@71(1—a/2)n/(bn4>"1(3/4)2\/ﬁ1og(n)).oo)(\5n|)

is an asymptotic level c-test for testing independence of normal rvs X and Y.
From Theorem 3.1 we know that COMR(X Y} converges to COM(X,Y) as.

for an arbitrary bivariate normal vector (X, Y) and from (2.1) that COM(X, Y} =

0 iff X, Y are independent. The asymptotic level a-test gon(gn) defined above is

therefore also asymptotically consistent. These considerations are summarized in

the next reault.

COROLLARY 4.4. If b, is based on n independent copies of an arbitrary bi-
variate normal vector {X, V) we have

- o i X.Y areindependent
E(Wn(én)}n:i { J J P

1 otherwise.
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It would clearly be interesting to evaluate the power function of ¢, (§,,) along
a sequence of alternatives {X(™ ¥ (™)} converging to the independent case. ‘L'his
would enable us to compare ¢, (§,,) with other tests for independence, in particular
that one based on the empirical correlation coefficient. But to this end, we need
the asymptotic distribution of &, in the dependent case ie., along a sequence of
alternatives converging to zero. To the best of our knowledge, this is an open
problem. L o

The standardization of the empirical comedian by MAD,, (X YMAD,.(Y) is
however taylor made for normal rvs. A nonparametric i.e., distributional robust
standardization of COM,,(X,Y’) can be based on estimators of the marginal den-
sities at med{X), med{Y"}.

An obvious choice can be based on the kernel estimator of the quantile density
function (F~Y)(q) = 1/ f(F~'(q)) at ¢ = 1/2. Put

—1

1
(413) hu@ = ([ B @ahlta - ) fanis)

where the bandwidth e, > 0 converges to zero and the kernel function k has
bounded support and satisfies | k(z)dz = 0, [ @k(z)de = —1. This kernel esti-
mator has been extensively studied in the last decade, see e.g. Xiang {1994) and
the literature cited therein. In particular Theorem 2 in Falk (1986) implies that if
f = F' exists and is positive ncar med(X) = F~1(1/2), then

N (i';(dl(/;)) - 1) ;N(D,fﬁ'?(y)dy),

where K{y} = [__ k(z)dz, provided na? — co and nad — 0.
Consequently, if na? — oo and naol — U, we obtamn under the conditions of
Theorem 4.3

2 (1/2)§(1/2)v/R log(n) COM, (X, Y) - ViU 1),

where §,(1/2) is defined tho same way as fn(l/‘)) but with F_n_l(a:) replaced by
the empirical quantile function of Y3,...,Y,.

In particular for the choice kg{x) = —3z/2, z € |[-1,1], kg{z) = 0 elsewhere,
which is the derivative of the Dpancchnikov (1969) kernel Kp(x) — 3/4(1 — &2),
x € [—1,1] we obtain [ K%(y)dy = 3/5 and, moreover, with a,, € (0,1/2)

ey
2nex;,

. {1/ 24, . 3
3 21[2_*({71/(]_/‘2—(_)3")] (i/n—1/2) Xy

fn(l/g) ™~

where X, < -+ < X,.n, denote the ordered values of X;,...,X,. Equally,
one can approximate §,(1/2) with X, replaced by Yj.,. These estimators are
obviously quite robust with asymptotic hreakdown point 1/9.
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Aun allerualive standardization of the cowedian can be based on the kernel
density estimator directly. Put

(4.14) fulmedn (X)) = 3K (M) |
=1

kg < 24
i—

where K has bounded support and satisfies [ K(z)dz = 1, [ zK(x)dz = 0. Notice
that k(z) = K'(z), * € R, is a kernel as above, provided K is continuously
differentiable on R and has bounded support. The following result can be proved
by utilizing the conditioning technique of the proof of Theorem 4.3 below. Here

we assume that for an even sample size n = 2m the empirical median med, (X)
is defined as a lixed convex cowbination e X, + (1 — ¢) X110, ¢ € [0, 1], of the
most central order statistics X,,.,, X;n41.n. The common choice is ¢ = 1/2.

LEMMA 4.1.  Suppose that the cdf F of X is differentiable near ¥ {1/2)
with positive and Lipschitz-continuous derivative f. If K has bounded support and
satisfies | K(z)dz =1, [zK3(z)dz = 0, [ K*(z)dz < oo, then

F(ineda (X)) J K (z)dx
\/ﬁ?ﬁ}(w l) B’N(O’m)’

provided na? — 0, no,, — 00 as N — oo,

Different to f,(1/2), the limiting normal distribution of f, (Elé?in (X)) depends
on the value f(med(X)). In case of the Epanechnikov kernels kg and Kg, fn{1/2)
outperforms asymptotically the standardization fn(rﬁg&n (X)) iff f{med(X)) < L.

ProoF OF THEOREM 4.3. The proof is based on iterated conditioning and
on the quantile transformation. Suppose in the following X; = F~YU;), Y; =
G7L(W,),i=1,2,..., where Uy, Us, ... and Wy, Ws, ... are independent sequences
of independent and uniformly on (0,1) distributed rvs.

By F,, G, we denote the empirical cdfs of Uy,..., U, and Wy,..., W, re-
spoctively. For simplicity we agssume that n = 2m + 1 is odd. Fix ¢t > 0 and put
a, = 1/{+/nlog(n)). Then we have

P{y/nlog(n)COM,(X,Y) < t}

o {Z L oo tan ((Xi = TN (L/NY: = G (1/2))) > m}

N / " (Z Ve oo tan (F7HT:) — FHEFTHL/2)))
1=1
< (GTUWy) ~ GG, (1/2)))

>m | Va(F H1/2) - 1/2) = U) L{(ET(1/2) — 1/2))(du)
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B Vn/2 m ey oo o
_/:ﬁ/zp{gli‘“*t“"l((F (O) = F7H(1/2 + u/v/m)

x (G™H Wiy — GG (1/2))))

=3 oot (FHUPY = F7Y(1/2 + u/V/m))

x(GTH W) - GTHGHL/2))) 2 m}
x L(Vn(F1(1/2) — 1/2))(du),

since conditional on F71(1/2) = 1/2 4+ u//n, the sample U7y, ..., U, consists of
two independent samples of independent rvs Ul(l), ey UQ) and U1(2)’ Ce Uf(f Y and
the value 1/24u/+/7, where the Uzm are uniformly on (0, 1/2+u/+/7) distributed
and the Ui(z) are uniformly on (1/2 + u/\/n,1) distributed. Moreover, these rvs
are independent of Wy, Ws, ...

By repeating this argument and conditioning on G, '(1/2} = 1/2 + w//n,
the preceding integral equals

vr/2 /2 m (0
- / PUS ot (FHUY = Y172 + ufv))
—vajed-var o

x (GHWIDY — 6o (1/2 + w/vm)))

S et (FHOP) — P12 4 /)
i=1

) (CTH W™ G124 w)vm))) = m}
x LOVR(G,HL/2) = 1/2)) (dw) L(n( B (1/2) — 1/2)) (du),

where r(j) € {0,1,2}, Wi(l) is uniformly on (0,1/2 + w/y/n) distributed, Wi(g) is
uniformly on (1/2 + w/\/ﬁ, 1} distributed and I/Vl(l), ceey /,E}), I/Vl(z), - ,uf-,(r;?) arc
independent rvs, WZ-(U) =1/2 + w/y/n. The random vector r = (r(1),...,r(n)) is
a random permutation of m ones, m twos and one zero, and independent of the
U; and W5,

The number N of ones among the (i) in the first sum in the preceding integral
has therefore a hypergeometric distribution with parameters 2m + 1, m, m ie.

my fm+1 2m + 1
P{Ngk}(k)(m—k)/( " ), E=0,1,...,m.

By conditioning on N = k, this approximation together with the asymptotic
normeality of sample quantiles in variational distance (see e.p. Theorom 4.1.4 iu
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Reiss (1989)) implies that the above multiple integral equals

vn/2  p/nf2 k
[ [ [ P{Zl(_w,mn]((f* HUD)Y = F 1172 + ufym))
i=1

=2 ~\/n/2
x (G YWY — G172 + w/vn)))
+ 3 Nootan (F7HUD) — F7H1/2 + u/v/m))

i=k+1

x (G WPy - G 1 2+ w/vn))

+ "f oo tant (FTHUE) = F7H1/2 + u/v/n))

x (16‘1‘1(W5”> — G712 4w/ m))

+ i L—ootan) (FHUP) = F7H(1/2 + u/y/n))

i—m—k41

x (G WPy -G (/2 + wivn))) > m}

x L(N)(dR) (vl (1/2) - 1/2))(dw)
x L(V/n(F; (1/2) - 1/2))(du) + o(1)

Lol / e
P
xP{Zl( cortan) (FHUY) = FH(L/2 + u/v/m))
x (G~ (Wé”) - GH1/2+ u/vn))
O N (F WD) = F20/2 4 /)
x Takj'l(wm) GTH1/2 4 w/vm)))
+ Z Voo tan {(F 71U = P (1/2 + u/y/m))
x (G~ (WJ”)— G (1/2+ w/V/n)))
EY i (P2 4 /)

i=m—k+1

x (GTHW) = G712+ w/VR)) > m}

x LINYAR)N(0,1/(49” (G (1/2)))) (dw)
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X N0,/ (AHF (1200 du) +o(L),

where Ky, tends to infinity such that K, /v/m —, .o 0. The single 0 in the vector
T, i.c. Wj(n) can be neglected asymptotically as the subsequent arguments show.
Recall that t > 0 and observe that Wlth probability one for n large

(FYU) — PY(1/2 + w/v))(G l(w ”) GM1/2 + w/ym) < 0 and
(FHUSY — P12+ w/ o) (GH WD) — G (1/2 + w//n)) < 0 and thus,

the preceding multlple integral oqual%
Ko Ko pm/24Kmm
)
—Kpm VKo J2— KoM
x P{Z Lsouaad (FHUY) = P12+ uf )
i=1

x (G WYY - e 1/2 + w/vm))
2N L (FTHUPY - F U172 4w/ )

i=m—k+1
x (GTHWP) - 67N /2 + w/VR)) 2 2k — m}

X E(N)(dk)N(U 1/(4¢*(G1(1/2)))) (dw)
N0, 1/(4f*(F~" (1/2)))) (dw)

m/ 2+ Ko/
N f HKim f Ko [rn/“ I /e

P{ k172 }j(l(_oo,wﬂ;((F HU) - FTY(1/2 + u/vi))
x (GH W)~ GTH(L/2 + w/vn))) — pa)

bt

+ET2 ST (L coopan (FHUD) — FYH1/2 4 u/y/m))

i=m—k+1

< (CTH W) - 67124+ w/VR))) — an)
+kV2(p, + qn) > 2k Y2k — m/Z)}E(N)(dk)

N(0,1/(4g*(GT1(1/2)))(dw)N(0, 1/(4f(F 1 (1/2)))) (dw),

where
Pr = Pr(u, w)
= P{(F (u") - 1(1/2 +u/vi)
x (G W) — Y 1/2 + w/vn)) < tay)

and
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Yn — Yn (‘u,,'LU)
= P{(F Y UDY = F7Y(1/2 + w//R))
x (GTHWP) — G712 + w/VR)) < tan}.

From the Hélder-continuity of f and g near F~'(1/2), G7'(1/2) we obtain by
Fubini’s theorem the expansion

(416) po = [ PUEOP) 2 F 12 40 <t )
LGTHWIY) - 6712 + w/ V) (dy)
N / TP > P (12 4w  tan/y))
LG Y W) — G (1/2 + w/v)){dy) + Olay)
. ~han {1) 1 '1.9&71 ta,
-/ {U 5*7”’( ( \/ﬁ)+ ) }
LGN W) = G124+ w/ V) (dy) + Oan)
Sy SN LI B RO
[ A l(2+\/ﬁ)+ m)5
. L
LGN - G (1/2 + w/ V) (dy) + Ola)

i (%%))%

1 U
.
[ el o ()
+1+,3£_
2 Un

LS00 G5 (0 G R)

1

L (G—I(W(”) -G (5 + %)) (dy) + Ofan)

G ( 7).,

siel

N | =
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.f:“‘"ﬁ(“c’l( *%))WO(

an)

e 3o Ges))
e

—La, 1
- f ~—dy +Ofan)

o GR) G R
B TR (AR )

where L > 0 is chosen large enough such that F~1(1/2 + u/y/n) + ta,/y is in the
domain of Hélder-continuity of f near #1{1/2), ¥ € (0,1} and ¢ > 0 is chosen
such that y + G71(1/2 + w//n) is in the domain of Hélder-continuity of g for
y € [—&, —La,|. Equally one shows

o A
2 m)\2 m

vn
(4.16) and (4.17) imply that uniformly for & € jm/2 - K,,vm, m/2+ K, /m
and u,w € [~K,,, Kp,), where K, — 00 and K,,/y/m - 0 as m — oo

(4.18) kl/q(pn + ¢n)

= (%)1/2 (L+0(1))(pn + gn)

(3) " g (7 (G ) o0 (G+35)

B e N e TEer
x (L+o(1))

= 2 f(F1{1/2))g{C71{1/2)) 1 o(1).

By the Berry-Esseen theorem, the triple integral in (4.15) equals therefore up
to o(l)

Ko K M) A Ko /0
[
T S M K

Il
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CP{V (L — )+ V(1 = gn)y
+2tf(F~1(1/2))9(G1(1/2)) + o(1)
> 2(m /%) 2k — m2)(1 4 0(1))}

< L(N)(dk}N(0,1/(49*(G™1(1/2))))(dw)
- N{0,1/( 4f (FH1/2))))(du)

m/24+ K/
-"// Pl{pn(1 = pn) + qn(l *qn))l/zx

J2- K/
+2tf(F1(1/2))g(G71(1/2)) + (1)

> 2(m/2) 2k — m/2)(1 + o(1))}
-~ L{N)(d&k)N (0, 1)(dz) (1 + o(1))

— O(2f(FH1/2))9(G7(1/2))

by the convolution theorem for the normal distribution, where £ and # are inde-
pendent standard normal rvs, and the fact that 2(m/2)~Y3(N — m/2) is asymp-
totically standard normal. This follows from (7.6} in Section VIL.7 in Feller (1970).
A negative f can be dealt with in complete analogy. This completes the proof of
Theorem 4.3. 0O
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