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Abstract. A finite series approximation technique is introduced. We first
apply this approximation technique to a semiparametric single-index model to
construct a nonlinear least squares (LS) estimator for an unknown parameter
and then discuss the confidence region for this parameter based on the asymp-
totic distribution of the nonlinear LS estimator. Meanwhile, a computational
algorithm and a small sample study for this nonlinear .S estimator are de-
veloped. Additionally, we apply the finite series approximation technique to a
partially nonlinear model and obtain some new results.
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1. Introduction

Consider the model given by

(1.1) Vi =g(aTho) ves  i=12 .,
where z; = (2;1,...,2p)" € X (p 2 1) (X is a convex subset of RP) are known
and nonrandom design points, 8o — (Bo1,. .., Bep)” is an unknown true parameter

vector over 8, {a compact parameter space of RP), g(-) is an unknown function
over T = {z753p : £ € X}, and the e; are i.4.d. random errors with Fe; = 0 and
Be? = o2 < oo.

The model defined in {1.1) belongs to a class of semiparametric single-index
regression models, which was discussed by some authors. See, for example, Stoker
(1986) and Ichimura (1987) proposed the least squares approach to estimate Sy
up to scale that uses kernel estimation in the optimizing conditions and Hardle
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and Stoker {1989} and Powecll ¢t al. (1980) gave the solution to the problem of
estimating coefficients of index models, through the estimations of the average
derivatives and the density-weighted average derivative vector of a general regres-
sion function. Other related work is that of Ruud (1986), Han (1987), Li (1989),
Andrews (1991), Stoker (1993), Samarov (1993), and Whang and Andrews (1993).
More recently, Hardle et al. (1993) investigated the asymptotic normality for an
estimator of f#y, which is under the case where the z; are i.¢.d. random samples
and g(-) is estimated by nonparametric kernel function.

In this paper, based on the finite series approximation technique, we first
establish the asymptotic normality for the nonlinear LS estimator of gy and then
apply the finite series approximation technique to a partially nonlinear model
Y, = flz;,580) + a{t;) + e;, and obtain some asymptotic results. Additionally, a
computational algorithm and a small sample study for the nonlinear LS estimator
are proposed to support the asymptotic theory.

The organization of this paper is as follows: Section 2 states the assumptions
and the main results. Section 3 discusses the partially nonlinear model. The proofs
of Theorems are given in the Appendix.

2. Statement of the main results

2.1  Asymptotic normality

Consider the model given by (1.1). The objective is to estimate the parameter-
of-interest ;. Here g is regarded as an infinite-dimensional nuisance parameter
in the problem of estimating Fo. The approach taken here is to approximate g{-)
by a finite series sum 3, _, zx(-)yok, where {zx(-); b = 1,2,... ,G} is a prespecified
family of functions from T C R to R, Yo = (Yo1.- - .,70g)” 18 an unknown parameter
vector, and g = ¢, > 1 is the number of summands and is taken to be nonrandom.

To construct the least squares estimator of Fy, we need to introduce the
following assumption.

ASSUMPTION 2.1, For 1 < ¢ = g, < n—p {gn — 00 as n — oo} and
{zx(-),k = 1,2,...,q} given above, there exists an unknown parameter vector
70 = (Yo1, - -, Yog)T € O2 (a compact subset of R?) such that for n large enough

g
(2.1) an'* max kz_lz;c(:c:z Bo)rok — glzi o) | = o(n™*?).

In arder to construct some estimators, we consider the approximate version of the
model (1.1} below

(22) Y. = F(.’L‘i,gg) + é;, 1<:<n

where éi - €4 + 51', 5@‘ = g(m[ﬂo) - F(Ii,GU), F(:Ei,gg} - Z(IL’I)@())T’}’(), 90 =

()851 '76)7 €0 =01 x 0y, and Z() = ZQ() = (21(')1 s ,zq(.))'r R
Now, based on (2.2) we can define the nonlinear least squares estimator 8, =

énq = (@;,'Ay;)T (its existence and measurability were proved in Jennrich (1969))
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of 6y = (5,73)" by

(2.3) Sp(8,) = i(yz Fla,,8,))* = min!,

i=1

where Sn(8g) = 3.0 (Vi — F(zy,00))2.
The corresponding LS estimator g, of g is

(2.4) gul} = Z() Am-

In order to state the main result of this section, we introduce the following
assuwmnption.

ASSUMPTION 2.2.

(i) Assume that ¢’(-) exists on T and there exist some functions 7;{-) over
Tsuchthatforalll <i<mand1<j<9p
(2.9) 9i; = hy (27 fo) + vy,

where gi; = ¢’ (2] Bo)zi; and u;; are real sequences satisfying

1
(2.6) Jim > wul = B,
i=1
and
m.
2.7 li —_— il =<
@7 e A2 log n 19man ;u“” e
=
for any permutation (41, ja, ..., J) of the integers (1,2,...,n), where u, = (u.1,
.o, uip)", B is a positive definite matrix with order p x p, and || - || denotes the

Euclidean norm,;
(ii) For 1 << ¢ — g, <n —p (g, — oo asn — o) and {(-),k = 1,2,..}

given above, there exist v, = (Y;1,...,7iq)7 € ©2 such that for n large enough
and 1< j<p
g
(2.8) max. ;zk(mmo)m—m(wmn) = o(n~1/%),
Remark 2.1.

(i) There is one key reason to explain why we have proposed the Assump-
tion 2.2. From {1.1) we know that m;(8s) = EY; = g{«] fy) and the first order
derivatives of m;(f8y) with respect to By are gi; = mi;(8) = ¢'(x]Bo)zij. So,
the scaled coefficients g,;, contain the information about 8y and therefore the re-
lationship between {g;;} and {z7 B0} affects the estimability of 3y, Thus, how to
determine this relationship is very important in constructing an asymptotically
efficient estimate for 3y. Assumplion 2.2(i) determines (his relationship with the
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errors ug salislying sonme mild conditions. In the case of p = 1, the above equations
(2.6) and (2.7) can be interpreted as the restriction of the asymptotic finiteness
of L 3" | u? and the asymptotic negligibility of L " | %;. Some similar discus-
sions about the relationship between the fixed design points {z;} and {¢;} in the
partly linear model y; = z7 8y + g(t;) + e; were given by Rice (1986}, Speckman
(1988), and Gao (1992). Rice {1986} assumed that there is a function A(-} such
that z; = h{t;) + € with the ¢; satisfying some conditions more complicated than
(2.6) and (2.7); Speckman (1988} placed a random prior on {¢,;} and interpreted
¢; as independent random errors, and Gao (1992) improved the conditions of Rice
(1986) and proposed some reasonable assumptions which are similar to (2.6) and
(2.7). Based on the points of Rice (1986), Speckman (1988), and Gao (1992},
we also propose Assumption 3.2{ii) below for the partially nonlinear model. As a
matter of fact, the above {u;} behaves like zero mean i.4.d. random variable, and
{h;(t:}} is the regression of {g;;} on t; = z]By. Specifically, if the design point
{#;} is the 4.i.d. random sample, and let h;{t;) = E(gi; | t:) = g'(t:) > E(ay; | t;)
and u;; = gij ~ hy{t;) with Eu,ul > 0. Then (2.5) holds automatically, and (2.6)
and (2.7) hold with probability one by the law of strong large numbers and the
law of the iterated logarithm respectively. When the z; are i.i.d. random sam-
ples, Hardle et al. (1993) proposed some sufficient assumptions for constructing an
asymptotically normal estimator for 3y in the single-index model.

(ii) As a matter of fact, it is not difficult to show that {h;(-)} is determined
uniquely under Assumption 2.2. This is necessary to ensure the uniqueness of B
in {2.6).

Remark 2.2. Assumptions 2.1 and 2.2(ii) are some smoothness conditions.
In almost all cases, they hold if g and h; are sufficiently smooth. See, for example, g
and A; can be approximated by trigonometric series used by Kubank and Speckman
(1990} and Eastwood and Gallant (1991). More generally, they hold whenever
T is compact (see Nurnberger (1989)). The details about the polynomials and
splines can be found in Nurnberger (1989). See, for example, Theorems 2.8, 3.30,
Corollary 2.11, and Theorem 4.27. The required smoothness of the regression
functions g and h; given here is not just an artifact of the proof, but is a property
of some estimators.

ASSUMPTION 2.3.
{(i) For any b > 0 and some ¢ > 0

Hm sup {3201 SuP gy 20 (Fi(8) — Fi(60))*}'*0/
n—oo inf||e-auu2b Z?:l('Fi(B) - Fi(gO))Q

< 00,

where Fi(f) = F{x, A), A € 6,
(i) {F;(#)} is Lipschitz function on © and
|[Fi(6:) = F5(65)] <

sup ra— < My sup |Fi(th) — Fi{62}|
26c0 |61 — B2 16~80] >b

for some & and for all i, where My is independent of i.
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Remark 2.3.

(i) Some conditions for establishing the asymptotic normality of nonlinear
least squares estimates have been discussed by some anthors. See, for example,
Jennrich (1969), Wu (1981), Gallant (1987), and Seber and Wild (1989). In this
section, we adopt the assumptions of Wu (1981).

(i) Assumption 2.3 is similar to Assumption A of Wu (1981), which is satis-
fied for the case where T is compact and {2;(t),k > 1} is of the form: 1,¢,t2,... t™
or cos(kt) or sin{kt} used by Eubank and Speckman (1990).

ASSUMPTION 2.4.

(i) Zo has of full column rank ¢ for n large enough, and liminf, .. -
Amin(ZE Za/n) > 0, where Amin(A) denotes the minimum eigenvalue of matrix
Aand Zy = Zg, = (Z(27B0), ..., Z{x],50))7;

(i) liMp—eo MaXi<i<cn Piz = 0 and Hmy, .o maxi <izj<n Pij(logn)? = 0,
where {p;;} denates the i-th row element and j-th rank element of the n x n
projection matrix Py = Zo(Z§ Zo) ' 2,

(i) for any j > 1, limsup,_ . = max;>1y,,  dizl; < co, where 42 =
ma“x(lu g(I-‘{,BU)Q);

{iv) for any given & > 0, Lmsup,_ . sup|g_g,|<s MaX1<k<q:
S ak(e] B)? < oo

(v) both Zmaxicjcpi<hicy | D1 2% (@] B)2(x] Po)zij| and & maXigrai<y
130 | 2e(al B)zi(2] Bo)| converge to zero uniformly as [|3 — ol — 0 and 7 — oc;

(vi) for any k > 1, 207(-) and ¢(-) exist over T, both maxi<i<n |Z(2]8)7y —
¢(c73)| and max;<;<. [¢/(z7 B) — ¢ (27 fo)| tend to O uniformly as [|6 — o] —
and n — oo, where ZW () = (zgl)(-), o ,2:,2,1)())T and { =1,2;

(vii) there exists an absolute constant d > 0 such that

n

1
lim sup — SUP  Amax(FI(6))? < o0
maw L3S sy Al 0)

(viii) if
sup )\min(Fi” (9))2 = 00,
i—1 18—doll<d

then there exists an M independent of ¢ such that for all ¢

1 B /i
sup |/\max(F1 (91) Fl (92)” < M sup l)‘max(Fiﬂ(()))l < 0o,
b170,€04 161~ 2] -y

where ©4 = {8 € ©:10 — )] < d}, F/'(8) = {aun{® h<ikc<pra arll) =
Z"(xIB) v ziji (1 < 5,k < p), i jpaap(d) = 0(1 <5,k < g) and a; ,545(0) =
@i pap (0} = 2 (2] B)zi; (1< <p 1<k <q).

Remark 2.4.
(i) Assumption 2.4(i) is sufficient for constructing a n!/2 consistent esti-
mator of Fy. Assumptions 2.4(i) and the second part of 2.4{v) hold in many
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cases. See, for example, Eastwood and Gallant (1991} proposed that ZJZ; =
diag(n,n/2,...,n/2) and Eubank and Hart (1992) assumed that ZjZy =n - I,.

(ii} Assumption 2.4(il} restricts the growth rate of g,. More precisely, it
restricts the growth rate of the number of linearly independent column of Zy. If
Z§ Zy is nonsingular, the first part of 2.4(ii) implies g,/n — 0 as n — oc, since
maxi<i<n Pii > w t0{(Z(Z] Z,) " Zo) = qu/n.

(iii) Assumptions 2.4(iii){iv) hold for most design point {2;} and most series
functions. For example, Assumption 2.4(iv) holds for trigonmetric polynomial
and FFF functions. See Eubank and Speckman {1990}, Eubank and Hart (1992),
Eastwood and Gallant (1991), and Andrews (1991). For the case where the {z;} is
i.i.d. random sample, Assumptions 2.4 (iii}{iv) hold with probability one by using
the law of strong large numbers.

(iv) Assumptions 2.4{iv) and 2.4(v) also hold in probability when the {z;} is
i.i.d. random sample, which can be verified easily in the case where {z;.{-),&£ > 1}
is of the form: {cos(kt);sin{kt)}. Scc Lemma A.2 of Gao {1996b) for more details.

(v) Like Assumption 2.1, Assumption 2.4(vi) restricts the smoothness of g(-)
and zg(-), which are satisfied when g is approximated by a class of smoothing
spline functives (see Nuwnberger {1989)). Generally, it is not difficult to verify
above Assumptions 2.4(i}-(v) for the case where T' is compact and {zi(-), k > 1}
is of the form: {1,¢,t2,...,t™; or cos{kt); or sin(kt)}.

{vi) As p is finite integer, Assumptions 2.4({vii}{viii) can be replaced by some
assurmptions imposed on {a;;x(f)}, which are similar to Assumptions B{iv){v) of
Wu (1981). Since g = g, proposed in this paper depends on n and ¢ = g, — oc as
n — oo, we impose the conditions on the eigenvalue of the matrix {#;'(#)} not on
{aijr(6)}. Assumptions 2.4{vii)(viii) are general conditions for constructing the
asymptotic distribution of Bn for the case where p is finite or p = p, — 0o as
n — oo, which are needed for the application of Corollary A of Wu (1981) (the
law of uniformly strong large numbers). Recently, Pollard {1984, 1990) proposed
some new results about the uniform strong laws under some suitable conditions.
See, for example, Theorem 8.3 of Pollard {1990} is one of the key results.

Now, we give the asymptotic results of this section.

THEOREM 2.1. Assume that Assumptions 2.1-2.3 hold. Let D,(8,6)) =
S (Fi(B) — Fi{60))* — oo for all 8 # 8y and n — 0o. Then as n — oc

2o

~

(2.9) b,— 0 —0 as

THEOREM 2.2. Assyme that Assumptions 2.1, 2.2 and 2.4 hold. Let 8y be
in the interior of © and 6, be a strongly consistent least squares estimator of fy.
Then asn — 00

(2.10) VnlB, — o) — pN(0,02B71),

where B is defined by (2.6).
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Remark 2.5.

(1) Theorems 2.1 and 2.2 only consider the case where the ; are i.i.d. random
errors with Fe; — 0 and Ee? = 02 < oc. As a matter of fact, Theorems 2.1
and 2.2 can be modified to the case where Fe; = U and Ee? = f(x]3;) with
unknown function f{-). First, based on the finite series approximation §, to g and
a probability weighting function {W,;(-}}, we can construct an estimator fn() =
Yo Wai (Y5 - gn(x380))? for f{-) and then define a weighted LS estimator B
{Yi—gn (=] o))

Fu{=] o) }
are required to obtain the asymptotic normality of 3,.

(ii) The proposed estimators have the following advantages: the first is that
Theorem 2.2 and its proof can be generalized to the case where p = p,, depends on
n. In this cage, we only need to modify the conditions of Theorem 2.2 slightly and
new conditions and corresponding conclusion are similar to those of Theorem 2.3
below. See Remark 2.4(vi), Subsection 2.3 below and Remark A 1 in the Appendix.
The second advantage is that through using the finite series approximation, we
can apply some previous results including computational algorithms for classical
partially lincar modcls (scec Scber and Wild (1989), p. 651) to the new partially
linear model {2.13) below, and obtain some new results for ﬁn. See Subsection
2.2 below for more details. From Section 4 below, we know that the small sample
results support the new estimates proposed in this paper.

If o2 = Ee} is unknown, then we can define an estimator for 62 by

for 4y by minimizing "7, over 3y € RP. Some additional conditions

"

(211)  oh= Y%= 4B = 1 D% - 2T ),
i=1

i=1

And, the strong consistency and asymptotic normality of 52 can be obtained by
using Theorems 2.1 and 2.2. Here we omit the details.

2.2 Confidence region for parameter vector 3y
Based on the finite series approximate technique, the semiparametric single-
index regression model

(2.12) Yi=glz{fo) + e
has the following approximation version
(2.13) Y: = Z(x]B0)" 10 + &,

which generalizes the classical partially linear models {see Seber and Wild (1989),
p. 654) to the case where the numbers p and g may depend on n.

The confidence region for the parameter subsets in the classical partially linear
models has been discussed by some authors. See, for example, Hamilton (1986),
Gallant (1987), and Seber and Wild (1989).

In this section, the objective is to construct the confidence region for the
parameter-of-interest Jg. Ilere g is regarded as a nuisance parameter.
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The approach to finding confidence region for the parameter vector Gy is based
on the large sample distribution of the nonlinear LS estimmator 5,. By Theorem
2.2 we have as n — 00

(2.14) Fin = n(8 = 80)" BBy — fo)o > = px;

Since B depends on g (nmknown Tink function), we need to modify F1,.. By (2.3)

we can define the estimate of ¢'(-} by

7

(2.15) 4 (Y =Z"()"4n,

where Z'(-) = (2{(-),...,2,(-))7 is defined as in Assumption 2.4(vi).
Now, F|, can be replaced by

(216) Fl'n - H(Bn - ,BU)TB(BTI - ﬁﬂ)g_Qa

where B = hmnﬂw .,,1? En 1 ’EL ﬂ ) ’&' = Zl(x;,gu)q—gfuwé - H(l‘g—éu); ﬂAn = (Bn,l7 -
Brp), and H() = (h1("),- ., hy())"-

If o2 is unknown and hj() in (2.5) is unknown, then o2 and h;(-) can be
replaced by the above consistent estimates ¢2 and h;(-} = Z(-) %n;, where {¥,;}

minimizes y ., uj and t;; = Z'(x Tﬁn) ni; — Z{x] Bn) n;. We now have
another test statistic
(2.17) Fin =n(Bn — Ba)" B(8n) (Bn — o),

wherc B([)’n) = hmn--»oo 21 | Tl ty = Z'( Z’{;’H)T%nmt : ﬁ(m{{;n), and I:I() =
(Aa()s o hp()7

By (2.10) and (2.15)-{2.17), it is not difficult to show that as n — oo
(2.18) Fin — pxi.

Thus, based on (2.18) we can obtain the approximate {1 — &) confidence region
for g,

(2.19) {Bo € R (Bo — B, B(B.)Bo — fa) < wrrm <)}

Writing {b;;(3.)} for the j-th diagonal element of B(f3,); we also have the ap-
proximate (1 «) confidence region for {Gy;},

(2.20) {Bo; € R:18o; = Bug| <1 Y 26,0,5(32)12®1 e}

Remark 2.6. Here we only discuss the construction of the confidence region
for 3y, which is based on the large sample distribution of /,. In fact, the ap-
proaches based on the likelihood ratio and the score statistics can also be given.
Here we omit the details which are similar to the discussion of Hamilton (1986).

Remark 2.7. The computation of 13’1,,, (or ﬁln) is very important in small
sample situation, which depends on the computations of Bn and 4. The computa-
tional procedures of the nonlinear least squares estimators g, and 4, are detailed
in Section 4 below.
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2.3 IMypothesis test for testing g = go

Another important problem considered in this section is testing a null hypoth-
esis Hy @ g(-) = go(-). The hypothesis test for testing g = go has been discussed by
some authors. See, for example, Eubank and Speckman {1990), Eubank and Hart
(1992), Gozalo (1993), and Gao (19964). Recently, Azzalini and Bowman (1993)
investigated the test statistic for testing Hy : g is linear and alternative hypothesis
Hj, ' g is a smooth function, and constructed the test statistic which displays the
same form as the statistic of Durbin-Watson and Munson and Jernigan (1989).
Like Azzalini and Bowman (1993), we can construct a test statistic for testing null
hypothesis test Hp : ¢ = gp. But here ¢ = g, — 00 as n — 00, so we need to
modify the F-statistic used by Azzalini and Bowman (1993). Because of the same
reason, some test statistics proposed by Gallant (1987) and Seber and Wild (1989)
for testing non-linear regression functions should also be modified here.

In the following, we will construct a test statistic for testing the null hypothesis
Hy: 9 — go-

Based on Assumption 2.1, the null hypothesis Hy : ¢ = gp is equivalent to
HY : vo = Ao (known vector). This suggests using a test statistic of the form

(2.21) Fop = (2971)_1/20'"2(('3’:1 - '?O)TW(én)TW(én)('q/n —Fo) — QUQ)a

where W(bn) = Z;5 = (Z(27Bn),..., Z(238,))7 and 0® = Eej is known, If
0% = Ee? is unknown, it can be replaced by the above consistent estimate 62
without affecting the following Theorem 2.3.

For investigating the asymptotic behaviour of the test statistic Fs,, we intro-
duce the following Assumption 2.5.

ASSUMPTION 2.5.
(i) There exists a sequence of real numbers j, (j, — 00 as n — o0) such
that for n — oc
n
=1 2 .
Jndy" max » 0 pl —0;
R
(ii) g, 1 mMaxi<i<n kf — (0 as n — oo, where k; denote the eigenvalues of the
matrix Fp;
(iil) iMoo 5o~ MaXi<j<p Dopo; (Doig g Pik¥iy)” = 0, where t; = 275, and
vig = Z'{t:) oz

Remark 2.8.

(i) Like Assumption 2.4(ii), Assumptions 2.5(i)(ii) restrict the growth rate
of g,. Assumption 2.5(i}(ii) are needed for the application of Theorem 5.1 of De
Jong (1987).

(i) Assumption 2.5(iii) imposes some orthogonality restriction on {v;;} and
{#(t;)}, which holdg in many cases. See, for example, Fastwood and Gallant.
(1991) gave p;; = %ZE;:I ckzk(ti)zk(tj) (Cl = %,Ck = ].,k 2 2) If {LE‘,JZf(ti)}
and {z(t;)} are orthogonal for all j, k, and I (i.e. Y., ®i;2(¢:)2x(¢:) = 0), then
Assumption 2.5(iii) holds immediately. Recently, Eubank and Hart (1992) also
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used some orthogonality conditions. For the case where {z;} is i.i.d. random
variable, Assumption 2.5(iii) holds with probability one by applying the law of
strong large numbers.

Now, we give one of the main results below.

THEOREM 2.3. Assume that the conditions of Theorem 2.2 and that As-
sumption 2.5 hold. Let Fel < co. Then under the null hypothesis Ho ' g = go

(2.22) Fy, — pN(0,1), as n— o
Furthermore, if H1 : g # go holds, then Fyy, — 500 as n — 00.

Remark 2.9. Theorem 2.3 states that Fy, has an asymptotic standard nor-
mal distribution under null hypothesis Hy. In general, Hqy should be rejected if
Fy, exceeds some approximate upper-tail critical value, Fu, of the standard normal
distribution.

The proofs of Theorems 2.1 through 2.3 are given in the Appendix.

Remark 2.10. As there is a close connection between hypothesis test and
data-driven smoothing parameter. Eubank and Hart (1992) and Eubank et ol
(1993) proposed some new approaches to construct test statistics for testing Hy : g
is linear or H| : g is a smooth function.

In this section, we will give some similar discussions. Consider the hypothesis
test problem

Hg:g(t) =1,
(2.23) Hy:gt)=t+q(t), teT

where g; is an unknown smooth function.

The following discussion is based on g; being approximated by a class of
orthogonal series functions {px(-},k =1,2,...,n - p}.

For the following discussion, we introduce the orthogonality conditions below.

AssuMPTION 2.6. Let {px(-),k = 1,2,...,n—p} be the functions on T that
satisfy the orthogonality conditions

k()

Zpk(ﬂ?fﬁo)pz(ﬂ?{ﬁo) =néy, kI=12,....,n—p,
i=1
n

(224) Y pe(@iBo)ri; =0, =125 k=12..,n-p

i=1

To test Hy, we consider fitting the alternative “model”

q
(2.25) Vi =2lfo+ Y ez fo)ar +e,,  i=12,...,n
k=1
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Let X = (T1,...,2,)7, Y = (¥1,...,Y,)", and define
(2.26) B = Bty o1 Brp)” = (X7 X)TIXTY.

Here it needs to assume that X is of full column rank. Based on {t;,¥;;1 <
i <n} (t; = 7 ) we define the sample “Fourier” coefficients

(227) fkn = Okn ﬁO Zpk(ITﬁD

Since {agn(fo)} depends on the unknown parameter (3p, we need to estimate
aen(Bo). A natural estimate of {ar.{80)} is

_ _ l T _
(2.28) Ggn = akn(Bn) = n Z;pk(éﬂfﬁn)l’l
Assume that o2 and 3y are known, an estimate of the risk with (2.25) is
1 i 4 20.2
(2.29) o2 Ve @B = D pelel Bo)akn)® + 7(,10 + )
i=1 k=1

1 n
=E§(Yﬁ—m;ﬂo)2 Za,m - ‘o9

An indication that Hy is false is provided if {2.29) is minimized by any value of ¢
other than zero.
Minimizing (2.29) is equivalent to maximizing

(2.30) Z az, —

Similar to (2.6} of Eubank and Hart (1992}, we propose using as test statistic the
maximizer g of
R{g) -0 if g—0, or

2.31 i . 52
(231) :Zaﬁn—agaq if ¢g=1,2,...,n—p,

where 32 is any consistent estimator of 2 and ¢, is chosen so that P{(§ = 0) = 1«
nnder Hy.
Hence, a natural estimate of ¢(t) is

]
(2.32) gult) =t + > pr(t)iikn.
k=1

When the nuill hypothesis is not rejected §,(¢) is simply the least squares
estimate of the null model. Otherwise, §,(t) is a nonparametric estimate of the
regression function g. Under some suitable conditions, similar results can be given.
The proofs arc very tedious and therefore are omitted.
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2.4 Optimal smoothing perameter selection
To discuss the smoothing parameter b selection, we consider fitting the alter-
native “model”

Pl

(2.33) Y, = Z ze(2] Bo)yor + €0, 1=1,2,...,7,

k=1

where h € H,, = {1,2,...,gn}-

Various methods have been suggested for objectively choosing the smoothing
parameter h. See, for example, Li (1986, 1987), Eastwood and Gallant {1991},
and BEubank et ol (1993). Recently, Eubank and Hart (1992) proposed a new
procedure of selecting b, which is connected with a null hypothesis test problem.

In this section, we will use C, and GCV and present some theoretical results
to support their applications.

For applying the reanlts of Ti (1987), let mi(h} = Zt;l ze(z! Boyvor. Now
(2.33) can be written as the “model”

(2.34) Y = M, (h) +e,

where M, (h) = (m1(h),...,ma ()7, e = (e1,...,€a), and ¥ = (Y1,..., V3 }".
If 3, is the known true parameter-of-interest, then we can define the pseudo-
LS estimator M,, = (k, B) of M, (h) by

(2.35) My, = Mok, B0) = Zo(h)(Zo(R) Zo(h)) ™" Zo(R)Y = Jo(R}Y,

where Zy(h) = (Zp(z150).. .., Zn{x}50))” and Zn() = (z1()s -y za ()7
Obviously, a natural estimate for M, (h, fo) is

(2.36)  Mu(h) = Mu(h, Bn(h)) = Za(R)(Za(R) Za(R)) Za(R)TY = Ju(W)Y,

where fB,(h) is defined by (2.3), Zn(h) = (Zn(270a(B))- .-, Zn(25Ba(R)))7, and
()t denotes the Moore-Penrose inverse.
The following two well-known procedures of selecting h will be studied in
detall in this section.
(i) Mallows C, (Mallows (1973)): select h, denoted by hp, that achieves

2.37 ' Ly — M (| + 2020 h.
(2.37) hetr | {(M° +20°n

(i) Generalized Cross-Validation (Craven and Wahba (1979)): select h, de-
noted by hg, that achieves

(2.38) min n(n ~A)72Y — Mo (B)|I%.

The primary goal of this section is to demonstrate that under reasonable
conditions, these procedures are asymptaotically optimal in the sense that

L (h)

(2.39) _—
infpen, Ln(h)

— 1  in probab.,
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where Ln(h) = 1= | My — Mo (0)|?, Ma(h) = Jo ()Y, and M, = M,(g).
Another way to define those procedures which are asymptotically optimal is
in the sense that

Ln(R)
infhEHﬂ En (h)

where M,(h) = Jo(R)Y, Jo(h) = Zo(h)(Zo(h)" Zo(h)) ™' Zo(h)7, and Ln(h) =
n=Y| M, — M. (h) .

In this section, we only consider selecting h in the sense that (2.40) holds. In
order to give the results of this subsection, we introduce the following assumption.

(2.40) — 1 in probab.,

ASSUMPTION 2.7,

(i) Eef < oo; B

(ii) infacm, Qén(h) s 00, where Rn(h) = E{(Ln(h));
(iil) infpep, Lnlh) — 0 asn — oo;

(iv) suppcp, Mmﬂ — 0 uniformly as |8 — foll — 0 and n — o0,

where Zg(h) = (Zn(218),..., Zu(zL0))7, Js(h) = Za(h)(Za(h)" Z5(h)) ' Za(h)",
and In{h; 8, o) = (Ja(h) — Jo(R))"(Jp(R) — Jo(h));
(v) there exists an absolute constant b such that for any a > 0

sup P(z — e < e; <z 4+ a) < ba.
TR

Remark 2.11. We can show by using the similar reason as the proof of
Lemma A.3 in the Appendix that Apax(In(h;3,50)) — 0 and we also observe
from Assumption 2.7(ii) that f2,(h) is typically of order n™ !+t for some 0 < ¢ < 1.
Assumption 2.7(iv) restricts that Apax(In{h; 3, 50)) needs to have order higher
than n='%* for some 0 < ¢ < 1. Assumption 2.7(iv) is easy to verify when both
Z3Zg and Z§Zp are dlagonal matrices (see Remark 2.4(1)). Assumplion 2.7(v) is
satisfied if e7 has a bounded density.

Now, we give the following results for the case of g(t) # ¢.

THEOREM 2.4.
(1) Assume that the conditions of Theorem 2.2 and Assumption 2.7(i}(i1) (v}
hold. Then h, defined by (2.37) is asymptotically optimal when g(t) # t.
(i) If o2 in (2.37) is unknown aend o2 is replaced by a consistent estimator
&2, then hy s asymptotically optimal.

THEOREM 2.5. Assume that the conditions of Theorem 2.2 and that As-
sumption 2.7 hold. Then he defined by (2.38) is asymptotically optimal when

g(t) #t.

Remark 2.12.
(1) As a matter of fact, there do exist examples, which C}, is consistent and
asymptotically optimal while GCV is consistent but not asymptotically optimal
(see Li (1986)).
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{i1) Other useful data-driven technigues for selecting optlimal sicothing pa-
rameter such as Cross-validation and Stein estimates can also be discussed simi-
larly in this subsection.

Remark 2.13. Animportant problem is that what happens to the conclusion
of Theorem 2.2 when g is data-driven. In fact, it can be shown that the conclusion
of Theorem 2.2 still holds when g, in the definition of 8, is replaced by A, (or
fLG). Here we omit the details for they are lengthy, which will be given in another
paper.

Remark 2.14. The following useful criteria for selecting the optimal smooth-
ing parameter g (nonrandom selection) are hased on the order of the average

squared error (ASE) and mean average squared error (MASE).
Now, we give the final results of this section.

THEOREM 2.6. Under the conditions of Theorem 2.2, we have

(2.41) Dy(h) =

Sl

Y (in(t) = 96 = 20 + 0p(n ) + 0p(n ),
i=1

where §,(-) is defined by (2.4) and t; = 2] 3.

THEOREM 2.7. Under the conditions of Theorem 2.2, we have
h 4 -1
(2.42) D,(h) = =0 +o(n "h).
n

where Dy, (h) = ED,(h) = LY Eda(ts) — ()2

Remark 2.15.

(i) If By is unknown true parameter in (2.41) and (2.42), it can be replaced
by the above LS estimate 8, without affecting the results of Theorems 2.6 and
2.7

(i) It is clear from the results of Stone (1982) that b = h, = O(n!/?) in
(2.41) and (2.42) is optimal, so D, (h) and D,(h) can achieve the optimal rate of
convergence O(n~2/3).

The proofs of Theorems 2.4-2.7 will be given in the Appendix.

3. Discussion of a certain related partially nonlinear model

Consider the model given by

(31) n:f(x2y60)+g(tf)+eh 2:1:21:
where z; = (2;1,...,24)7 (b > 1) and t; = (t;1,...,t.4)” {d > 1) are known and
nonrandom design points, 8o = (Bp1,...,Fop)” (p > 1) is an unknown parameter

vector over @, (a compact subsct of R?), f,(Bo) = flz,30) arc somc known
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function, g(-) is an unknown function over I’ C R, and the ¢; are i.i.d. random
errors with Fe; = 0 and Ee? = 02 < .

The model defined in (3.1) includes some classical models: such as nonlinear
models Y; = f(z;,5) + e; (g = 0 in (3.1)); nonparametric regression models
Yi = g(t;) + ¢ (f = 0 in (3.1)); and semiparametric regression models ¥; =

2 Bo+g(ti)+ei (f(zi,80) = 27 5o in (3.1)). As can be seen, there is a bewildering
array of interesting special cases of the partially nonlinear models. Some of them
have been thoroughly studied and specific estimation procedures for them have
been developed. See, for example, Gallant (1987), Seber and Wild (1989), Hardle
(1990), Hastie and Tibshirani (1990), Wahba (1990), Robinson (1988), and Gao
et al. (1994).

In this section, we will apply the above finite series approximation technique
to g(-) to construct a nonlinear least squares estimator of 8. Meanwhile, the
asymptotic normality of a test statistic for testing Hp : g(-) = 0 is also obtained.
Based on g{-) satisfying Assnmption 2.1, tha T.§ estimator 4, = ({3,)7, (5.)7)" of
B0 = (83,75)" can be defined as the solution of

(3.2) Sn(o) = D _(Yi — mi(#o))® = min!,

i=1
where mq {8y} = fi(Bu} + Z(t:)7 v, and Z(-) = (21(-), ..., z¢(-))" with 2z(-) defined
over T C R and -y is defined as in Assumption 2.1.

For constructing the main results of this section, we introduce the following
assurnptions. Most of thew are similar to Ab‘huIIlptlUIlb 2.1 to 2.4,

Let f1(8) = (XD)icicp, F(8) = (558)1c,hep, and ug(ei,fo) =
ﬁ)‘
B=7Fo-

|2L48)

AssuMPTION 3.1. Assumption 2.1 holds with {z] Sy} replaced by {t;}.

AssumMmpTIiON 3.2,

(i) fi(8) and f{'(8) exist for 8 near So;

(i) there exist some bounded functions s, () over T such that forall1 < i < n
and 1<j<p
(3.3) uy{zi; Bo) = s;{ti) + e,

where ¢€;; are real sequences satisfying

(3.4) lim —Zq =

n—rcC 71
and
. 1
(3:5) lisup 57— max | Z%“ <o
for any permutation (1, j2,.. ., jn) of the integers (1,2,...,n), where ¢; = (€1, .. .,

€ip)” and By is a positive definite matrix with order p x p;
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(iii) Assumption 2.2 (ii) holds with {h,(x]8y)} replaced by {s;(£:)}.
AssuMPTION 3.3. m;(6) satisfies Assumption 2.3.

ASSUMPTION 3.4.

(i) Z is of full column rank ¢, for n large enough, and liminf, .-
Amin{Z7Z/n} > 0, where Z = (Z{t1),..., Z(ta))7;
(i) Assumption 2.4(ii) holds with Py replaced by P = Z(Z7Z )y"lzT
(iii) Assumption 2.4{iii) holds with {d;z;;} replaced by {u;(zs, 5o)};
(iv) Assumption 2.4(iv) holds with {z(z]80)} replaced by {z(t:)};
(v) maxici<a |[fi(B) ~ fi(B)| — O uniformly as |3 — Sol| — 0 and n — 03
(vi) there exists an absolute constant d > 0 such that for all (j, k)

n 2
limsuplz sup (82fi(ﬁ)) < 00;

n—oo P s pyysd NOBi98

(vii) if, for a pair (4, k)

3 azfi(ﬁ))2 ~
; ||6—SE(})\|§J (5ﬁj5‘ﬁk o

then there exists an M independent of ¢ such that for all i
O [i(s) B 0% i (1)
38:,‘38& 8tj8tk

sup =
s#L.5,tEB; s — | BeB;

where ©5, = {8 € ©1,{8 — Bl < h}.

3 1i(8)
88,08k

!

ASSUMPTION 3.5. Assumption 2.5 holds with Py replaced by P and As-
sumption 2.5(iii) holds with {v;;} replaced by {u;(x;, 5o)}-

Remark 3.1. The discussions of Assumptions 3.1 through 3.5 follow similarly
from Remarks 2.1 through 2.9 given in Section 2.
Now, we state the main results of this section.

THEOREM 3.1. Assume that Assumptions 3.1 and 3.3 hold. Let M, (0,6) =
S (m(A) — mi(86))% — co for all 8 # 8o and n — oo. Then asn — 00

(3.6) B, — 0y —0 as

THEOREM 3.2. Assume that Assumptions 3.1, 3.2 and 3.4 hold. Let 0y be
in the interior of © and O, be a strongly consistent least squares estimator of flg.
Then as n — 00

(3-7) \/E(Bn - ﬁO) - DN(DsazBfl)'



SINGLE-INDEX AND PARTIALLY NONLINEAR MODELS 509

Remark 3.2. Theorem 3.2 only gives the asymptotic normality of the LS
estimator of By for the case where p is finite integer. The case of p = p, — 00 as
n — oo can also be discussed. For this case, Assumptions 3.4(vi) and (vii) should
be replaced by those which are similar to Assumptions 2.4{vii)—(viii) and the proof
is similar to that of Theorem 3.3 below.

Remark 3.3. As in (2.4) and (2.11), we define the estimates of g(-) and
62 — Ee? by

(3.8) () = Z()
and
(3.9) 2 = ‘:IDY*'  Fi Ba) — Gult)2.

Also, we may obtain easily some asymptotic properties of &2 and g ().

Another important problem considered in this section is testing for a nonlinear
model or partially nonlinear model, that is, testing Hy : g(-) = 0 or Hy : g(-) is
an unknown smooth function. Based on Assumption 3.1, the null hypothesis
Hy : g(-) = 0 is equivaleut to HY : 0 = 0. This suggests using a test statistic of
the form

(3.10) Fap = (2¢2) P02 (7(Z7 20 ~ 407),

where 02 = Ee? is known and 7, is defined by (3.2). Also, if o2 is unknown, it
can be replaced by 2 without affecting the conclusion of Theorem 3.3 below.

THEOREM 3.3. Assume that the conditions of Theorem 3.2 and that As-
sumption 3.5 hold. Let Fe} < oc. Then under the null hypothesis Ho : g{*) = U

(3.11) an - DN(U, 1), s i — Q.
Furthermore, we have Fy, — ,00 under Hy : g # 0.

Remark 3.4. The discussions similar to Remarks 2.1 through 2.17 are omit-
ted here. The proofs of Theorems 3.1-3.3 are given in the Appendix.

4. Computational aspects

In this subsection, we only give some computational procedures in outline for
the nonlinear LS estimators 3, and 4. Consider the model given by (let g(t) = €
and p=11in (1.1))
(4.1) Vi=e%P re,  i=1,2,...,n,

where x; — 2r(i — 1)/n and €, are i.i.d. N(0,10) random variables.
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The approximation function is the family of trigonometric functions {cos(jt),
sin{jt);7 =1,2,...,k, = [n'/%]} used by Eastwood and Gallant (1991), where the
[z] denoctes the largest integer part of z satisfying [z] < z.

Now, the approximation function of g(t) is defined by

q k
(42) Gl) = 50 = 3 (coslitlyn + sin(it)a),
=1 j=1
where gn = 2kn = 2[r5] and 5 = (y1, .. 7g)7 = (M1 Yize - -5 Va1 The) T

Then, it is easy to see that Assumptions 2.3 and 2.4 hold.
Next, by (2.3) we define the nonlinear LS estimator 0, = (87,57) of 8y =

(B5,75)" Ly

n k

(13) S, — S - (v cos(ii) + vz sin(jzi))]? = min!

i=1 j=1

In the following, we give some iterative algorithms in outline for the above non-
linear LS estimator.

For an initial value 3©), we can obtain from Eastwood and Gallant (1991)
that the 1.8 estimators of (71, v50) are

(4.4) AW = () =2 § Y; cos(jz: 8©),
i:l
2N~ g
(4.5) T2 = 152(89) = > Zl; Y; sin(jz; 8).

Now, we can define an estimator 41 of 8y by minimizing

k
46)  8(8, ™) Z{Y 3 cosizife) + 75 sin(jzsBo)] 1.

Iteratively, based on (3®),p = 1,2,...) we can find (’yﬁﬂ),'ﬁgﬂ ) which mini-

mizes 5(3®), ~).

Ruhe and Wedin (1980) proved that the above iterative algorithms are con-
vergent and have asymptotical convergence rates. The details can be obtained
from Ruhe and Wedin (1980).

The iterative procedure below is known as the Gauss-Newton method for

nonlinear least squares.
For an initial vector (3, 4(1)), the following iterative procedure is easy to
use in practice,

(a7)  BEIY =30 4 (V) (I - PO)V (@) ' Ve) (I - P(p))e,
ot = 50 4 p~ldiag(1,2,...,2)W(@P)"
(L = VNV ()T~ POV () WV (p) (I - P(p)))e,
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where V(p) = (0(89)),...,0,(87)7, v:(§®) = Z'(z:fP) P - z;, P(p) =
n=t . W(0®) diag(1,2,...,2)W(HP)7, W(HP) = (w (8P, ..., w,(§))7, and
w; (8P)) = Z(a:ifi’(?’)).

At some step po, if |§Po+1)—FPo)|| < 0.001, then the above iterative procedure
is terminated and §(Pet1) = (FPo+1)" "3(po+1)7)T i taken to be the desired estimate
of 6 = (B7.47)7 defined by (4.3).

Thus, based on the above algorithms, we can discuss the finite sample prop-
erties of some estimates. The measures for the estimates 3, and #2 are taken to
be

(4.8) 1Bn — Boll  and |67 - ogl.

The simulation results for the cases where n = 100 and n = 200 can be given
based on (4.1) through (4.7). The details obtained using the Splus commands (see
Chapter 10 of Chambers and Hastie (1992)) are given in the following Tables 1
and 2.

Table 1. The Estimates and the Biases for n = 100.

}50 E}n |Bn - 50[ 6121 |5’% _ 10|
0.1 0.0892 0.0108 10.0232 00232
0.2 0.2007  0.0007 10.0093  0.0093
0.3 0.2907 0.0093 10.0103  0.0103
0.4 04017 0.0017 10.0035  0.0035
0.5 05009 0.0009 10.0016  0.0016
0.6 0.6008 0.0008 9.0989 0.0011
0.7 0.6991 0.0009 9.9990 (.0010
0.8 0.7992 (0.0008 16.0025 0.0025
0.9 0.9011 0.0011 10.0016  0.0016
1.0 0.9984 0.0016 10.0045 0.0045

Table 2. The Estimates and the Biases for n = 200.

B0 Bn  Ba—Bol 2 162 —10|
0.1 0.0896 0.0104 10.0103 0.0103
N2 n.2004 0.0004 10.0051 0.0051
0.3 0.2909 0.0091 10.0062 0.0062
0.4 0.4016 0.0016 10.0026 0.0026
0.6 0.5008 G.0008 10.0011 0.0011
0.6 0.6007 0.0007 $5.9990 G.0010
0.7 0.6993 0.0007 10.0009 0.0009
0.8 0.7994 0.0006G 10.0024 0.0024
0.9 (.89009 0.0009 9. 9987 0.0013
1.0 0.9989 0.0011 10.0032 0.0032
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Remark 4.1. 'The small sample results above support the new estimators
given in (2.3), (2.4), and (2.11) and the above Theorems 2.1 and 2.2 above.
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Appendix

For convenience and simplicity, let C' (0 < €' < oc) denote some constant
which may have different values at each appearance throughout this paper. In the
following, we only prove Theorems 2.1 through 2.7 and the proofs of Theorems 3.1
through 3.3 follow similarly from those of Theorems 2.1 to 2.3.

In order to complete the proofs of Theorems 2.1-2.7, we need to introduce
the following lemmas and their proofs can be found in Gao (1995).

LEMMA A.l. Assume that Assumptions 2.2 and 2.4(ii){(iii){iv) hold. Then
(A1) lim %V(BQ)T(I — By)V(8o) = B,

where V(8) = (), ...,0.(0))7, w(R) = Z'(=IB3)7yx;, vy = Z'(x]B) yxij,
L<i<n 1 <j<p By = Fg = W) (W) W(bo))'W(b)™, W(0) =
(wi{8),...,we(0))7, wi(8) = Z(218), 1 <i < n, and B is defined as in Theorem
2.2

LEMMA A2, Under the conditions of Theorem 2.2, we have

(A.2) lim sup Amax(ndy!) < oo,

where
Ayt = (A )i<i <o,
Ay = (V{80)™(I — Po)V(0a)) 7T,
Aje = AV (80)W (60) (W (60)W (6)) ",
AGy = (W (80) W (o)) ™ W {Bo)TV (o) A3},
and
AG = (W (8)"W (00)) " + (W (60)" W(b)) ™"
W (B6)7V (80} Agy V (B0) W (0 }(W (80)" W (60)) .

LEMMA A3, Assume that the conditions of Theorem 2.2 hold. Let Ay =
A(8)"A(8) and A(8) = (V(8),W(8))™. Then Agux(Asdy" — I) — 0 uniformly as

18 — &) — 0 and n — oo.
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Al Proof of Theorems 2.1 and 2.2

The proof of Theorem 2.1 can also be found in Gao (1995). The proof of
Theorem 2.2 is very lengthy and here we only give the proof in outline.

First, note that the following

(A.3) SL(0) =2 (Fi(8) — g(=] fo) — e:) F)(8)
i=1
and
(A.4) Sp(8)y =2 (Z F/(O)F/(6) - > F/'(B)es
i=1 i=1

+ Z di(0)F'(0) — Z”“i(QO)F{’(B)) :

where F}(8) = (;3-F(8)), F/'(8) = (5555 Fi(6)), and ds(0) = F(8) — Fi(6o).

From the mean—value theorem, there exists a p, € [0, 1] such that

(A.5) Si{60) = =2 Fl(0o)e; — 2 F{(Bo)r:(bo)
i=1 2=1
= 8,(8a) + S1(67)(Bo — n),

where 8% = (1 — p,. )0 + p,.B,. is measurable from Lemma 3 of Jennrich {1969).
Since 6, is in the interior of © eventually, S7(8,,) = 0. Now, (A.5) can be rewritten
as

(16) 3 5500) = = 30 Fllhoes = 3 Fl (00

(ZF’ BO)F’(BU)) 90— )y

where

23 n -1
(A7) K= Y EEIRGL) (Z F;(aom'(au)'f)
— ZFH 07 e; (Z FI(8,)F( 90)7) )
-1
+Z (62 — ri(80))FI(0) (ZF’ (66)F, )

= Ag: Ay} —ZF”(B Jei - Ag +Z di{02) — 7 (Bo)) FY(87) - Ap)
i=1
= Agy Ag!  B(O7)Ag (9;:)/19[,,
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where Ap and Ag( }1 are defined as before.
Note that (A.7) and Lemmas A.2 and A.3, in order to show that Apax{Kyn —
Ip14) — 0 as., it suffices to show that

(A.8) n M Amax(BEX) — 0 as.
and
(A.9) n  Amax (C(02) -0 as.

uniformly as {6}, - 8] — 0 a.5. and n — oo,

Now, observe that F/(#) = (a;k(f))1<jr<prq defined by Assumption
2.4{viii). For any nonzero vector ¢ = (¢1,...,Cp; Cpt1,---,Cpsq)” satisfying ¢"c =
1, we lhave

T

(A.10) B = S (T F(B)c)e; = i}l{(ﬁ)e,‘.
i=1

i=1

Using the same reason as the proof of {4.7) of Wu (1981) and applying Corol-
lary A of Wu (1981) and Assumptions 2.4(vii)(vii), we obtain that

(A.11) n~t sup (¢"B(05)c) = o(1)  as.

lel=1

uniformly as [[6% — 6| — 0 a.s. and n — oo.
Next, applying the Cauchy-Schwarz inequality and using Assumptions 2.1,
2.4(vi), and 2.4(vii) we get that

(A.12) n~! sup (¢"C(8;)c) = o(1) as.
llell=1

uniformly as ||6% — 8| — 0 a.s. and n — oo,
On the other hand, by Assumptions 2.1, 2.4(iii), and 2.4(iv) we have that for
all 3

n 2 T 2
(A.13) Zvij(ao)ri(ao) =3 ki(Bo)zi;mi(6o)
< (Z k?(ﬂo)rfj) > ri(6o) = O(n) - o(1) = o{n)
2—1 a—1
and
g T 2 iq n k)
(A14) Z zk(w'{ﬂg)mwo) E (Z zk(.’l}:ﬂg)2) - Z ?";‘2(90) = 0{7’%).
k=1 |i=1 k=1 \i=1 i=1
Thus
(A.15) 3" Fl(Bo)ri(80)) = o(n'/?)
i=1
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where F(6q) = (v;1(0o), ..., vip(00); 21T B0), .- ., 2 (&7 Go))".
Therefore, by (A.6)-(A.15) we get

(A16) (Z F" 90 90) ) (én — 90) — iFi,(BO)ei + op(nl/z)_

i=1
Thus, by Lemma A.1 and Lemma 3 of Wu (1981) we get that

(A1T) VA, = ) = VAR, AR (g ©) < 0,)
= VAV (f0)" (I ~ PV (00)) ™V (86)" (I — Po)e + (1)
- DN(O} B—ng),

where e = (e1,...,en)7. This completes the proof of Theorem 2.2.

Remark A.1. The above (A.17) establishes the asymptotic normality of B,
for the case where p is finite integer. As p = p, — oo as n — oo, we can study
the asymptotic distribution of a functional of 3,,,

(A.18) F(Ba) = (2p)" 20 2B (V(Ba) (I = P(B2))V (Br))Bn — 078,

where P(8,) = (Z’ Z*n)+ZE . The proof is similar to that of Theorem 2.3
below.

A.2  Proof of Theorem 2.3
Tt follows from (A.16) that

(Alg) ':Yn -y = (AB[)’ 9(})(V((£;{;)):—i> + Op(nAI/Q)

(W(QO)TW(BO))—IW(HO)T(I ~ V(80)(V(80)"V (60)) "'V (60))e
o,(n=1%)

(W(f?o)TW(ﬁ’u)) V2 Arn + Asn) + 0p(n13),

where ‘}(90) = ( Pg)‘/(eg) Al'n, = (’17(90)7-"‘7(90)) 1/2I’I'r(90}70, and AzTL =
—(W(80)"W(60))=1/2W (60)7V (80) (V (60)"V (80)) ™'V (60)"e.

By using the conditions of Theorem 2.3 and applying Theorem 5.1 of De Jong
(1987), we can obtain the proof of Theorem 2.3. See Gao (1995) for more details.

A3 The proof of Theorems 2.4-2.7
Proofs of Theorems 2.4-2.7 are omitted here for they are very lengthy. See

Gao (1995) for details.
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