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Abstract. Estimation in a first order autoregressive process with trend is
considered. Integral expressions for the asymptotic bias of the estimator under
a unit root and for the expectation of the limit distribution of the log likelihood
ratio test for a unit root are given, and evaluated numerically.
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1. [Introduction

Consider an AR(1} process with drift {X,}$2,, given by
(1.1) Xe=pXi_1+n+e, t=12,...,

where p and 7 are constants, {e;};°; is a sequence of independent normally dis-
tributed random variables with mean 0 and variance o2, and assume Xy to be
constant. Furthermore, suppose that we observe {X;} up to time 7" and want to
test the hypothesis Hy : p = 1 against —Hy (a type of unit root test). If Hy is true
and 7 # 0, —2log Q7 is asymptotically x*, where ()7 is the likelihood ratio test
statistic. However, if Hy holds and n = 0, we have the asymptotic result

1 1
WidWW, — W), W.d)2
(1.2) w210gQTﬂ> (o - t - llfo pelt) def
fo Widt — (fg Widt)?
where W, is a standard Wicner process. This is a special casce of the multivariate

results of Johansen {1991). (See also Phillips and Durlauf (1986) and Phillips and

Perron (1988).)
Similarly, if p = 1 the least squares estimalor g of p satisfies (¢f. Phillips and

Durlauf (1986) and Billingsley (1968))

T — o0,

1
o f) w.aw, — W, f Wdt der 5

(1.3) T(p—1) TWodt = ([ Widt)?

as T — 00,
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586 RCLF LARSSON

and so, E'Z/T is the asymptotic bias of 3. Of coursc, the quantity T'(p — 1) may
be viewed upon as an alternative unit root test statistic.

In a model without drift term 7, where the corresponding limit laws are
similar (but simpler), the asymptotic bias was calculated by Evans and Savin
(1981), Mikulski and Monsour (1994), Le Breton and Pham (1989) and Abadir
(1993). Corresponding results for related statistics were given by Pham (1990).
Using similar methods, Mikulski and Monsour (1994) also obtamed the asymptotic
expectation (as well as higher moments} of the log likelihoed ratio test statistic for
test of Hy : p= 1 against ~Hg. (The latter statistic was also studied numerically
by Jacobson and Larsson (1997).) The object of the present paper is to extend
these results to the nonzero drift case. (In this case, the distribution of T(4 — 1)
was given numerically by Evans and Savin (1984), and by Andrews (1993)}.}

Calculations and main results are given in Section 2, whereas Section 3 con-
tains a brief concluding discussion.

2. Results
To find the expectation of Z. we at first note that (cf. Billingsley (1968))
- de g, .
fy def p St 1 4 7
2.5

(if nothing else is said, summation goes from ¢ = 1 to T'), implying E(Z7) — E(Z)
(see Lewma 2.1 below), where A def S —326.,/(T 1), 5 def Zi:l €t Sp = 0,
and {£,}22, is a sequence of independent normally distributed random variables
with mean 0 and variance 1. Hence,

(2.1) EZr =TE (%ﬁ—‘:t) - E (%%) +o(1).

Now, consider the process {X}}{2, satisfying

as T — 00,

X} —pXiqte, t=1,2,...,

where X} = 0, and the &;’s are as above (with unit variance) and introduce the
Laplace transform

LP(S,H,U; P) défE(e—sZ)N(f,lfuzxt‘_l_yx,})’

where X, % X *— S X} /(T -1). (The variable p enters the function ¢ through
the X}'s.) By successive differentiation of the equality (cf. Mikulski and Monsour

(1994))
% 1
jﬂ w(s,u,v;p)ds = E (Z 5’?1)

//2;2 (o)~ T/2e= 12RO =p X 4y . g,
t—1
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we oblain
(2.2) E M — /m icpds
Z 53—1 0 dp
and
35157 gl
2.3 Fl=———] = d

where, here and henceforth, the derivatives are taken at v = v = 0, p = 1.
Similarly,

. & .2
det —(Zstfltt) 57 as T—ooo
25

(by Lemuna 2.1, B(Zr) — E(Z)), iuplying
EZr=F ((_Z_:_g_t_—;_st)i) —- -%E (ZSt—IEt_L? St—IST)
.87 r 382,

1 ((ESe)?st)
+T2L’( Egé?ml )+ (1).

Zr

But, sincc

F 8= (T g (2 80)) + i

where 0,(1} is a term which tends to zero in probability as T — oo, it follows as
above that

[* 2 o p (Bt (s
9p 257
2 2
o ip (XS ‘S:f;l) + o &Sas) St:;s*) + (1),
T Z St—l Z St—l
and by repeating similar arguments and rearranging, we get
< 52 1 [ P 2 [* &

1 = &
+ﬁ/0‘ WQDCIS""O(].)

The equalities {2.1)-(2.4) provide the basis for proving our main results, collected
in
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THEOREM 2.1.

1 o p3/2
(2.5) E(Z) f ——x & —5.3791,
bmhﬁ:
Cosh;r
(2.6) [ th - ( T ) dx ~ 3.0560.

As is seen by Taylor expansion, the integrands of (2.5} and (2.6) tend to zero
as £ — 0. The figures are obtained by numerical integration, and naturally, the
figure of (2.6) is more reliable than the simulation results £(Z) ~ 3.030 (Johansen
and Tnseling (1990)) and FE(Z) == 3.025 (Jacobson and Larsson (1997}).

To prove the theorem, we will need some lemmas:

LeEMmMma 2.1,

(2.7) Jim E(Zr) = E(Z),
(2.8) Jim E(Zr) = E(Z).

Proor. Choose a é > 0 and let

5 def def 5
Zr=Xe | Yr, XrZ Zrlyay g sep Yo & Zrlgpoeys cey

(The notation 14 means that 14 = 1 if condition A holds, and 0 otherwise.)
Naturally, £(Zr) = E(XT) + E(Y7), and by the Holder inequality,

0y [F(Ve)l < B2 g gz o) < ( ZT)P( 2% 82« 5))1/2_

But, as is proved in the sequel without using this lemma, E(Z7) converges to the
r.h.s. of (2.5) as T — 00, and similar arguments may be adopled (c[. Larsson (1994)
for the model with trend zero) to prove that E (Z2) converges to a finite limit as
T — oc. Hence, E(Z%) < oo for all T sufficiently large, and since furthermore
T-2% 5% | has a non-degenerate distribution for all T', 6 may be chosen such that
the r.h.s. of (2.9) becomes arbitrarily small.

Now, if { X7} is a uniformly integrable sequence, we have since (cf. Billingsley
(1968))

2
T2y 8, S d“‘/ Wtdt—(/ Wtdt) as T — oo,

(210)  lim B(X7) = E (lim Xr) = E(Zlvsa),

where § may be chosen such that the r.hs. of (2.10) becomes arbritarily close to
B(Z).
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Uniform integrability follows from the fact that, for all T,

T1 Z S'tklEt
T-23 57,

).

where, for T sufficiently large, the rightmost expectation is finite because (cf.

Billingsley {1968))
~ 1 1
Jim B (‘T—l S5 e ) - F (/0 W.dW, — Wlfé WtdtD < 00,

and the proof of (2.7) is completed.
The proof of (2.8), which is entirely similar, is omitted. O

1 ~
I{nggzlz(g}) < EE (1T_1 ZS}A&

E(Xr){ < F (

Turning to the actual computation of the expectations, we will need

LEMMA 2.2,

(s, u,v;1—6) = Jdet Qeuzgl@_lt},
25 y def

where Q@ = Qo + Ok + 62ha, ¢ = uc + vd, Qo = Py — 75¢c, ¢ =(1,1,...,1,0),
2% 0,0,...,0,1),

a -1 0 0
—1 v —1 0

Podlgf 0D -1 «a -1 ’ ad§f2(1+s),
—1 o —1
0o -1 1
/—2 1 ¢ 0
1 -2 1 0
hldéf 0 1 -2 1 and
1 -2 1
0 1 0
1 0 0
0 1 0
0 0 1
hy o
1 0 0
01 0
\ 0 0 0O

The matrices are all T x T and the vectors are T dimensional.

Proor. The lemma follows directly from the identity

’ ’ 1 fy—1
: = /... ~T/2,-1/22'Qz—q'z g, ... — T Ll/2dQ7q
w(p: s, u) f / {2my~" /% Ty ---dar 5" .



590 ROLF LARSSON

with z’ dm—'ir(xl, ..., 27) and @ as in the statement of the lemma (cf. Larsson (1994)).
i

The following lemma gives expressions for the derivatives appearing in (2.1}~
(2.4).

LEMMA 23. Atu=v=0,p=1,

(2.11) gﬁ = % 1deth0:
(2.12) g%f = (_52 + %bf + ;bu) ﬁ
2
(2.13) % = %Alzmm,
2
(2.14) ng - Anﬁ,
(2.15) Bua;fﬁp - GblAlg + %Bm) \/de%% and
(2.16) 5?8;6%‘7 = (AnAzg + %A%) ﬁ

where b; ¥ tr(Qq Thy), i = 1,2, by ¥ er((Q5'h1)?), and the Ay 's und By 's, i, 5 =
1,2, are defined through

q’Qg‘lq =u Ay +uvA + v Ay

and
-1 -1, _ .2 2
& QO thO g =1u B11 - ’U.’.L)ng - 1 RQQ;
respectively.
PrOOF. As in Larsson (1994), (2.11) and (2.12) follow from the identity
1 1 1/2X'RX 2
{2.17) E(e R h = Bhy 4+ 0% ho,

JaotQ  Jdet Oy

where X is a T-variate normally distributed random vector with covariance matrix
Q~!, Taylor expansion of the exponential and the equalities

E(X'hX) =tx(Qy'h),  B((X'hX)?) = ?*(Qg'h) + 2tr((Q; ' h)?)
(see Magnus (1978)). Moreover, using (2.17) and
Q7h=Q5" - 8Q7 Qg +0(6%),

the ¢ expression in Lemma 2.2 is readily Taylor expanded to yield (2.13)-(2.16). O
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We will also need the following result, proved in Larsson (1994) {cf. also Le
Breton and Pham (1989)):

LEMMA 2.4.  Denoting an arbitrary element of the T x T mauatriz PO'I by pug,

we have
1

Piis  J <l
where Do = D5 =1, and for k > 1,

b= (3" ((1+£)’““1 +O-gt (1 ) 2) Lo - _g)m),

D:—-—IDT*jv ?’S.?:

2 _ 2¢
Dr (t}_)’““l e +EM !+ (1! PN s -1 -g+!
T \2 2 o 2 ’
and
4

(2.18) L=4/1— o
Moreover,

det Py = D.

By (2.18) and the substitution oz — £,
1 x? 4

implying
(2.19) det Py = Dy =coshz + O,

inh e 1 sinh .
Di = Tsmm T 001, ADr¥ D, Dr,= ?Sm 2 L ory),
etc. Furthermore, putting y = i/7, we get
T T , )
1 1 1 A oyt 1
- D=~ =11+ = 1—- = (T !
T 2 T;2((+T) (1 7) )+ )

1
=/ cosh{zy)dy + O(T1),
0

etc., approximations which will turn ont ta he nseful helow.

Proor of THEOREM 2.1. The derivation of (2.5) and (2.6) rests on the
lemmas, the approximation technigqne outlined ahove, and the identities

(2.20) det(A4 +ww') = det A(1 +w' A" w)

and
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1
2.21 A N =4 - —— A AT
(2.21) (A+wu) lrwA-tg Y ’
where A is a T x T matrix and w is a T' dimensional vector. To begin with, because
{cf. Lemma 2.1)

(2.22) Qo=Fo— —2cc’(1 +0(T™)),

we have by (2.20) (put w = /—z%/T%¢)
2
det Qo = det P (1 - %C'Pg_lc(l + O(T“l))) ,

and using Lemma 2.4 together with approximation arguments as above,

T--1 T-1
(223) detPopc'Pyle= (DT 1217;6 1+ Di Y Dro 1)

i=1 =21

:T3/0 (cosh(as(l y)}fo w&g

inh 1
+ M./ cosh{z(1 — z))dz) dy + O(T%)
* v
s sint
=3 (coshaz - 5m1$) +O(T?).
x
Hence, via (2.19),
inh
(2.24) det Qo = =2 ~ O(T ).
Furthermore, (2.21) and (2.22) yield
(2.25) by = tr(Qy ' h1)
1 2
= tr(Py hy) + —--552———% er(Py Led Py Yy )(1 + O(T 1))
1 - —‘(,PO C
det Py z2

= tr(Fy ') + (P o) ha (P o)1+ O(T ™),

det Gl T3
But, as a consequence of Lemma 2.4 (cf. Larsson (1994)),

(2.26) det Pytr(Py 'hy)

T—2
== (D;_sADz i1+ AD}_ Dr_it1) + Dp 5+ O(1)
i=2
"t fsinh(zy) .
= WT/ ———w—xsmh(m(l — 1)) + cosh{zy) cosh(z(1 — 4)) | dy
0
+ Tsm;}m +0Q)
sinh x

=-T (cosh:r )+0(1).
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Moreover, Lemma 2.4 implies that the i-th element of the vector (det Po)P(;lC
equals

1
D) Di_y+Di, ZDT oo i=1,...,T,
k=1 1=i+1

and so

(det Po)2(Pyte) hi(Pyte) —QZQ i

where

i T-1
¢ =Dr_Y Dy +D{_, > Dry

k=1 =i+l
=T* (cosh(:c(l —y) —/Oy Wdz + M /1 cosh(z(l — z))dz)
v
+ O{T)

= %(coshx —cosh(z(1l —y))} + O{T)

and
it+1

d; = Dr.. tZDk L+ Dr, ZDT 1= Dy 12Dk , =D} ZDT.!

=i+ I=i+2

=ADr_ zZDk , — AD} Z Dy y~ Dy i 1D; + D Dr_i

k=1 =i 2
Y g 1
=T (ac sinh(z(1 — y))f Mdz - cosh(a:y)/ cosh(z(l — z))dz)
a T y
+ O(1)
T .
= ——sinh{z{l — y)) + O(1).
€T
Thus, it follows that
(2.27)  (det Py)2(P, 'e) hi(Py te)

= 2—/ (cosh  — cosh(x(1 — ) sinh(x(1 — ))dy + O(T?)

T/, N
= 2— | zsinh“z + 1 —coshz | + O(T"),
x 2

after some simplification. Hence, plugging in (2.19), (2.24), (2.26) and (2.27) into
(2.25) and simplifying, we get

hr—1
(2.28) b= T (1 . 2533_:5—> +O(1),

@€ sintw
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and by inserting {2.24) and (2.28) into (2.11),

(2.20) d T z (1qcosh:r:—1

rsinhz

dp 2V sinhz ) + o).

Now, to deduce (2.5), (2.1) and (2.3) tell us that we also need 8%¢/(6udv) ie., in
view of (2.13), A;2. But expanding Q' via (2.21), we find
1 11 s p—1 1 a?
—Alg =CQ0 d:CPO d+ S S———
2 z , , T
1-— ﬁc PO C
oPy (1 +O(T™Y)),

¢ Pyled Pyd(l + O(T™)

_ det Fy
- det QO

and it follows trom Lemma 2.4 that

T—1

1 .
h

(2.30) det R Py ld = S D; = T?f sinh(zy)
i=1 o T

T2
- F(coshm — 1)+ O(T),

dy + O(T)

ie., by (2.24),

1 coshr —1
2.31 —Ap =T "2 — L O(T
( ) g 12 zsinhz +0(I),

and so, (2.13) and (2.24) yield

dp , coshz—1
(2.32) E T W + O(T)

Finally, since ds = zdz/T? + O(T %), (2.29) and (2.32) inserted in (2.1)-(2.3)
imply (2.5).

Deriving (2.6), we start with 8%¢/8p° (cf. (2.4)), and to this end, (2.21)
implies (cf. (2.25))

-1 -1 det Py 2 ., , -1 -1
by = tr(Qy " he) = tr(Fy " he) +M‘f§(f’o c)'ha(Fy 'e)l(1+O(T™1)),
and by Lemma 2.4,
™ ! sinh(zy)
det Potr(Pythz) = | Di_y Dr —T2f S cosh(z(1 y)dy 1 O(T)
i=1 ¢
2 .
_ ’f"_smhz o).

2
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Moreover,

(det Py)*(Py 'c)'ho(Py'e)

T-1 i T-1 2
Z (DT—sZDLl +Diy Z DT—J)
i=1

k=1 {=i+1

T° /: (cosh(sc(l —¥)) foy E{I%ggﬁdz

v &hm(mi) /1 cosh{z(1 — Z))dz) 2dy +0(T")

il

-

T 3 sinhz 1
= — (cosh2 T - 3 coshx

+ 5) +O(TY),

i T

and so, by (2.19) and (2.24), we get after simplification

3 1 sinh x
2v .
(2.33) bo =T 5 7einh 2 (COSh.'L . ) + O{T).

Finally, by (2.21),
b1y = tr((Qg 'h1)?)
- det #y 22, . Y
—tr ((Po '+ e g B (B 1+ O(T)) )

det Iy x?

= tr((P0_1h1)2) + 2MT§

(Pyley hiPythg (Pyte)(1+ O(T7 1)

2 4
" (g:tfg;) %((Pﬂ_lc}'hl(*poflc))a(l+O(T-1))_

Rut, in the same manner as above, it follows that

sinh =

(det Po)?tr((Py *h)?) = Dy o2 + O(T) = T* ( ) + O(T).

Iurthermore,

T 2
(det Pp)*(Fy ) m Py ha(Py'e) = Dé_, (Z D;‘_l) + O(T*)
d=1

. . 2
:T551nh9: (/1 smhﬂf:cy)dy) + oY

T 0

T5
= sinh z(coshz — 1)2 + O(T1),
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and so, via (2.19), (2.24}, (2.27) and simplifications

2 hoe —
(2.34) b = 4T— (1 i I) +~O(T%).
sinh® x

Hence, (2.24), {2.28), (2.33) and (2.34) inserted in (2.12) yield

& T 3 1 sinhx
2.35 e -5 shz —
(2.35) ap? sinhsc( 2 zsinhz (COb ' x )
} 1 2(:03}{3: ~1\?
4 rsinh x
2/ coshax — 1
+ =1 -2——— + O(T).
x? ( sinh? z )) )

Dealing with 8%p/0u?, (2.14) tells us that we need A;;, and by expanding Q,*
we get,

- - 1 z? detPy , _
Ay =dQple =P 1c+_——2 (Pt = tQ” dR;t
i— IP—I
and so, (2.23) and (2.24) imply
1 sinh
(2.36) Ay = T?— (cosh:c 2 I) +O(T?),
zsinhz z
and by {2.14) and (2.24),
A e 1 ginh = 5
{2.37) TE T 5 (smb 2)572 (coshm— ) + O{T*).

As for 33 /Oudvdp, the only new term needed is Bz (cf. (2.15)). But, cxpanding
Gy Land stmplifying,

1 =1 —1

5312 =@y hiQyd

. det Py
a det QQ

2
) ((P o)A (P ) + (s (B o) b (B
— (¢ O_lc)(Po_lC)’hl(H,_ld))) (1+0(T™1).

The only “unknown” component of this expression is (P 'e)'hi (P 'd), and via
Lemma 2.4, approximations and simplifications in the usual manner, we obtain

3
(det Po)2 (Pt e) hy(Prtd) = % sinh z(coshz — 1) + O(T?),
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which together with (2.19), (2.23), (2.24), (2.27) and (2.30) yields, after simplifi-
cation,
T? (coshz — 1)2

1

, . +0(TH.
x? sinh? z ()

Hence, putting (2.28), (2.31) and (2.38) into (2.15), it follows that

3 3 _ _
(2.39) & T coshz—1 (A coshz — 1

Gudvdp 2 \/z(sinhx)3/2 zsinhz

) + O(T?).

We now have

det Py z°

Agpy =d'Qyld=d' Py'd + et O, T8

(c' Py d)?,

and since by Lemma 2.4,

det Pod' P 'd = Dy, = THARE

+ O(1),

(2.19), (2.24) and (2.30) imply

coshz — 1

(2.40) Agy = (1),

and by inserting (2.24), (2.31), (2.36) and (2.40) into (2.16), we obtain

zsinhx

e 1 sinh &
+O(T%).

Finally, since ds = zdz /T2 + O(T~*) and by partial integration

f L cosha:—Smhﬂ5 dr =2,
o (sinhz)3/2 z

it follows readily from (2.4), (2.35), (2.37), (2.39) and (2.41) that, via simplifica-

tions
EZ:/OO 372 (1(1200311.33—1)24_%(1_2(:05?}1332—1)
o \/;m 4 rsinhx T sinh” x
coshe — 1 coshx — 1
+ - 1 = f—————
xsinh z zsinh

,coshz ; 1 (QCoshx _sinhz 1))da¢
$2 sinh” ¢ T

cosh:r: -1
dx,
siuliw b 22sinhz
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which was (o be proved. O

Remark. An alternative method of proving the theorem could be via stochas-
tic caleulus (cf. Le Breton and Pham (1989} and Liptser and Shiryayev {{1978),
Vol. 2, pp. 206-209)}). However, our method is preferable in the sense that it may
(in principle) easily be generalized to obtain correction terms in 77!, etec. {cf.
Larsson (1994)). This is not the case with stochastic calculus methods.

3. Concluding remarks

By generalizing the methods of the present paper, it would be possible to
calculate higher moments for the test statistics as well as corresponding results for
first order autoregression processes with a polynomial in ¢ in place of the constant n
in the defining equation. We may also, by some refining of the technique, calculate
first (or higher) order correction terms in 7" of the expectations. These terms are
interesting in the context of small sample (Bartlett) correction, ¢f. Larsson (1994,
1995) and Nielsen (1995). Finally, our ideas might be useful for a generalization
to vector-valued autoregressive processes, where the unit root test carries over to
a test for cointegration (cf. Johansen (1988)).

Acknowledgements

The author is grateful to Dietrichk von Rosen for discussions on the subject,
and to the referees for helpful comments.

REFERENCES

Abadir, K. M. {1993). OLS bias in a nonstationary autoregression, Econom. Thesry, 8, 81-93.

Andrews, D. W. K. (1993). Exactly median-unbiased estimation of first order autoregressive/unit
root models, Econometrica, 61, 139-165.

Billingsley, P. (1968). Convergence of Probability Measures, Wiley, New York.

Evans, G. B. A. and Savin, N. E. (1881). Testing for unit roots: 1, Eeonometrice, 49, 753-779.

Evaus, G. B. A. and Savin, N, E. (1984). Testing for unit roots: Z, Econometrica, 52, 1241-1269,

Jacobson, T. and Larsson, R. {1997). Numerical aspects of a likelihcod ratio test statistic for
cointegrating rank, to appear in Computational Statistics and Data Analysis.

Johansen, 8. (1988). Statistical analysis of cointegration vectors, 7. Reonom. Dynamies Control,
12, 231-254.

Johansen, 8. (1991). Estimation and hypothesis testing of cointegration vectors in gaussian
vector autoregressive models, Econometrica, 59, 1551-1580.

Johansen, 5. and Juselius, K. (1990). Maximum likelihood estimation and inference on cointe-
gration with application to the demand for money, Oxzford Bulletin of Economics and Statis-
tics, 52, 169-210.

Tarsson, R. (1004). Bartlett correctione for unit root tost stotisties, Preprint No. 2, Institute of
Mathematical Statistics, University of Copenhagen.

Larsson, R. (1995). Small sample corrections for unit root test statistics, Report No. 13, Depart-
ment of Mathematics, Uppsala University, Sweden.

Le Breton, A. and Pham, D. T. (1989). On the bias of the least squares estimator for the first
order autoregressive process, Ann. Inst. Statist. Math., 41, 555-563.

Liptser, R. S. and Shiryayev, A. N. (1978). Statistics of Random Processes I & 11, Springer,
New York.



ASYMPTOTIC EXPECTATICNS OF UNIT ROOT TESTS 599

Magnus, J. R. (1978). The moments of products of quadratic forms in normal variables, Siatistica
Nederlandica, 32, 201-210.

Mikulski, P. W. and Monsour, M. J. {1994). Moments of the limiting distribution for the bound-
ary casc in the first order autorcgreasive process, Amer. J. Math, Management Sei., 14,
327-347.

Nielsen, B. (1995). Bartlett correction of the unit root test in autoregressive models, Discussion
Paper No. 98, Nuffield College, UK.

Pham, D. T. (1990). Approximate distribution of parameter estimates for first-order autoregres-
sive models, J. Time Ser. Anal., 13, 147-170.

Phillips, P. C. B. and Durlauf, S. N. (1986). Multiple time series regression with integrated
processes, fev. Econom. Stud., LIII, 473493,

Phillips, P. C. B. and Perron, P. {1988). Testing for a unit root in time series regression,
Biometrika, 75, 335-346.



