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Abstract. We consider stochastic equations of the forin X =4 Wi X + Wa X',
where (W1, Ws), X and X’ are independent, ‘=4’ denotes equality in distri-
bution, EW; + EWz = 1 and X =4 X'. We discuss existence, uniqueness
and stability of the solutions, using contraction argumcents and an approach
based on moments. The case of {0, 1}-valued W; and constant W leads to a
characterization of exponential distributions.
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1. Introduction

Let W = (W7, Ws) be a two-dimensional random vector with the property
that the sum of the expected values of its components is equal to 1. The present
paper deals with distributions that are invariant under linear combinations with
coefficients W and Wy, More precisely, we consider the class of distributions g
on the Borel subsets of the real line KK with the property

(1.1) X =4 W]_'X‘I’WQ‘X’,

where W, X, X' are independent, ‘=4’ denotes equality in distribution and X, X’
have distribution p. Obviously, this class depends on the distribution of W only;
furthermore, it is obvious that solutions of the stochastic difference equation (1.1}
can only be unique up to a scale factor. Writing £(Z} for the distribution (‘law’)
of a random quantity Z we can express the latter fact as follows: if £(X) solves
(1.1) then so does L(cX) for all ¢ € R. There is always a trivial solution, the unit
mass &g n 0.

Stachastic equations such as (1.1) have been considered by many authors,
partly as being of interest in their own right, partly because they arise in the con-
text of other prablems such as from branching processes, infinite particle systems
and probabilistic algorithms.
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The special case of convex combinations with non-random coefficients 1s clas-
sical. The set of solutions to pX + (1 — p) X’ =4 X with some fixed p, 0 < p < 1,
has an additional invariance under shifts, i.e. £(X + ¢) is a solution if £{X} is,
for all ¢ € R. All Cauchy distributions solve this degenerate version of (1.1). For
p = 1/2 there is another solution, not from this location-scale family, which is due
to Lévy (see Feller (1971), p. 567, and Pakes (1992a), Section 2).

In the special case where Wy and W are independent uniform [0, 1] variables
and X, X’ are nonnegative the only solutions (i.e. distributions of X} of (1.1}
are the Erlang digtributions of order 2. This was found by Huang and Chen
(1989) when treating the following more general problem. Let the i.i.d. variables
W, Wi,..., Wpen be independent of the i.i.d. variables X, X1,..., Xinqn- The
problem is to give the solutions £{X) of

Xe+ 0+ X, =q W1 X1 +"‘+Wm+nXm+n-

Huang and Chen found the nonnegative solutions in the case L{W) = beta(a, 1),
« > 0. A variant of this problem treated by Huang and Chen and also by several
ather anthors is to identify the laws L£{X) satisfying

(1.2) Xi+ A Xm=a W(X1+ -+ Xinin)s

see Steutel (1985), Kotz and Steutel (1988), Yeo and Milne (1989, 1991), and
Pakes (1992a, 19925, 1994a). In the simple case where m = n = 1, and L(W) is
the uniform distribution on [0, 1}, the only nonnegative solutions are the exponen-
tial distributions. Pakes and Khattree (1992) and Pakes (19946) considered the
equation

X =qa WX(r})

where X with distribution function F is nonnegative with finite moment u, =
fom y" F(dy) of order r > 0, X (r) has the r-th-order length biased law with distri-
bution function p, * f;’ ¥ F(dy), > 0, and W and X (r} are independent. Again,
in the case r = 1, and £(W) the uniform distribution on [0, 1i, a characterization
of the exponential distribution is obtained. Other generalizations and variants of
(1.1) have been considered in Pakes (1995) and van Harn and Steutel (1992, 1993).

Equations of the type (1.1) also arise in the theory of branching random walks;
see Biggins (1977) and the references given there. Durrett and Liggett (1983) were
motivated by problems in infinite particle systems; again, the references therein
point to important related work. In both situations more than two summands are
considered, in Biggins (1977) this number may even be random. For notational
convenience we will stick to the simple form (1.1), but see Section 5 below. Both
papers restrict their analysis to distributions concentrated on [0,00), Le. it is
additionally assumed that the weights W; and the X-variahles are nonnegative.
This is natural from the origin of the problems, where e.g. log X denotes the shift
in position of the offspring. On a technical level this additional assumption is
convenient as it allows comparison arguments and the use of Laplace transforms.
Rosler (1992) studied equations of the type (1.1) with possibly infinitely many
summands and allowed for an additional shift; this was motivated by the analysis
of the quicksort algorithm.
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In Section 2 we investigate (1.1) for general weights on using contraction ar-
guments, an idea apparently due to Rosler (1992). The basic idea of this approach
is to regard (1.1) as a fixed point equation of a suitable map on some suitable met-
ric space of probability measures and to use a fixed point theorem. Résler used
Mallows metrics to obtain a condition for existence and uniqueness of solutions to
(1.1) within the space of distributions with finite second moment. We introduce
a new class of distances of probability measures on the real line and show that it
can be used to obtain existence and uniqueness under weaker assumptions, and in
larger spaces of distributions. We also relate this method to the general theory of
probability metrics initiated by Zolotarev (see e.g. Zolotarev (1976} and Rachev
(1991)).

One starting point for the present investigation was the ohservatinn that ex-
ponential distributions solve (1.1) if one of the components of W is constant and
the other takes the values 0 and I only. This is a classical fact from queueing the-
ory, though it has apparcntly never been exposed in this way. Details are given in
Section 3 where we also relate this special case to a different and well understood
class of characterization problems which involve geometric random sums. The gen-
eral resulls [rom Section 2 can be used to obtain a characterization of exponential
distributions under a mild moment condition. In the classical approach the same
characterization (for the transformed problem) is obtained on solving the associ-
ated functional equation for the characteristic function of the solution, a standard
technique in this area. Whereas the classical result uses slightly weaker assump-
tions the method of the present paper has the advantage of providing stability
results at no extra cost.

In Section 4 we approach {1.1) via the associated moments; these can easily
be obtained recursively. This simple method results in yet another proof of the
above characterization of exponential distributions, this time under the condition
that all moments exist. Further, if W takes its values in the unit square as in the
case that characterizes exponential distributions, then all moments of the solutions
to (1.1) exist if a moment of order r for some r > 1 exists. In the final Section 5
we indicate extensions of our results to more than two summands and to spaces
more general than the real line.

2. Existence and unigueness of solutions

Throughout this section we assume that, in addition to E(W7 + Wa) = L,
(2.1) g(r) = E(JW|" + |[Wa") <1 for some 7 & (1,2).

Here, as in the following, positive powers of 0 are understood to be 0. For a
given ¢ € R let M, . be the set of probability measures 2 on the Borel subsets
of R with the properties [ |z{"p(dzr) < oo and [zp{dz) = ¢. For each p € M,
let T(p) be the distribution of W1 X + W3 X" where W, X, X’ are independent
and £(X) = L(X') = p. From Minkowski’s inequality and the independence
assumptions it follows easily that T" maps M, . into M, .. Further let 7, . be the
set of Fourier transforms of probability distributions u in M, .. Then T can also
be regarded as a map from F; . into F,. ., with

T($)(t) = B(o(EW))p(tWy))  forall ¢ € Frp, tE€R.
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We will freely switch between measures and their Fourier transforms. The following
result shows that, with a suitable notion of distance F, ., and hence M, ., is a
complete metric space.

LemMma 2.1. Withr € (1,2), d, defined by

d(61,02) = [ 1010~ 62 H7 et forall 41,6 € Foy
is a metric on Fr oy and (Fr e, dp) is complete.
Proor. Let ¢ € F, . with associated distribution py, & = 1,2. Putting

Ye(t) =1  @e(t) | ict we have that dr (@1, ¢2) = [[¥1{t)  2()||¢|~"'dt. From
Re(vr(t)) =1 — Re{¢x(t)) and the identity

+oa
/_ (1 = cos(at)) ||~ dt = K (o)™ z|*

with K(«) = # 1l (a + 1) sin(an/2) being true for 0 < o < 2 {scc von Bahr and
Esseen (1965)} it follows that

+oo
(22) [ metwyi e = K [ laf ).

— o0

Therefare Re(y)y,) ig integrable with respect to the o-finite measure v, which has
density |t|7" 7!, ¢ € R, with respect to Lebesgue measure. Using siny = y— foy(l -
cos s)ds, y € R, we obtain

Im(yx(2)) = et — Im{¢w{t)) = ffo (1 — cos 8)dspi{dr)
=/mf0 (1 — cos(zs))dsp(dx).
Applying Fubini’s Theorem we see that
ff 3:|/0 (1 — cos(xs))dspr(dx)v,(dL)

= 2/000 / |2} /Ot(l — cos{xs))dspuy (dz)t " dt
= 2/f0m /;o t~" Lt (1 — cos(xs))ds|z| g (dz)

= 2]7’"1 fom(l — cos(zs))s™ " ds|z iy (dx)
+o0
= /T'I/; (1 — cos{zs))|s| "ds|z|ug(dz)

— (rK(r - 1)) f 2l pelde) < oo.
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'I'herefore lm (v ) is also integrable with respect to v and it follows that d,.(¢1, ¢2)
is finite, and it is then easily seen that d, is a metric on F ..

To prove that the metric space (F,,d-) is complete let {¢,,) be a Cauchy
sequence. Since the space of functions integrable with respect to ». is complete
there is some function ¢ integrable with respect to v, such that lim, .o [ |tn -
¥|dy, = 0. It follows that lim, o | | Re(¥y,) ~ Re(¢)|dv, = 0, implying lim, .« -
[ Re(wn)dr, = [Re(¢)dv,. Thus, with p, denoting the distribution associated
with ¢,,, we have in view of (2.2) that

(2.3) supjm|’",un(d$) < 00.
neN

This implies that thc scquence of distributions gy, is tight, hence there is a sub
sequence (fn, ) such that the p,, converge in distribution to a distribution y as
k — o0. Because of (2.3) it follows that [azp(de) = ¢. With ¢ denoting the
Fourier transform of p the coutinuity theorem fur Fourier transforms implies

klim Un, (8} =1 —@(t) +ict forall tcR.

It follows that ¢(t) = 1 — ¢(¢} + ict for v.-almost all ¢ £ R. This proves that the
metric space is complete. [

If X and Y are random variables with characteristic functions ¢x, ¢y and
distributions py, gy respectively we will occasionally write d,.(X,Y) or d, (s x, py)
instead of d.(px,Py). Tt is easy to see that, for any Z independent of X and Y,
and any ¢ € R,

(2.4) d (X + 2, Y + Z2) < d.{X,Y),
(2.5) d.(eX,cY) = |e|"d.(X,Y),
which means that d, is an ideal probability metric in the sense of Zolotarev (1976).

The following inequality will be crucial for the proof of the main result of this
section.

LEMMA 2.2, d.(1'(¢1), 2'(¢2)) < E(IW1{" + |Wal|"}dr(P1, @2} for all ¢, ¢2 €
Fre

¥

ProoOFr. Let ¢; and ¢2 be elements of F, .. Then the assertion follows from

/ 1B ()61 (W) — B (W) (eW)) 177

— o0

< ([T loiw) - w7

ve(f o) - pal W) ar)

. -
= B(WAl" 4 [Wal") / 161(8) — gal8)] 171l

= E(|W1|" + |Wa|")dr (1, ¢2). 0
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The above proof can alternatively be formulated in terms of ideal probability
metrics, using (2.4) and {2.5).

THEOREM 2.1. Let the distribution of W be such that (2.1) holds, and let
¢ € R be given. Then there exists a unique solution p = L(X) of (1.1} that satisfies
[z u(dz) < oo and [ zpldz) = c. Further, for every p© € M, . the sequence
(™) pem, 1™ = T™(pY), converges to p at an exponential rate with respect to
d,.

PrROOF. By Lemma 2.2 the assumption «(r) < 1 implies that T is a strict
contraction on (M, ., d.}, which is a complete metric space by Lemma 2.1. Hence
T has a unique fixed point in M. ., this fixed point solves (1.1), and the iterates
of any element of M, . converge to u at an exponential rate in this space. Also,
any solution of (1.1} in M, . is a fixed point of T. O

CoRrOLLARY 2.1. Ifc=0 then i = & is the only solution of (1.1} in M, ..
If P(Wp > 0) = P(W2 > 0) = 1 holds wn eddition to the conditions of Theorem

2.1, then the support of the solution is concentrated on a half line:

c>0=p{l0,0)) =1, ec¢<0=p({-0,0)=1, c=0=pup="d.

Proor. Let (™ := T"(8,) where &, denotes the unit mass in ¢. Clearly,
pi = 9g if ¢ = 0. 'L'he additional assumption on the weights implies that 7'(u)
is concentrated on [0, 00) if p is, and similarly for (—oc,0]. By Theorem 2.1, the
sequence (™ converges to the solution with respect to d,, and the statement now
follows on noting that convergence with respect to the metric d,. implies weak
convergence. O

A noteworthy aspect of the above contraction approach to characterization
problems is the fact that stability results for the characterization can be obtained
along with the characterization without additional effort: if g solves (1.1) in F....
and if the characterization eguation is approximately true for some py € F, . in
the sense that d,(p1, T(¢1)) < 8, then p, is close to up:

)
d’l‘ H S .
S (AT A

For general comments on the stability of characterizations and the use of proba-
bility metrics in this context we refer the reader to the seminal paper by Zolotarev
(1976); see also Rachev (1991).

Pakes (1992b} proves the analogue of the uniqueness part of Theorem 2.1
for equation (1.2) by bounding the pointwise distance of characteristic functions;
see aleo Athreya (1969). Rosler (1992) obtained the analogue of Theorem 2.1
for r = 2 on using a Mallows metric. Note that «(2) < 1 implies x(r) < 1 for
some r € (1,2); for nonnegative weights E(W, + W3) = 1 and the convexity of
r— EW!, r > 0, imply that s(rg) < 1 for all 5 € (1,71) if n{r1) < 1. Ilence the

7
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above theorem gives a sufficient condition for the existence of a solution to (1.1)
under assumptions which are weaker than in the aforementioned paper.

Durrett and Liggett (1983) obtain the existence of a fixed point under assump-
tions weaker than ours, but they restrict their analysis to measures concentrated
on a half line. Note that the contractive property is stronger than the existence of
a fixed point; in particular, the unique solution with mean ¢ can be obtained by
iteration starting with an arbitrary element of M, .. They also prove uniqueness
results which imply that, under the conditions of Theorem 2.1, the solution to
(1.1) is unique in the space of all distributions that are concentrated on [0, cc).
These results, however, require the assumption that the solution is concentrated
on a half line: if W, = p, Wi = 1 — p then s(r) < 1 for all » > 1, and the
unique selution in M, . is the unit mass in ¢. In the larger space of all probability
measures on the real line, the Cauchy distributions appear as additional solutions,
so uniqueness is lost. This phenomenon is not tied to the W-components being
concentrated in a single point; indeed, as the following theorem shows, which is
similar in spirit to Theorem 3.1 in Pakes (1992b), from any particular solution
of (1.1) a whole family of solutions (with non-existing mean) can be obtained by
multiplication with Canchy variahles.

THEOREM 2.2. Suppose that P(W, > 0} = P(Wy > 0) = 1 holds in addition
to the conditions of Theorem 2.1. If 100 = £{X) is concentrated on a half line
and solves (1.1), then u'Y) .= L{X Z) also solves (1.1), where Z is independent of
X and Cauchy distributed with median 0.

Proor. We may assume that Z has scale parameter 1 and that pO s
concentrated on [0,00). Then, with Z’ an independent copy of Z that is also
independent of X, X' and W,

Elexp(it{W1 X Z + W2 X'Z")))
= E(Elexplit(WiX Z + WaX'Z')) | W1, Wa, X, X'])
= Eexp{—t(W1 X + WaX")))
= Boxp( |tX))
= Fexp(itXZ).

‘I'his is the Fourier transform version of (1.1) for p¥). O

Hence, for nonnegative weights, if we let M, and M;_ denote the set of all
distributions p with [ {2|"p{dz) < oo for some r > 1 and for all r < 1 respectively,
then we have shown that (2.1) implies uniqueness up to a scale factor in My,
and that this uniqueness is lost if we slightly enlarge the space to M;_.

3. A special case involving exponential distributions

In a stationary M/M/1 queue with arrival rate A and departure rate 7 > A the
virtual waiting time V; of a customer arriving at time ¢ and his service time Sy are
independent., 8, is exponentially distributed with parameter 7 and the distribution
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of ¥; is a mixture of 6y and an exponential distribution with parameter 7 — A. The
total time V; +5; in the system is again exponentially distributed with parameter
7 — A (see e.g. Bhat (1972), Section 11.3). Let p:= A/7 < 1 be the traffic intensity
of the queue and let W, be such that P(W; = 1) =1 — F(W, = 0) = p. Then,
with X, X' independent and exponentially distributed with parameter 7 — A and
independent of W7, we have that W1 X is equal in distribution to V; and that
(1 -p) X’ is equal in distribution to S, i.e. (1.1) is satisfied with Wy =1~ p. The
results of Section 2 show that exponential distributions are characterized by this
property within the space of all probability measures with finite moment of order
r for some v > 1.

In the above case of {0, 1}-valued W} and constant W; equation (1.1) is closely
related to the problem of characterizing the solutions p = £{X) of the equation

N

{3.1) X =a(l p)>_ X,

k=1

where N, X1, Xy, ... are independent, £(Xy) — p for all 6 € N, and (N —n) —
(1 — p)p™~! for all n € N (geometric compounding). Indeed, any solution of (1.1)
with W of this special form also solves (3.1) and vice versa. This is easily seen
once both problems are rewritten in terms of the characteristic function ¢ of the
solution: in both cases the same functional equation arises. The step from {1.1)
to (3.1} for {0,1}-valued W is also obvious if one iterates (1.1), replacing the
first X-variable on the right hand side by an independent copy of the right hand
side of (1.1): if Wi, & € N, are independent random variables with the same
distribution as W7 then the cumulative products H?;l Wik, n € N, are equal to
1 for n < N and vanish from N + 1 onwards, where N has a geometric distribution
as in connection with {3.1).

Stochastic equations of the form (3.1) have been constdered by many authors.
Arnold (1973) showed that exponential distributions are the only solutions within
the space of probability distributions with finite first moment or the space of
distributions concentrated on the positive half line. Arnold’s proof proceeds by
solving the functional equation associated with the characteristic function version
of (3.1). With the method of the present paper the same characterization can
be obtained, albeit under the condition that somce moment of order » > 1 of
the solution is finite. The benefit of the stronger assumption is a corresponding
stability result as explained in the previous section.

Without the assumption of finiteness of the first moment or the assumption
of one-sided support uniqueness does not hold: applying Theorem 2.2 we see that
the distributions with characteristic function ¢(t) = 1/(1 + oit|}, ¢ > 0, also solve
(1.1} it W is as in the present section; again, this has already been noted by Arnold
(1973). These distributions are special Pélya type distributions, see e.g. Lukacs
(1970); they are also known as Linnik laws, see Devroye (1990) and Pakes (1995}.
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4. Moments

Theorem 2.1 gives a general condition for {1.1) to have a unique solution,
up to a scale factor, bul does not provide the solution itsell. In the special case
considered in the previous section the solution could be obtained from solving a
functional equation. In this section we deal with the moments of solutions of (1.1}
which occasicnally provides a more constructive angle on the problem. Throughout
this section we assume that

(4.1) POsW s )=PO0<Wy<1)=1
If (1.1) holds and all moments of X are finite, then

fn = EX" = E(WlX + WgX’)n
_ Z (:) EW’{CWZTPIC,L%,LL”_;C.
k=0

Tf conditions (2.1} and (4.1) are satisfied then EW + EWI < 1 for all m > 1 and
it follows that

n—1
. n
(4.2) pnl1 = W7 = BW5) = 3 (L) EWEW S
k=1

for all » > 2. Hcnce, if all moments are finite, then these can casily be obtained
recursively from po = 1 and any given .

This argument leads to yet another proof of the characterization of exponential
distributions discussed in the previous section, now under the assumption that
all moments of the solution are finite: if P(W; = 1) =1~ P(W; = 0) = p and
P(Wy =1—p) = 1then EW? = p, EWP = (1-p)" and EWFW} % = p(1-p)»*
so that (4.2) becomes

n—1
pn(l=~p—(1=p)") =y (Z)p(l — Y g pr—-
k=1

It is straightforward to check that this is solved by p,, = nlu?, and these are the
moments of the exponential distribution with mean pu,.

This approach leads us to look for conditions on W that imply the existence of
moments of solutions to (1.1). This question has also been considered by Durrett
and Liggett (1983) who conjecture that “the effect of the spread of W should be
only to determine the size of the tails of the stationary measure” (p. 281}. The
following theorem shows that any solution which has a finite moment of order r
for some r > ! automatically has finite moments of all orders.

Tueorem 4.1. If (1.1) holde and W1 and W; are not both concentrated on
{0,1} then any solution X to (1.1) has the following property:

Ir>1:EX|" <00 —>3a>0,0 <ocVz>0: P(|X|>x) < Cexp(—ax).



564 LUDWIG BARINGHAUS AND RUDOLF GRUBEL

ProoF. The assumptions on W imply that x(r) := E(W] + WJ) < 1 for
any r > 1, hence we may assume on using Corollary 2.1 that X is concentrated on
the nonnegative half line; after suitable rescaling we may also assume that EX =1
(the statement is trivially true in the degenerate case X = 0). Finally, we may

assume that r < 2.
Let T be as defined at the beginning of Section 2 and let M(r,to) be the set
of all probability measures i on [0, 00) with the property

/em,u(dw) <1+t+t" for 0<t<ty.

We first prove the following:
(4.3) zlto >0 V,u 2 = M(T, to) = T([_t) = M('i", to)

Let W, X, X’ be independent with £(X) = L£(X') = pu, and let M{t) =
Eexp{tX). Then, if 4 € M(r, o), and with x — «(r),

/ ST (W) dx) = EM(tW1) M (tWs)

< E(1+tW + "W + tWy + tTWY)
= 1+ tE(W) + Wy) +tTE(WT + WD)

+1EEW\ W, + T E(WL WS + WTWS,) + 1 EWT WY
<14+t+mtm + 62+ 27T 4477,

This last term is less than or equal to 1 +¢ + 7 if $2 + 127 +-2¢"+1 < (1 — k)", As
£ < 1 this can be made to hold for all ¢ € [0,%¢} by choosing o > 0 small enough;
note that ¢y does not depend on u.

To see that (4.3) implies the statement of the theorem we use the argument
from the end of the proof of Theorem 2.1: if y is the (unique) solution of {1.1) in
M, | then p is the weak limit of p" as n — oo where p" arises by applying 1’
n times to the unit mass in 1. All these are in M({r, tq) for a suitable fixed 5 > 0,
which means, by Markov's inequality, that

pw™([z,00)) < Cexp{—tgz) forall 2>0, neN

with some suitable constant € > 0 not depending on n. Weak convergence implies
that the same inequality holds for u, hence all moments of p are finite. O

The arguments of the proof can be used to obtain a suitable « if x is given
explicitly.

Again, the case of constant. weights with the Canchy distributions as selutions,
shows that the assumption that E|X|" is finite for some » > 1 cannot be dropped.
Résler ((1992), Section 4) obtained a result similar to Theorem 4.1 but under the
{implicit) assumption that EX? < oo.
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The case of {0, 1}-valued weights, which is excluded in the above theorem, 1s
interesting as it provides us with two extreme examples: if, additionally, P(W; +
Wy = 1) = 1, then all probability distributions solve (1.1}, if P(Wy; = Wy =1) > 0
(e.g. weights determined by coin-tossing), then there are no non-trivial solutions.
This latter fact can easily be seen on writing down the functional equation for the
Fourier transform of a potential sohition (this contradicts a statement made by
Durrett and Liggett ((1983), p. 280), but does not affect their theorems).

5. Extensions

Biggins (1977), Durrett and Liggett (1983) and Rasler (1992) considered ana-
logues of {1.1) with mare than two summands on the right hand side. Our results
carry over to this situation, the crucial step being an extension of the inequality
given in Lemma 2.2. Let W = (Wy, W1,...,Wx) be a random element of the
st | ooy R™ of finite sequences of real numbers. We assume that EW, = 0 and

E(Zf=1 W,) = 1. Let r € (1,2) and ¢ € R be given and consider the transforma-
tion

N
T: Mr,c - Mr,c: T(,u,) =L (WO + ZWka) )
k=1

where (Xjg)ken 18 a sequence of independent random variables with distribution
1, independent of W. Using the elementary fact

n n
[Tas— 10
k=1 k=1

we obtain for any pu, v € M, .

<Y Jag—by| forall neN, agbye{zeC:fz] <1}
k=1

dr(l‘(”)’fl‘(y)) = / L (eiﬂvu Z l{N:n} (H ¢u{th) - H Cbu(twk))) |tlirildt’
n=1 k=1 k=1

<E (Z L{n=n} / D {ou(EWi) — ¢u(th)||trld’v‘)
n=1 k=1

=K (Z L N=n} ) IWkl’"f 6u(t) — & ()]It] "‘dt)
=1 k=1
N

~-E (Z Wni") dr(p, v),
n=1

hence the analogue of Lemma 2.2 holds.

A second straightforward generalization concerns the range space of the X-
variables in {1.1). Let H be a Hilbert space with inner product {-,-). A random
quantity X with values in H has mean ¢ € H if E{t, X) = (t,c) for all ¢t € H, its
characteristic function is

¢o:H—-C, @) := Eexp(i{l, X?}).
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Let M, . be the space of probability measures 4 = £(X) on H with E||X|" < oo
and EX = ¢; F, . denotes the set of the associated Fourier transforms. Let

don )= swp [ 161(t) - galt)le e

zel, ||z =

The bounds obtained in the proof of Lemma 2.1 show that this is finite for all
&1, ¢ € Fre. It is easy to see that d, is a metric on F, . {and therefore on M,..).
Let T denote the Hilbert space extension of the operator T defined at the beginning
of Section 2; it is straightforward to show that the analogue of the inequality in
Lemma 2.2 holds. Hence, if W satisfies (2.1}, then the solution of (1.1) must be
unique in M, ..

It is easy to obtain such a solution for any given ¢ € H: let X be the unique
solution with mean 1 of the corresponding one-dimensional equation, let ¢g be its
characteristic function. Then

¢ H-C, ¢(t) = do({t, 0},
which is the transform of Xy, satisfies the transform version of {1.1):

Eo(tWy)o(tWa) = E(o((t, c)W1)o((t, ) W2))
= do((t, )} = (1)

Hence the solution is concentrated on the scalar multiples of the preassigned mean;
this can also be seen by a more direct argument. An extension of this approach
to weights that are random linear operators is eurrently under investigation.
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