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Abstract. Let X and Y be observation vectors in normal linear experiments
£ = N(AB,0V) and F = N(BS,ocW). We write £ = F if for any quadratic
form Y'GY there exists a guadratic form X'HX such that E(X'HX) =
EX’'GY) and var(X'HX) < var(Y'GY). The relation = is characterized
by the matrices A, B, V and W. Maoreover some connections with known
orderings of linear experiments are given.
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1. Introduction

Any statistical experiment can be perceived as an information channel trans-
forming a deterministic quantity (parameter) intn a random qnantity (abservation)
according to a design indicated by the experimentator. This rises some problems
of design choice. Further specifications may lead to different concepts of compar-
ison of statistical experiments.

We restrict ourselves to normal linear experiments N(AB, oV} and N(BS,
oW). The classical concepts in this subject adopted the well known notions of suf-
ficiency and linear sufficiency (cf., among others, Boll (1955), Chrenfeld (1955),
Kiefer (1959), Hansen and Torgersen (1974), Torgersen (1984, 1991), Stepniak and
Torgersen (1981), and Stepniak et al. (1984}). On the other hand, it follows from
the frame of the minimal sufficient statistic, that all reasonable decision rules
in such experiments are based on linear and quadratic forms. Thus a study of
quadratie sufficiency may be an interesting complement to the known results.
We take an effort to lay the foundations of such a work.

As we shall see, quadratic sufficiency is stronger than linear one but weaker
than the usual notion of sufficiency.

In Section 3 the problem of quadratic sufficiency is reduced to some simpler ex-
periments and in Section 4—to the problem of linear sufficiency for corresponding
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linear models with unkoown variance components. A comprehensive character-
ization of the quadratic sufficiency in term of the matrices A, B, V and W is
presented in Sections 5 and 6.

2. Preliminaries

Throughout this paper the following matrix notation is used. If M is a matrix
then M’, R(M), N(M), r(M), M~ and M~ denote, respectively, transposition,
the range (column space), the null space, the rank, a generalized inverse and the
Moore-Penrose generalized inverse of M. If M is square then tr(M} denotes its
trace. The symbols R™ and S, stand, respectively, for the space of real n x 1
vectors and for the space of real n x n symmetric matrices. Moreover, the symbaol
M > 0, where M € &,, means that M is nonnegative definite (n.n.d. for short).

Let X and Y be random columns, possibly of different length, with distribu-
tions depending on a parameter 8 € &.

DerINITION 2.1. {Lehmann {1988)) We say that X is sufficient for Y if
there oxists a random quontity Z, independent on X, with a known distribution
and a function & of X and Z such that

(2.1) h{X, Z) has the same distribution as ¥

DEFINITION 2.2. Assume that E(X'X) < oo and E{(Y'Y) < cc. We say
that X is linearly sufficient for Y if for any linear form bY there exists a linear
form o’ X such that

(2.2) Ep(a’'X)=Ep(t'Y) and varg(a'X) <varg(d'Y) forall €.

DEFINITION 2.3,  Assume that E{(X'X)? < oo and E(Y'Y)? < cc. We say
that X is quadratically sufficient for Y if for any quadratic form Y'GY there
exists a quadratic form X’ HX such that

(2.3) Eg(X'HX) = Fp(Y'GY) and varg(X'HX) < varg(Y'GY)
forall 8¢ @.

Remark 2.1. Definition 2.2 extends a notion introduced by Drygas (1983).

Remark 2.2. Our notion of quadratic sufficiency does not coincide with the
same term used by Mueller (1987).

In this paper we assume that X and Y are, respectively, observation vectors
in the normal linear experiments £ = N {AfB,0V) and F = N(Bg,cW), where A
and B are known n X p and m. x p matrices, V and W are known n.n.d. matrices
belonging to &, and S, while 3 € RP and ¢ > 0 are unknown parameters.
So, instead of X and Y, we shall often refer the relations of sufficiency, linear
sufliciency and quadratic sufficiency for the experiments £ and F.
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Definition 2.2 uses only first two moments of the observation vectors X and
Y and one can apply it to the usual linear models £; = L£(AB3,0V} and £, ==
L(B3,eW). For example, instead to say that X is linearly sufficient for Y, we
shall often write £y t Lo, 1t is well known that L£; > £y if and only it A'(V +
AA"Y" A~ B'(W+ BB’} B is n.n.d. Similarly, assuming X and Y are observation
vectors in the normal experiments £ and F, the symbol £ > F will mean that X
is quadratically sufficient for Y.

Our goal is to characterize the relation = by the matrices A, B, V and W.
In fact, by Definition 2.3, the characterization will be valid not only for normal
linear experiments & and F but for arbitrary random vectors X and Y such that

(2.4) E(X)= A3, E(Y)=BS3,
E(X'HX)=ctr(VH) + 3 A HAB,
(25) E(Y'QY) = o tr(WG) + 8'B'GB3,
and,
(26) cov(X'H\ X, X' Ha X} = 20% tr(H1VH, V) + 408’ A'H\V H, AB,

cov(Y'GLY,Y'GoY) = 202 tr(GiW G W) + 403’ B'G WG, B3

for all H Hy,Hy € 8y, G,G1,Gy € 8y, B € RP and o > 0 (cf. e.g., Searle (1971),
p. 57 and p. 451).

Considering the relation > for the normal linear experiments one can ask
about a practical sense of Definition 2.3 in this context. By formulae (2.5} the
expectation {X'H X} is a parametric function of the form co + 3'C3, where ¢ € R
and C' € Sp. Such [unctions appear in estimaling the mean syuared error ol linear
estimators (cf. Stepniak (1995)).

Some properties of the relations of sufficiency, linear sufficiency and quadratic
sufficiency are collected in the following lemimnas.

LEMMA 2.1. (Transformation invariance) For any nonsingular linear irans-
Jormations X — 11X andY — IyY:
(1) X is sufficient for Y if and only if T\ X is sufficient for ToY,
(ii) X is linearly sufficient for Y if and only if T1 X is linearly sufficient for
Y,
(iil) X s quadratically sufficient for Y if and only if TV X is quadratically
sufficient for ToY .

LEMMA 2.2. (Parameterization invariance} For arbitrary matric K such
that R(A"Y C R{K) and R(B') C R(K):

(i) N(AB,oV) is sufficient for N(BB3,cW) if and only if N(AKE,eV) is
sufficient for N(BK¢, oW,

(ii) L(AB,aV) is linearly sufficient for L{BA, aW) if and only (f L{AKE oV
is linearly sufficient for L{BKE, oW),

(ii) N(AB,0V) is quadratically sufficient for N(BfB,oW)} if and only if
N(AKE, oV) is quadratically sufficient for N{BKE, oW).
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LEMMA 2.3. (Smoothing)
(i) N(AB,aV) is sufficient for N(Bg, o W) if and only if N{AB, o(V +AA"})
is sufficient for N (B3, o(W + BB")).
(1i) L(AB,oV) is linearly sufficient for L{B3,cW) if and only if L(AB, o(V +
AA"Y) is linearly sufficient for L(BB,o(W + BB')).
(iii) N(AB,oV) is quadratically sufficient for N(BB,cW) if and only if
N(AB,a(V + AA"Y) is quadratically sufficient for N (Bg,o0(W + BB'))}.

For proof of the statements (i) and (ii} in Lemma 2.3 we refer to Stepniak
((1987), Theorem 1) and Torgersen ((1991}, pp. 465-467). In order to show the
statement (iii) we only need to verify that under the assumptions tr(VH) =
tr(WQ) and A'HA = B'GR the conditions

(2.7) tr(HVHV) < tr(GWG‘W), BGCWGEB - AHVHA s nd.
and

25 te[H(V + AAH(V + AA")] < e[G(W + BB")G(W + BB')],

B'G(W + BB)GB - AH(V + AAYHA is nnd.

are equivalent.
The following theorem provides a connection between the orderings » and .

THEOREM 2.1. For arbitrary normal linear experiments £€ = N(AB, oV}
and F = N(B3,aW) let us consider the lineowr models £ = L(AB,0V) and
Lo = L(BB,oW). If€ ~ F then

(a) r(V+AA) ~7(A) 2 r(W + BB') — r(B)
and
(b) L& L.

ProoOr. Assume that & = F.

{a) It follows directly by the well known fact that o is unbiasedly estimable
in € if and only if v = r{(V + AA"} — r(A) > 0 and if so, then the variance of
its Best Quadratic Unbiased Estimator is equal to 20°/v (cf., e.g., Rao (1973),
pp. 204-300).

Let X and Y be observation vectors in the experiments £ and F, respectively.
It is known {cf. Seely (1978), Theorem 2.1 and Corollary 2.2) that the BLUE
ft = (X)) of A3 and the BQUE & = (X)) of ¢ are stochastically independent and
jointly constitute a complete sufficient statistic in £, provided r{V + AA’) > r(A).
Otherwise, if r(V + AA’} = r(A), the initial vector X is complete.

(b) For a given linear form 4'Y" let us consider the parametric functions ¢ =
E({MY) and o = E[(WV)?]. Ry assumption £ = F, via (2.4) and (2.5), the hoth
functions are unbiasedly estimable in £. Moreover, by completeness, the BQUE
of ¥ can be written in the form v = 6 + (qg)z, where ¢ = ${X) is the BLUE
of ¢ and ¢ € R. Thercfore var[($)?] < var(¢) < var[()'Y)%]. We need to show
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that var(¢) < var(d’Y’). The desired result follows directly by the fact that for

arbitrary normal variables Z; and Z3 with a common mean, var(Z3) < var(Z2) if
and only if var(Z;) < var(Z;). This completes the proof of the theorem. O

Now let us consider a particular case, when F = N(0,cW). Then E(Y'GY) =
co for arbitrary quadratic form Y’GY. In consequence, by the argument used at
the beginning of the proof we get the following result.

LEMMA 24 For arbitrary normal linear experiments £ = N(AB,¢V} and
F=N(,0W), £~ F if and only if r(V + AA") -~ r(4) = r(W).

Ilenceforth we shall assume that the matrix B, appearing in the experiment

F = N{B3,cW}, is different from zero.
3. Reduction by invariance

In this section we focus on the normal experiments £ = N{Af,o1,) and F =
N(BB,0ly). It is well known (cf. Hansen and Torgersen (1974)} that & is sufficient
for F if and only if A’A — B'B is nonnegative definite and r(A’A— B'B) < n—m.
Thus, under condition A’A— B’B > 0, the relation of sufficiency may be expressed
by the integers n, m and 7{A’A — B'B). It will appear that a corresponding
expression for the quadratic sufficiency needs some additional information about
A and B or, more precisely, about the eigenvalues of the matrix (A’A)" B'B.

By Theorem 2.1(b) the condition

(3.1) R(B') C R(A")

is necessary for the relation £ > F. Let A and B be arbitrary nonzero n x p and
m x p matrices satisfying (3.1) and let 7 and ¢ be ranke of 4 and B. By Lemmas Al
and A.2 in the Appendix all eigenvalues of (A’ A)™ B’ B are nonnegative. Moreover,
A'A — B'B > 0 if and only if the cigenvalues are not greater than 1.

Now for the initial experimenls £ and F let us consider some reduced cxper-
iments

N’(ajgjq) if r=n
(3.2) &o = N ([ ¢ ] ,g]n_TJrq) otherwise,
and o

N(Da,oly) if g=m
(3.3) Fog = N ([Oi ch] o Im) otherwise,

where oo € R? and

(3.4) D = ding(v/ A1 -5 v/Ag),
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while A; > --- > A4 are nonzero eigenvalues of the matrix (A’ A)* B3 taken with
their multiplicities.

TueoreM 3.1. {Reduction to canonical experiments) For arbitrary experi-
ments £ = N(AB,cl,) and F = N(Bj,0l,,) such that B # 0 and R(B'Y C R(A")
let us consider the reduced experiments £ and Fy defined by (3.2) and (3.3). Then
the following are equivalent:

(a) £ F,

(b) Eo - Fo.

Proor. By Lemma A.3 (see Appendix) there exists a p x r matrix M such
that

R(M)=R(A"), MAAM =1, and

D? if ¢=
(3.5) o ta=r
M'B'BM={ [p? o
[ 0 0] otherwise.

Rewrite the matrix M as M = M, M|, where M has ¢ columns. Let F} and
F5 be arbitrary (n — r) x n and (m — ¢) X m matrices satisfying the conditions
FA =0, FBRB =0, {iF| = I, and FbF;, = I,—,. We define an auxiliary

experiment
N([g],ab) if r=n
(3.6) & = o
N ) coly, otherwise,
0, _r

where o« € R? and ¥ € R"79. It follows form Lemmas 2.1 and 2.2 by setting
K =M,
M'A DM B

that £ > F if and only if £ > Fy. Now we only need to show that the relation
£ = Fo 1s equivalent to & > Fo.

Let us consider an arbitrary quadratic form X'QX, where X is observation
vector in the experiment £ and let

[Qu Q1o ] i
e Qa2
Q= Qi1 Qa2 Qs
Qla Q22 Qun otherwise,
13 @ Qas

be the block representation of the matrix @, corresponding to (3.6). By formula
(2.5) the expectation E(X'QX) does not depend on # if and only if Q12, Qa2 and
(223 vanish. This implies the desired equivalence and completes the proof. 01

r=n
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4. Reduction by sufficiency

Theorem 3.1 provides an initial reduction of the problem of quadratic suffi-
ciency to some canonical experiments. In this section the second problem will be
further reduced to the problem of linear sufficiency for corresponding linear models
with unknown variance components. To this aim we need to collect some results
on sufficient statistics for a canonical normal experiment.

ProrosiTioN 4.1. Let YV be ohservation wector in o normal lineor experi-
ment N'(Da,cl;) such that D = diag(dy,...,d,) is nonsingular. Then

(a) Y is a complete statistic in the experiment.

(b) A parametric function ¥ = co | o'Ca, where ¢ € R and O € &, 15
estimable by quadratic forms of Y if and only if

(4.1) c=tr(DT'CD").

(¢) If the condition (4.1) is satisfied then the Best Quadratic Unbiased Esti-
mator of ¥ may be presented in the form W =Y'DT'CD™Y and its variance i3
var(1)) = 202 tr{(CD~2CD %) + 4o/ CD*Ca.

PROPOSITION 4.2. Let Y be observation wvector in a normal linear experi-
ment N( [Ig] o, 0lg4k) such that D = diag(dy, ..., d,) is nonsingular. Then

(a) The joint statistic s(Y) = [s?;j‘.)], where Y., = [V1,...,Y,] and s{Y) =

71523;;11 Y2 is complete and sufficient in the experiment.
(b) Any parametric function ¢ = co + o'Ca, where ¢ € R and C € S, is
estimable by quadratic forms of Y.
{c) The BQUE of v may be presented in the form ¥ =Y!DICDY, 4 [c—
tr{D71CD~Ys(Y) and its variance is

(4.2) var(¢) = %{c —t(D7'CD YPe? + 202 tr(CDT2CD ) 4 40’ CD ™ Cln.

PROOF OF THE PROPOSITIONS. The sufficiency follows by factorization the-
orem for exponential families of distributions while the completeness follows from
a theorem by Lehmann ((1986), p. 142). Now we only need to verify the condi-
tions (b) and (c) in the Propositions 4.1 and 4.2. To this aim it suffices to use the
formulae (2.5) and (2.6). O

THEOREM 4.1. Let X and Y be observation vectors in arbitrary normal lin-
ear experiments & and Fo of the form (3.2) and (3.3) for some diagonal matriz
D with positive diagonal elements. Then & = Fo if end only if for any parametric
funetion ¥ = coo + So0_, c;a? and for any wnbiased estimator Y = Y'GY there

exzists an unbiased estimator 1 = X'HX such that var(¢)) < var(1)).

Proor. The necessily is evidenl.
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Sufficiency. If ¢ = m then the sufficiency follows by formula (4.1). Otherwise,
by Theorem 2.1 (b) we get

(4.3) I,-Dz0

and, in consequence, CD~1C — C? > 0 for any C ¢ S,. Moreover tr(D~1CD1)
depends on the mabrix € through its diagonal elements only. Thus, by [ormula
(4.2) we only need to show that the condition (4.3) implies tr(CD~2CD"?) >
tr(C?) for any symmetric matrix C' = (¢;;) of order ¢. Really, tr{CD™2CD™?) =
tr[(D1CD 12 = 2 3%%? > 2 cgj = tr(C?), completing the proof. 0

Now for arbitrary normal experiments £ — N{43,01,) and F — N (B3, 01,,,)
such that R(B’) € R(A’) let us consider the linear models £, = L{T17,Vi{m,...,
o)) and Lo = L{Ty7, Va{v1,...,74)), where T; and V;, ¢ = 1,2, are defined by

[ : 1, if r=n
{4.4) T = .
‘.r‘i.' . .:.l? otherwise,
ro.
([0 - 1
(A 1] if ¢g=m
(4.5) To=<[. .
{\. . Mg otherwise,
L]0 ¢ 1
(1, +T if r—n
(4.6) vi={ |TotL 2. 0
otherwise,
0.’
L n-—4g
’q+AI‘ il g=mn
(4.7) Ve={ [la AT - 0
otherwise,
o L
\ L m— q

where r = r(A), ¢ = r(B) and A = diag(A;,...,Ay) is the known matrix fur-
nished by the nonzero eigenvalues of the matrix (4’ A)" B’ B taken with their mul-
tiplicities, while I' — diag{~y,,...,~,) is a diagonal matrix furnished by unknown
nonnegative elements v;,..., 7.

THEOREM 4.2, For arbitrary n % p and m < p matrices A and B such that
B # 0 and R(B'") C R(A") the following are equivalent:

(a) The experiment € = N(AB, cl,) is quadratically sufficient for the exper-
iment F — N(DBg,uly).
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(L) The linear model £) = L{(T11,V1{71,...,7)) @ linearly sufficient for
the model Lo = L(Tor,Valy1,..., 7)), where T; and Vi, ¢ = 1,2, are defined by
(4.4)-(4.7).

Proor. For the initial experiments £ and F let us consider the canonical
experiments & and F; defined by (3.2) and (3.3) with observation vectors X =
(X1, Xnoreg) and ¥ = (¥1,...,Y,). Let

X if r=n
U{X) = xX®
otherwise
)
and
Yy if g=m
Ua{Y) = ¢ [yi® _
otherwige
)

be statistics in £ and Fo defined by X2 = (XZ,..., X?)', Y@ = (YZ,..., Yqz)",
s(X) =% Z::q?lq XZand 8(Y) = - 320 11 Vi2. Moreover, let £ and £3 be
the linear models induced by the random vectors U; = Uy(X) and Uy = Ua(Y'),
respectively.

By Propositions 4.1 and 4.2 and Theorem 4.1 the relation £ = F is equivalent
to £} v £5. Moreover, by using formulae (2.5) and (2.6) and by setting 7 =
(of,...,0f,0) and 7y = 20f/o, 1+ = 1,...,¢, the models £] and L£; may be
presented in the form £ = £(T17,20%V1) and £ = L(Tyr,202Vy), where T; and
Vi, i = 1,2, are defined by {4.4)-(4.7). On the other hand, by Stepniak and
Torgersen (1981) the relations £] v L5 and £ > £y are equivalent, completing the

proof. O

5. Main result
We are ready to prove the main result in this paper.

THEOREM 5.1. An experiment £ = N(AB,0l,)} is quadratically sufficient
for an experiment F = N (Bp,ol,,) such that B # 0, if and only if,

i)y AAA-B'B is n.nd.,

and
1N
. AP — (A B
(ii) ;1+)\i <n-m-r(A)+r(B),
where \;, i =1,...,q, are the positive eigenvalues of the matriz (A’ A)* B'B {aken

with their multiplicities.

Remark 5.1. Other necessary and sufficient conditions for the relation & = F
may be obtained by combining respective items in Lemmas A.1 and A.2 {see
Appendix).
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Proor oF THEOREM 5.1. In view of Theorem 4.2 and by Stepniak and
Torgersen (1981) we only need to show that (ii) is a necessary and sufficient con-
dition for the matrix inequality

(5.1) TV (s %) T~ TV (s %) T2 > 0

for all nonnegative ¥, ...,7, providing (i) holds. Defining M; = TV, ' T;, i = 1,2,
we can write

-1 I _
0 0
1+4+m ! 1+m
] 0
1T+ L+
My | SRR PR
0 0o -
1 =+ 'Tq 1 =+ qu
1 1 i1
n—r+
(147 1+ L+ §1+%
and
—__A_%__ 0 - 0 L 1
1+ An 1+ A7
pYs 0 Ao
14+ Azye 1+ Agve
My m | e 7
0 0 o a
1+ ’\q'Yq 1 +q/\q7f1
Al Ag Ag 1
s e —— m — + e ————
_]. +d7m 14+ Aoy 1+)\q’Yq 4 ; i +Ai"ﬁ_
By the identities
1A I
T+ T+Xdv 420+ %)
1 N A A)
Tty 1+xy (U H i+ dew)
and
11 _ =)
T4+ 14 M {14+ 7)1 + Aivi)
we get
(1=A)0+M My 0 1Ay
(Ly1){1+A171) (T4+v1) (I +xam1)
I EREEREI R - ARy SEUIIEEERE
My — My = 0 B (e tev T7) (14 Ra7a)
1A 1-2, n—m-r+q
00+ %) TR0+ - wi, il
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Now we shall use the fact that a symmectric block matrix

My M
M=
[le Moy

is n.n.d., if and only if, R(M12) C R(M1;) and the matrices My and My —

Moy M Mo are nonnegative definite (cf. Pukelsheim (1993), p. 73). To this aim
let us write M, — M, in the form

g  Sv
Ml - M2 - |:’U!S g :| 1
where
(L) +2xm) 7 (L +7HL + Agyy) '

!

1 1
v [1+/\1+A1fyl""’1+Aq+/\quq]

and

g
_ Yk — A
g_n_m_r-lhqw;(1+’Yi)(1+)\a"n)'

‘We observe that condition (5.1} is equivalent to g — (v'8)S~(Sv) = g—v'Sv >
0 for all nonnegative y1,...,7,. By simple algebra we get
2 1
v Sv = .
; (L4 9) 3+ Ay (1 + A+ Aivi)

Thus

1— X
g—vlSv:n-—mffrirqAZl_*_Ai,

i—1

which implies the desired result. O

In a consequence of Theorem 5.1, via Hansen and Torgersen ((1974), Theorem
3.1} and Corollary A.1 (see Appendix) we get the following corollaries.

COROLLARY 5.1.  For arbitrary standard experiments £ = N(AB,0l,) and
F =N(Bj,cl,) the condition

(a) & is sufficient for F (in the sense of Definition 2.1)
tmplies

(b} & is quadratically sufficient for F.

COROLLARY 5.2. (Experiments with the same degrees of freedom for error)
For arbitrary n x p matriz A and m X p matriz B such that n — r(A) = m —r(B)
the following are equivalent:
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(a) N(AB,0ly,) is sufficient for N (BS,0ly,),
(b) N(AB,cl,) is quadratically sufficient for N(Bf,ol,,),
(¢) A’/A=PB'B.

COROLLARY 5.3, (Experiments with a common sample space) Ifn = m
then the above conditions (a)-(c) are equivalent.

Moreover, by Lemma 2.4 we get

CUROLLARY 5.4. For wrbitrary matriz A the experiment N{AB, oly) is suf-
ficient for N(0,cl,,) if and only if N(AB,0l,) is quadratically sufficient for
N(0,0ly).

Remark 5.2. In general, the relation £ > F does not imply that £ is suf-
ficient for F. To see it let us suppose that the matrix (A’A)" B’B has only two
distinct eigenvalues: 0 with multiplicity r — ¢, and A with multiplicity g, where
0 < A < 1. Then the experiment £ = N{AB,al,) is quadratically sufficient for
F=N(BB,ol,)ifandonlyif k =n—m—r+¢>0and L%i > % In particular,
ifk=1,¢g=3and A =.5 then & is quadratically sufficient but not sufficient for

F.
6. Experiments with arbitrary covariance matrices

In this section we shall consider arbitrary normal linear experiments £ =
N(AB,oV) and F = N(Bj,oW), where V" and/or W may be singular.

THEOREM 6.1. For arbitrary normal linear experiments € = N(AB,0V)
and F = N(BG,0W) such that B # 0 the relation £ ~ T does hold if and only if

() A(V+AA)V"A—B(W+BB)Y B20 is nnd

and
21N
(ii) ; T A <r(V + AA)— (W + BB') - r{A) + r(B),
where A;, i = 1,...,q, are the positive eigenvalues of the matriz (A’ A)TB' B, taken

with their multiplicities.

Proor. Let X and Y be observation vectors in the experiments £ and F,
respectively.

At first assume that the both experiments have trivial deterministic parts, l.e.
R{A) C R{V) and R(B) € R(W). Let V. =31 powv} and W = 3772 | rywwj
be spectral decompositions of V and W, respectively, with positive eigenvalues p;
and x;,4=1,...,r1, 5 = 1,...,72. Define matrices

JB,
(6.1) F = :
AV pT'l U’:‘l

and
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N
(6.2) Fy =
K‘T‘Dw:r'g
By transformations Fi X and F,Y we reduce the comparison of £ and F to the
same problem for the standard normal experiments & = N (43,01} and Fy =
N(B18,01,,), where A] = F1A and By = [B. We note that 7{4;) = r(4),
7{By) = r(B), F|F} = AV~ A and FiF, = B'W™ B, where ~ means a generalized
inverse. Now, for the considered case the desired result follows by Theorem 5.1.
Finally, to complete the proof we only need to use the smoothing property of the
relation » {cf. Lemma 2.3). O

Remark 6.1. If R(A} C R{V) and R{B) C R(W) then the matrices V + AA’
and W + BB’ appearing in the conditions (i) and (ii) may be replaced by V" and
W, respectively.

Remark 6.2. This theorem is an analogue of Torgersen {(1991), Theorem
R.6.6, p. 497).

By Theorem 6.1, the Corollaries 5.1, 5.2, 5.3 and 5.4 in Section 5 may be
extended to the following.

COROLLARY 6.1. For arbitrary normal linear experiments £ = N(AB,oV)
and F = N (BB, ocW) let us consider the following relations:

(a} & is sufficient for F,

(b} & is quadratically sufficient for F.
Then (a) always implies (b). Moreover, the relations (a) and (b) are equivalent
providing that at least one of the following conditions

(¢) r(V + AA") — r(A} = r(W + BB') — r(B),

(d) r(V) — (W),

(e) B=10
does hold.
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Appendix

Let A and B be arbitrary n x p and m x p matrices such that B # 0 and
R{1B") C R{A’) and let r and ¢ be ranks of A and B. Moreover let L be an arbitrary
p x v matrix such that r{AL) = r. Consider the characteristic polynomial

(A.1) P = |L'(B'B - MA" AT,
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LemMmMA A.l. (a) The roots of the polynomial do not depend on choice of the
matriz L.

(b) All roots of the polynomial (A1) are nonnegative.

(c) For arbitrary set S = {A1,..., Ag} of positive numbers the following are
equivalent:

(i) S is the set of all positive roots of the polynomial P faken with their
multiplicities.

(i) S is the set of all positive eigenvalues of the matriz (A’A)Y B'B taken
writh their multiplicities.

(ili) S is the set of all positive eigenvalues of the matriz B(A’A)~ B’ taken
with their multiplicilies, where — means a generalized inverse.

(ivi S 48 the =set of all positive eigenvalues  of the matrir

(A’ A)T)V/2B'B[(A'A)t]Y? taken with their multiplicities.

Proor. Let P4 be the orthogonal projector onte R(A'). Since L'A’AL =
L'PyA"APy L and L’B'BL = L'P4. B'BP4 L one can assume, without loss of
generality, that R(L) C R(A’) and, in consequence, the matrix L may be presented
in the form L = G'F, where F is a nonsingular r x » matrix whilc

(A2) G = [p7 Pvr,. o p7 0]

where p; and v;, ¢ = 1,...,r, are defined by a canonical decomposition A'A =
>oioq piviv; of A’A. Now the polynomial P can be presented in the form |{L'(B'B—
A'AYVL] = |F|?|G'(B'B — AA’A)G| and hence (a) is proved. On the other hand,
|G'(B'B — AA'A)G| = |G'B’'BG — Al|. Thus the roots of P coincide with the
eigenvalues of the matrix G'B'BG.

In order to show the equivalence {i)<>(iii) we note that the nonzero eigenvalues
of G'B’'BG coincide with ones of the matrix BGG'B' = B(A’A)T B’. Moreover
B(A’A)~ B’ = B(A’A)* B’ because the expression B{A’A)™B’, under condition
R(B") C R{A"), does not depend on choice of generalized inverse {A"A)~.

The equivalence (iii)<(iv) is evident. To show that (ii)<(iv) we observe that
the matrices M = (A’A)TB’'B and T~ MT have the same eigenvalues for every
nonsingular 7. Now we only need to set T = [(A’A)*]Y/% 4+ (I — P), where P is
the orthogonal projector onto R(A’) (cf. also Stepniak (1985)).

In this way the lemma is proved. 0l

Now combining Lemma A.1 and Stepniak ({1985}, Theorem 1) we get

LEMMA A.2. Under assumption R{(B'} C R({A’) the following are equivalent:

(a) A’/A—- B'B is n.n.d.

(b} All roots of the polynomial P are not greater than 1.

(c} All eigenvalues of the matriz (A’ A)" B'B are not greater than 1.

(d) All eigenvalues of the matriz B(A'A)~ B’ are not greater than 1.

(e} All eigenvalues of the matriz [{ A’ A)T1/2B B[(A’ A)t|Y/2 are not greater
than 1.

The most important fact is contained in the following lemma.
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LEMMA A.3. Let A and B be arbitrary n X p and m X p matrices such that
B #0 and R(B') C R(A") and r and q be ranks of A and B. Then there exists a
p x r matriz M such that

R(M)=R(A"), MAAM=1I. and
A if ga=r

M'B'BM={ [A o
[0 0

(A.3)

] otherwise,

where A = diag(A1,..., A,), while Ay > --- > A, are the positive eigenvalues of the
matriz (A'A)t B'B, taken with their multiciplities.

Proor. We only need to set M = GU, where G is defined by (A.2) and
U = [uy,...,u,] is formed by orthonormal eigenvectors of the matrix G'B'BG
corresponding to the eigenvalues X;, i =1,...,r. O

In a consequence of Lemmas A.1 and A.3 we get
COROLLARY A.l. Let Ay > -+ > A, be the eigenvalues of the matriz
(A’A)tB'B taken with their multiplicities. Then r(A’A— B'B) > 7, 1= +

r — g, with the strict inequality unless A; =1 for alli=1,...,q.

Proor oF THE COROTTARY. By (A.R), via T.emmas A.1 and A3,

g q
r(A'A—B'By=rIM'(AA-B'BM|>r ¢+ (1-X)>r—q+3. 1 ~ ;\\*_
i=1 i=1 ?

with the strict inequality if at least one A;, ¢ = 1,...,¢q, is different form 1. 0O
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