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Abstract. This paper is concerned with the problem of finding those dis-
tributions minimizing Fisher information for location over Kolmogoerov neigh-
bourhoods of distribution functions G satisfying certain mild conditions. The
case when (G is symmetric has been considered by quite a few authors. The
general form of the solution is discussed. Furthermore we provide the solution
of two asymmetric distributions, namely, the extreme value distribution and
the Pearson’s type IV distribution.
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1. Intreduction and summary

Consider Huber’s theory (1964, 1981) of robust M-estimation of a location
paraweter. An inportant problem which is of interest is to find those distributions
minimizing Fisher information of location over a certain convex set P of distribu-
tions. In the literature, two common types of P are the Gross errors model

G(G)={F | F={1-¢€)G+eH;e fixed, H arbitrary}

and the Kolmogorov neighbourhood model

K.(@) = {F | sup |F(z)—G@=) €¢6cand G are ﬁxed} .

— 00 <L <00

Huber {1964) obtained the least informative distribution in both the Gross errors
neighbourhood model G.{G} where G has a strongly unimodal density g and the
Kolmogorov normal neighbourhood model K (@), with ¢ denotes the standard
normal distribution function and ¢ < .0303. Collins and Wicns (1985) werked out
the solution for more general Gross errors neighbourhood models for which the
known density g is not necessarily strongly unimodal. Sacks and Ylvisaker (1972}
obtained further result for the Kolmogorov norinal neighbourhood odel for which
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the solution was found in the extended range of .0303 < e < .5. Wiens (1980) ex-
tended the result to more general Kolmogorov neighbourhood model K (G} where
G is not necessarily normal. Collins and Wiens (1989} further extended these re-
sults to Lévy neighbourhood model in which & satisfies conditions similar to those
imposed in Wiens (1986). In both of the Kolmogorov and Lévy neighbourhood
model cases, all of the work done require an assumption that G is symmetric. In
this paper the solution for K, (G) where GG is asymmetric is discussed. Symmetric
G is viewed as special cases. In particular, we obtain the solution when @ is the
extreme value distribution or the Pearson’s type IV distribution in which bath are
asymmetric. The extreme value distribution is a commonly used model in survival
analysis and reliability {see e.g. Bain {1978), Johnson et al. (1994) and Lawless
{1982}). The Pearson’s type IV distribution is chosen since it is sufficiently general
to illustrate the result obtained in this paper.

2. The theory

DEFINITION 1. An M-estimator of location is defined as T{F,), where F,
is the empirical distribution function based on a sample X1, X3,..., X, ~ F, and
the functional T'(F) is defined implicitly by

(2.1) f Wz — T(F)AF(z) = 0

where 9 is an arbitrary function chosen by statistician.
Huber (1964) shows that under ecertain mild regularity conditions,
V(T (Fy) = T(F)) = N0,V (@, F)),
where

[P T(F)F@)
(@ TE)dFE)?

Vi, F)

DEerINITION 2. The Fisher information for location of a distribution F on
the real line is
(f¢'dF)?

A

where the supremum is taken over the set of all continuously differentiable func-
tions with compact support, satisfying [ ¢2dF > 0.

Huber (1964, 1981) showed that

1. I{F) < oo is equivalent to that F° has a continucus density f and
S/ )2 fdr < oc. In either case, I(F) = [(f'/f)*fdz < oo.

2. There is an Fy € P minimizing I(F').

3. If the set where fo — K} is strictly positive is convex, then F} is unique.
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Now suppose Fy minimizes the Fisher information of location over P. Let
o = —%}‘— (the score function), and define Tp{F} by (2.1) with % = 2. Then the
following saddlepoint property

(2.2) Vo, F) < V(¢o, Fo) = ¥, Fo)

1
ey
1y =7
holds for all F € Py ={F € P|T(F) = To(Fp}} and all 3 such that (2.1) holds.
The first inequality in (2.2) is established by variational arguments, as in Huber
(1964) and the second inequality in {2.2) is essentially the Cramér-Rao inequality.
This in turn implies that

(2.3) sup V (g, F} <supV{¥, F)
Po Pa

for all ¥ such that (2.1) holds for F € Py. Thus g is optimal in a minimax sense
as it minimizes the maximum asymptotic variance over Py.

If we define F} = (1 — t}Fy + tFy, t € (0,1), then Fy, Fy € P implies F, € P.
As I(F;) is a convex function in {, we conclude that Fy € P attains the minimum
Fisher information for location if and only if

d
—I{F) ;== 0
Z1(F) [0
for all £1 & P satisfying 7(F)) < co.
After some calculation, we find that Fy € P attains the minimum Fisher
information for location if and only if

(2.4 GIF) o= [ To)@d(Fy = Fo)a) > 0
for all F} € P with I{F}) < o0 where
() = (@)

and

J(¥)(x) = 20" (z) - ¥*(z)

provided that aig is absolutely continnons and bonnded. Fxtend .J hy left conti-
nuity when ¢/ is discontinuous.

Now suppose that F € K (G). To obtain Fy € K (G), we observe that the
support B of f; can be partitioned into three parts, say By, B, By where

Bg = {z | max(0,G(z) — ¢) < Fy(x) < min(l,G(z) +€)}
By = {z | Fo(z) = G(z) — €}
B, = {z| Folx) = Glx) + e}

and
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B = ByUBy U By.

Since By is an open set, there exist finite or countably many disjoint open intervals
B; = (a;,b;) such that By = |J, B;. It turns out that Fy satisfies

(2.5) J{g)(z) = constant
at each B,.

Remark 1. The solution of J(¥p)(z) = A%, A > 0 is of the form 9g(z) =
Atan[ (12| — w)} and the corresponding fg is proportlonal to cos?[5{|z| — w)].

Remark 2. The solution of J(¢o)(z) = u/\z A > 0 is of one of the forms
Polz) = A, = A, )\tanh[—m(:r w)] and Acoth[—3{z— )1 and the corresponding fo

is proportional to e **, e* coshQ{f—(:c w)] a.nd sinh? [—- & — w)] respectively.

THEOREM 2.1. If Fy possesses the following properties, then it is the unique
member of K (G) minimizing 1{#') over K. (G):

(Sl) e ]CE(G), Fo(OO) =1.

(S2) Fy has an absolutely continuous density fo and o is absolutely continu-
ous on (—00,00).

(S3) There erists a sequence —0o < by Tag <bp <+ Cap1 <bp1 L ay <

oo and constants A1, Ag, ..., An such that
n—1
1. BUUBL = U[bi,ai+1}.
i=1
Al < U, —x<rsh
A, a; < & < b, i=2,...,n—1
2. J = -
(1) () Ap <0, g, < x<oo

JE)(z), b<r<a, i=1,...,,n-1

where

J(&)(z) = 26/ (z) - E3(2);  E(x) = %m.

3. (a) If a; € By, then J(0)(ai") < J(vho}{a] ).
(b} Ifa, € By, then J(o)(a?) > J(¥o)(ar ).
(c) If b, € By, then J(ap)(b;) = J(he) (B1).
(d) If by € By, then J(vo)(b; ) < J (o) (B).
4, If (b;,ai+1) is nonempty and contained in Bp|By), then J{(§)(z) is weakly

decreasing [increasing) there.

The above theorem is a straightforward extension of Wiens ((1986), Theo-
rem 1) and hence the proof is omitted.
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The conditions of Theorem 2.1 in previous section are not enough to determine
Fy completely because of lack of information about the behaviour of J(£)(x).
Wiens (1986) explicitly provides some classes of solutions in which & is assumed
to be symmetric. Moreover, as in Wiens (1986), a general principle at works
appears to be that for sufficiently small €, ¥ and £ should differ only near the
local extrema of J(£); and there should have J{(1n) = constant, with this constant
being less extreme than that attained by J(£). According to {2.4), we should have
fo > g near the local minima of J(£) and fs < g near the local maxima. As
¢ increasges, the regions of constancy of J(4f0) coalesce. Now in order to ohtain
(g, Fo) explicitly, a general procedure is proposed here. For sufficently small
e > 0, we first identify what By looks like and hence the form of By = U1 B;. And
for each B,, the right form of ¥y is then chosen, It is worthy to note that the
form of B; in which J(¢h)(z) = A%, A > 0 is (a,b) and the form of B; in which
J(o)(z) = =A%, A > 0 is one of the forms (—o0,a), (a,00} and (a,b). Moreover
explict form of (¥, Fp) in each B; van be obtained by one of the following three
Lemmas.

LEMMA 2.1, If J(¥o)(x) = A%, A > 0 on (a,b), then

oz} = dtan [%(z - w)] , z€lab)

and
folz) = ) [i((i)) )] cos? [%(:ﬂ — w)] . z€(a,b)
cos? | S(b—w
- (ot

where a, b, w are constants determined by Yo(a) = £(a), Yo(b) = £(b) and f; fo =
G - Gla) — 2.

ProoF. The result follows immediately by Remark 1. O
LEMMA 2.2. If J(We)(z) = =A%, A > 0 on (—oc,a) for some a, then
wolz) = €&(a) >0, =z € (~o0,a)

and
folz) = gla)exp[-£(a){z —a)], =€ (-00,0)
where the constunt o is determined by ff’oo Jo — Gu) + e
Simalarly if J(3po)(x) = =A%, A > 0 on {a,00) for some a, then

Yo(z) = &{a) > 0, z & {(a,o0)



546 EDEN K. H WU AND P. 8. CHAN

and
fo(z) = gla)exp[-£(a)(z — a)], =€ (a,00)
where the constant a is determined by ffo fo=1—-Gla)+e.
Proor. By noting the fact that the fy corresponding to the choices of

Polr) = =X, Xtanh[-2(z — un)] or ,\coth[—%(:r: — wa)] are not integrable on
half-infinite intervals, the result follows. O

Lemuma 2.3, Suppose on (a,b), ola) = £(a), o(b) = £(b) and J(4h){z) =
—X2, XA > 0. If£(z) is increasing on (a,b), then

#ol(x) = Acoth [—%(.’E - w)] , T €(ab)

and
folz) = g(/\rl) sinh® [——3(:): - w)] , € (a,b)
sinh® [ E(a - w)]
or 40 sinh? —i(:c —w)
smﬁ[ﬁ%wwﬂ [ 2 }

where a, b and w are determined by (i) v¥o(a) = £(a), (ii) ¢o(b) = £(b) and
b
(i) ‘/h_a@—c@_%
if {(a,b) is not the leftmost or vightmaost interual of B;’s, otherwise by
b
(i) ‘/sz@—G@—a
Similarly if £(x) is decreasing on (a,b), then
wo(z) = Atanh [—%(:cww)J ,  z€(a,b)

and

folz) = — [fg’za - w)] cosh? [wg(m - w}] ., zc{ab)

g(b)
cosh? [—%(b - w)

or

] cosh? [—%(JJ — w)]
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where a, b and w are determined by the conditions (i), (i1) and (iii) or (iit') as
above.

DPrRooOF. By noting the fact that tanh (coth) is an incrcasing {dccrcasing)
function, the result follows.

3. Examples

Fzample 1. Consider the extreme value distribution whose density is
(3.1) g(x) = exp{z — €*), —oo<x <00

The extreme value distribution is extensively used in a number of areas and has
been discussed in Johnson et af. (1994) in detail. It is also closely related to the
Weibull distribution with density

(3.2) F@ = A8 Texp[—(AD)P],  t>0.

It can be shown easily that if T is Weibull distributed with density (3.2) then
X =logT has an extreme value distirbuiton

1 - —
(3.3) h(y; . 0) = —exp [ueXP (u)] —00 <y < 00
a a a

where p = —logX and ¢ = 1/3. The main convenience in working with the
extreme value distribution stems from the fact that p and o are location and scale
paratmeters and it is much more easily handled. Estimation of the parameters of the
extreme value distribution has been studied by many authors and an extensively
reference has been given by Johnson et al. (1994).

Now it is easy to see that

}

5(w>=—%(m)=em—1

J(€)(x) = 28'(z) — ¥ (z) = —€* +de” — 1.
J(€)(—o00) = -1,  J(£)(e0) = —00
and

max J(§}(z) = J(§)(In2) =3
There are three forms of (g, fo) which are given as follows:

Case 1 (small €). There exists ¢ such that for 0 < € < ¢y, the Fisher
mformation for location is minimized by that £y with

( £{a), x € (—00,a);
&z, z € [a,b);

Po(z) = ¢ étan [g(x — w)} , zxeElbe);
§(z), z € [e,d);
\ £(d), x € [d,00),
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[ g(w) exp[—¢(a)(z — a)l; x € {—oo,a);
g(z), T € [a,b);
b )
folz) = 4 cos? [g((b)Aw)] o [§($ WW)] » mebhek
2
g(z), z € [c,d);
[ g{d) exp[—-£(d)(x ~ d}], z € [d, 00),

where a, b, ¢, d, 6, w are constants determined by the side conditions:
(C1). £(6) = otan[§(b - w)),
(C2). £(¢) = S tanf3(c — w)],
(C3Y. g(b) qle)

cos2[§(b—w)]  cos?[§{c—w)]’
(C4). [° fo=0Cla)+e,
(CB). [ fo=0Ce) C(b) 2cand
(C6). [["fo=1-G(d)+e

Case 2 {medium €). There exists ¢; such that for ¢y < ¢ < €1, the Fisher
information for location is minimized by that Fy with

{(a)s re (700,61);
£(x), x € |a,b);

Yol(x) = ¢ ftan [g(x - w)] . xElpd):

\ 8 tan [g(d—w)] , T €|d,o0),

(g(a)exp[—£(a)(z — a)], 7 € (—00,a);
g(-’f), xrc [a’b);
g(b) 5 [6 .
Tolw) = cos? [ﬁ(b —’-"')] - [5(1 - w)] , 7€ bd)
2

g(d) exp [—6tan (g(d — w)) (z — d)] .z € [d,00).

\

The constants a, b, d, §, w are determined by the side conditions (C1), (C3), (C4),
(Ch) and (C6) with d = ¢ 1n (C8).

Cuse 3 {large ¢}, Tur a range e; < e < 0.3, the minimum information Fy €
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Ke(G) is given by:

8 tan g(a—w) , € (—00,a);
s ]
Yo(x) = < Htan 5(:1:Aw) .z € a,d)
s ]
8 tan i(d—w) . x € [d,00),

[ g(a)exp [—51-,&11 (g(a _ w)) (z— d)] .z € (~o0,a);

g(a)
folx) = ¢ cos? [6

Sla-w

)J cos? [g(a: — w)] , € [a,d);

b
g{d) exp [—6tan (5((1 — w)) (z — d)] , T €ld ool
The constants b, ¢, &, w are determined by the side conditions (C3), (C4) and (C6)
with @ = b and d = ¢ in (C4) and {C6) respectively.

We found that ¢g = 0.00415 and ¢; = 0.05466. See Table 1 for other numerical
values,

Ezample 2. In the previous example we can see that the minimum Fisher
information distribution does not cover all possible forms of the general sclution.
Hence for the purpose of further illustration, let us consider the Pearson’s type IV
distribution whose density is

_ V3esch(V3T) yfran (@)

—00 < T < 00.
(14 22)

(3.4) g(z)
This distribution has been discussed briefly in Johnson ef al. (1994) and its mini-
mum Fisher information distribution for location over the Kolmogorov neighbour-
hoods covers all possible forms of the result we studied in this paper.

Here
g 2z V3)
&z} = *“g*(m) T 1?2
x) = H-J-;g@(l — 23z —2?)
and

JOa) = 26(x) = (&) = (1 2V3e + o)

J(€){oc) = J(§)(—00} =0
max J(€)(z) = J(£)(—.7463) = 3.395
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Tahle 1. Numerical values for (1o, Fo) for the Kolmogorov nieghbourhood with G = Extreme
value distribution.

€ a b c d é w
0.001 —3.123 —1.798 1.438 1.690 1.147 -—-0.702
0.002 —2.782 -1.815 1.445 1.582 1.143 -0.710
Nn.nn3 —2.A85 —1.831 1.450 1.514 1.140 -0.717
0.004 —2.445 —-1.848 1.457 1.464 1.136 -0.724
4.15E-03 —2.427 -—1.850 1.457 1.457 1.136 -0.727
0.005 -2.337 —-0.202 1.307 1.542 —0.04160
0.006 —2.250 --0.240 1.379 1.631 —0.0350
0.008 —-2.112 -0.310 1.349 1.509 -—0.0783
0.010 —2.006 -0.376 1.325 1.486 —0.0962
0.020 —-1.682 —0.63% 1.254 1.380 —0.167
0.030 —1.497 -0.843 1.216 1.312 -0.218
0.040 —1.368 —1.014 L1944 1.247 —0.256
0.050 —1.270 -1.166 1.179 1.191 —0.286
5.466E-02 —1.232 —1.232 1.175 1.167 —0.297
0.080 —1.267 1.170 1.142 —0.308
0.070 —1.334 1.166 1.096 —-0.331
0.080 —1.396 1.1656 1.052 —0.350
0.0590 —1.450 1.165 1.014 —-0.367
0.100 —1.508 1.169 0.974 ~0.384
0.150 —1.765 1.205 0.806 —0.456
0.300 —2.598 1.419 0.429 -0.695

and the local minimum of J(£)(z) occurs at z =
J(€)(~4.922) = —0.1028 and J(£)(0.4716) = —15.29.
The forms of {1p, fo) which are given as follows:

Case 1 (small €).

—4.922 or 0.4716 in which

There exists eg such that for 0 < € < ¢, the Fisher

information for location is minimized by that Fy with

tho(m) = ¢

( £(z),
A1 tanh [—%(w - wl)] ,
&(z),

Aatan [%-2-(1' — wg)] ,

z € (~o0,
z € [a,b);
z € bk
T € e, d);
z € (d,e);

z € le, f);

a);

x € [f,00),
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'g(']:)s T € (—oo,a);

cosh? [_g);za _wl)] cosh? [_%(m - WI)] , T €lab)

(=) z € [byo);
4{c) s 12202 — 0 _
hw}z<m£[&@wﬂ [2( ﬂy z€led);
9(=), z € [d,e);
9) cosh? ‘ﬁ(m - ws)r z € e, f);
cosh? [_%(f — w;;)] [ 2 }
\Q(ﬂ'z‘), T E [d,OO),

where a, b, ¢, d, e, f, A1, Az, Az, w1, wo and w3 are constants determined by the
side conditions that fo, 1o are continuous and the fact that

(D1). [ fo=G(b) - Gla) +¢,
(D2). [ fo = G(d) — G(b) — 2, and

(D3). [f fo=C(f) — C(d) + <.

Case 2 (medium €). There exists €; such that for g < € < ¢, the Fisher
information for location is minimized by that Fy with

(&(z), z € {—00,a);
A1 tanh [—:\é’(:ﬂ*’wl):l ) r e [a"»b);
£(z), z € [be);

) Az tan [%(m - wg)] , z € [e,d);

As tanh [—%(m - wg)] . T eld f)

\5(-'3), QIE[f,DO),
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( 9(z), @ € (~ooa);
[ g)fa) } cosh? [—%(:ﬂ —wl)] ;T Elab);
cosh? | -2 (a — wy)
2
g{z}, z el
_ g(e) 2|22, ;
Jolz) =< X cos” | (2 —wa) |, z € le,d);
cos? [72((’ - “’)]
g/\(.f) COSh2 I:__%(x_ws)} ) X & [dg f)s
cosh? [—?l(f - w3)]
| o(a), z € [f,00),

where a, b, ¢, d, f, A1, A2, Az, w1, wa and w; are constants determined by the side
conditions that fo, ¥ are continuous and (D1)-(D3) with d = e.

Case 3 (large €). For a range ¢; < ¢ < 0.5, the minimum information Fy €
K.(G) is given by:

[ &{z), z € (—o0,a);

A1 tanh [—%(T — ml)] . €& a0}

Po(x) = ¢ Agtan [%(m - wz)] , z € [e,d);
Az tanh [A;'(a:**wg)] ,  zEd f)
Lﬁ.ﬁb’), I’E[f,oo),
( g(z), z € (~o00,a);
g(a) 2| M ] .
cosh® |——=(z —w1)|, zcla,c);
cosh? [—%(a - wl)] [ 2
g(c) 2 [ A2
3 : cos” | —(z —ws)|, z € [, d);
folz) = cos? [%‘5((‘ - )] [ ? ]
g/\(f) cosh? [—%3—(1: — W3)] , e f;
cosh? [—El(f - WS)]
g(), z € [f,00),

where a, ¢, d, f, A1, A2, Az, wy, w2 and ws are constants determined by the side
conditions that fo, o are coutinuous and (D1)—(D3).
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We found that eg = 1.65 x 10~ and e; = 0.0198. See Table 2 for other
numerical values.
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