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Abstract. We study Deran’s extension of the Kaplan-Meier estimator for
the situation of right censored observations at fixed covariate values. This
estimator for the conditional distribution function at a given value of the co-
variatc involves smoothing with Gasser Miiller weights. Wo establish an almost
sure asymptotic representation which provides a key tool for obtaining central
limit results. To avoid complicated estimation of asymptotic bias and vari-
ance parameters, we propose a resampling methad which takes the covariate
information into account. An asymptotic representation for the bootstrapped
estimator is proved and the strong consistency of the bootstrap approximation
to the conditional distribution function is obtained.
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1. introduction

At fixed design points 0 < z; < --- < 2, £ 1 we have nonnegative responses
Y1,..., Y, such as survival times or failure times. These responses are independent

random variables and the distribution function of the response Y, at z; will be
denoted by F,, {t) = P(Y; <t).

As often occurs in clinical trials or industrial life tests, the responses ¥7,..., Y,
are subject to random right censoring, i.e. the observed random variables at design
point z; are in fact T; and §; (i = 1,...,n), with

T, = min(Y;,C;)  and 6 =1I(Y; <C)

where C4,...,C, are nonnegative independent censoring variables with distri-
bution functions G, (t) = P(C; < t). We will assume independence of the
Y; and the ; for each i. Consequently we have that the distribution function
H,. (t) = P(T; < t) satisfies the relation

(1.1) 1= He () = (1 — Fo, ()1 — G, (1))
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At a given fixed design value € [0, 1], we write Fy, G, H, lor the distribution
function of respectively the response Y, at z, the censoring variable C, at x and
Ty = min(Yy, C;). Also we will write 8; = I{Y; < C;). (Note that for the design
variables ; we write Y;, C;, T}, &; instead of Yy, Cy,, La,, 6x,.)

Here we consider a general dependence of F, on 2. As a particular example we
could consider a general heteroscedastic regression model, where Fy(t) = F((t —
p(z))/e(x)) for some distribution function F with mean 0 and variance 1 and for
some unknown smooth functions p and ¢ on [0, 1].

This paper concerns nonparametric estimation of F.(t) and is organized as
follows. Below, in Section 2, we define the distribution function estimator Fyy for
F,. It is Beran’s generalization of the usual Kaplan-Meier estimator, taking re-
gression into account and depending on a handwidth sequence {h,}. In Theorem
2.1 we establish a basic almost sure representation for Fy;. This representation
then leads in Section 3 to the basic asymptotic properties of the estimator like
asymptotic normality and weak convorgence. In Section 1 wo propose a bootstrap
version F7,  of the estimator Fy,. This estimator depends on the bandwidth se-
quence {hﬂ,j» and on a preliminary bandwidth sequence {gn}. The latter is used
to generate resampled data (x;, 77, 67) from the original data (z;,73,8;). The
main theorem in this Section 4 then gives an almost sure asymptotic represen-
tation for the bootstrap estimator Fg, . In Section 5 we show the validity of
the proposed bootstrap procedure in the sense that the bootstrap distribution of
(nha)V23( wng(t) — Fig(t)) is strongly consistent for the distribution function of
(nhp )V 2 (Fop(t) — Fp(t)). The Appendix (Section 6) contains a series of basic
Lemmas A.1-A.5 on empirical distribution functions of the kernel type which are
uscd very frequently in the paper.

2. The Kaplan-Meier type estimator and its almost sure asymptotic representation

In the casge of no censoring, a natural nonparametric estimator for F, (t) is the
kernel estimator due to Stone (1977) with Gasser-Miiller type weights. It is given

by
> wni(@; ) (Y <)
i=1

where

1 o] X -z .
wm(m’hn)umfmi_lfn[(( o )dz t=1,...,n

RO | Tz
e o 2/ —K( )dz.
(z; hn) o .

Here zo = 0, K is a known probability density function (kernel) and {h,} is a
sequence of positive constants {bandwidth), tending to 0 as n — oo

In the present case of censoring, Beran {1981} was the first who studied regres-
sion problems in a fully nonparametric way. His estimator is a generalization of the
product-limit estimator of Kaplan and Mcicr {1958) and somc of ite asymptotic
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properties have been studied by Dabrowska (1987, 1989, 1992} (for the random
design case). In absence of ties, the estimator is given by (we refer to Section 4
for a definition allowing for ties)

. ) '
21  Fat)=1-¢ [] (1- Wn(i) (73 ) ) I(t < Timy)-

7 )
ngt I- Z;=1 w”‘(.?) (:L" hn)

Here T{1y < --- < Tiny are the ordered Ty, ..., T, and the &4 and wyiy(@; hy) are
the corresponding &; and wy;(x; hy,). Clearly, Fi;(t) is a step function with jumps
only at the uncensored observations. Note that if we think the weights Wi {25 hn)
all equal to n~ 1, then F,;,(#) becomes the classical Kaplan-Meier estimator. On the
other hand, in the case of no censoring (T} = Y; and &, = 1 for all i) the estimator
equals the kernel estimator of Stone (1977), which has been studied in Aerts et al.
(19944) in the fixed design regression problem with complete observations.

We will use the notation H2(t) = P(T, < t,é, =1) = fg(l — G(s=))dFy(s)
for the subdistribution function of the uncensored observations and the cumulative
hazard function A, is defined by

b dE(s) tdH2(s)
2.9 A = [ = f s
2) ) /o 1= Fg(s—) fo 1 Hg(s—)
We now replace H, and HY by the following kernel type estimators
Tt
(2.3) Hopn(t) = wnilz; b ) [(T; £ 1)
i=1
T
(2.4) () = wni(w; ) I(T; < 8,6, = 1)
=1

which leads to the following Nelson-Aalen type estimator for Az(t):

_ " _dHL(s)
A.’Bh(t)_'/(; ].—H:h(S*)I

Some notation to be used is the following. For the design points @y, ..., &, we
denote A, = minj<;<n(z; — 2;-1) and A, = maxi<i<n (T — Ti.1). For the kernel
K we will use | K||oo = sup, g K(u), | K|} = [T K2 u)du, p{* =[O uvK(u)du,
pi = ffom u?K(u)du. We will constantly use the following assumptions on the
design and on the kernel:

(C) 2, = 1,8, =0 1), A, — A, =o(n1)
(C2) K is a probability density function with finite support [—L, L] for some
L >0, uf¥ =0, and K is Lipschitz of order 1.

Note that ¢,{z;h,) = 1 for n sufficiently large {depending on ) since z > 1
and K has finite support. This makes that in all proofs of asymptotic results, we
will take cp(x; hn) = 1.
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Concerning the support of distribution functions we will use the following
notation: if L is any (sub)distribution function, then T}, denotes the right endpoint
of its support, i.e. T, = inf{t : L(¢t} = L(oo)}. Clearly, Ty = min(Tr,, T, ).

In the formulation of our results, we will need typical types of smoothness
conditions on functions like H.(t) and H¥(t). We formulate them here for a
general (sub)distribution function L,(¢), 0 <z <1,t & R, and for a fixed 7" > 0.

(C3) L(t) = mLm(t) exists and is continuous in (z,t) € [0, 1] x [0, T
(C4) L,(t) = £ L,(t) exists and is continuous in {z,t) € [0,1] x [0, 7]
(CB) Lg(t) = 53;;14@(6) exisls aud is conlinuous in (x,t) € {0,1] x [0, T
(C6) Li(t) = —sz {t) exists and is continuous in (z,t) € [0,1] x [0,7]

(CT) LL(t) = o5, L (1) exists and is continuous in (z,t) € [0,1] x [0, 7.
Note that (C5) and (C7) imply (C3) and that (C6) and (C7) imply (C4). Also,
(C3) implies that L,(¢) is Lipschitz in the following sense: there is a constant Cp,
such that for 0 < o, 2" < 1:

sup |Lo(t) = Lo ()] < Cule — .
0<t<T

Similarly, (C4) implies: there is a constant C, such that for 0 < t, ¢ < T

sup [La(t) — La(t)| < Cult — |
O

Also note that imposing conditions {C3) and (C4) on H.(t) and H¥(¢) implies
that F,(t) and G.(t) are continuous in (z,t) € [0,1] x [0,T].

Finally, we note that, since most of the resnlts in this paper are at a fixed
design point z, we could relax the above conditions (C3)—(C7) by requiring the
continuity only in U, x [0,7] instead of [0, 1] x [0,T], with U, some open neigh-
borhood of the fixed point .

The proposed estimator Fyy in (2.1) has a complicated structure which does
not allow immediate study of its properties. As Lo and Singh (1986) did for the
ordinary Kaplan-Mcier estimator, we now prove an a.s. asymptotic representation.
It represents Fy; (%) as a weighted sum plus a remainder term, which under certain
conditions, is of the a.s. order O((nhy,) 3*(logn)?>*) as n — oo. It should be
noted here that, for (a slightly different version} of Fhp, Gonzaler-Manteiga and
Cadarso-Suarez (1994) recently obtained an a.s. asymptotic representation with
remainder term O((nhy,) /4 (logn)*/* + h2), for bandwidth sequences h,, satisfy-
ing 3%3 — 0 and nh2 — oo (where the last condition, however, could be weakened

to nh2 — oo). For situations where the remainder term should be o{(nh,)1/?),
the extra conditions ———g—‘g — 0 and nh® — 0 are therefore required. This last con-
dition, however, is not satlsﬁed for the optimal bandwidth sequence h,, = Cn~1/%
(which minimizes the approximate mean squared error}. Since our bootstrap in-
vestigation in Sections 4 and & will be carried out for this optimal bandwidth
sequence, we have to reconsider the main steps in the proof and use for instance
our Lemma A.5{(b) in the estimation of their term II{3) {Gonzalez-Manteiga and
Cadarso-Suarez (1994), p. T5).
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THEOREM 2.1, Assume (Cl), (C2), H;{t) cmd HY(t) satisfy (C5), (C6) and
(CT) in [0,T) with T < T, hy — 0, 2E2 0 = O(1). Then, fort < Tw,_:

LT ! logn

Fo(t) — Fu(t) = Z’wm(ﬂ?; hn)gee(Tis ) + a2, 2)
i=]

where

dHY (s}

dun(T 6) = { CIT < 8) H(s)

(1 H.(s))?

T<t6f1) HE (1)
1— H,(t)

YT < 8,6 = 1) — H(s)
(1— Hy(s))?

dH, (s)}

and where

sup \rn(t,:r:)l:O((nhn)*w‘i(logn)w") a.8.
0<t<T

as n — 00,

Proor. Because of continuity, 1 — F(¢} = exp{—A;(t)). Introducing for

t < Tflmh
« *odHY (s)
Am 1) = / Th
h( ) 0 1— Hxh(s)
we have the following identity

Fon(t) — Fu(t) = [e —AL() _ ﬂxh(t)] — 1= Fon(t) — e—ﬁ:h(t)]_

By one term Taylor expansion of the second and two term Taylor expansion of the
first part, we obtain

(2.5) Frop(t) — Fo(t) = (1 — Fo(®)(Aznlt) — A () + Boa () + Raa(t)

where
Roa(8) =~ exp(=AZ, () A () = A=(0)

Rna(t) = exp(—~AZ5(1))[- log(l ~ Fan(t)) — Acn{t)]
with A2, (¢) between Ay (t) and A.(t) and A% (t) is between — log(1 — Fyp(t)) and

An(t).
Turthermore, for t < Ty, (and omitting the integration variables in the
notation):

. b dHY * dHY
Agn(t) — Ag(t) = zh _ -
WO T, T TH,

—/t[ L ! ]dnwrf L A(HY, — HY)
T Jo |1=-Hy 1-H,| * Jo 1-H, % 7

+ft L L gy, — B
u 1 H:L'h 17'H;1; zh A
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Writing for the integrand in the first term

H:nh - H:c Hmh - Hx (H:ch - Ha:)2

(L— Hpp)(1 — Hy) (1= Hg)® (1 — Hy)?(1 — Hup)

and integrating by parts in the second term, we arrive at

t
_ B _ Hy — H, % ;Cl'h(t) . H:(t)
(2.6) Agn(t) — As(t) = /[; (1- H,)? aHz + 1 Hg(t)
tHu o HU-
_ fo ﬁwiT)gde + Roa(t) + Rpa(t)
where

" (Hun— H)? u
Rt) = [ e

¢ 1 1
g — — d[HY, — HY]
th4(t) /{; [1 — th 1 — H.]Z:| [ zh H:c]

Because H,(T) < 1 and H,, (1) — H {T) a.s. (by Lemma A.2), we may suppose
that T' < Ty, . For Ru3(t) we have

2
1
(Sup Htna(t)] < (0;127* Han(t) ~ He “") 0 Hon(D)( - Ho(T))2

= O((nhy,) tlogn) as.

by application of Lemma A.2 and Lemma A.4(b). By Lemma 2.1 below

sup |Rna(t)| = O((nhy) **(logn)™?)  as.
0<t<T

Also from (2.6), Lemma A.4 and the bounds for Rps(t) and Rpa(f):

(2.7) i |Acn(t) — Ag(8)] = O((nhy) 2 (logn)?)  as.

This gives that

sup |R, ()] = O((nhn)_l lngn) as
0<ELT

In Lemma 2.2 below, we will show

sup |Rpa(t)] = Ol(nhy) ™) as.
0<t<T

This, together with (2.5) and (2.6), shows that the theorem is proved.

We now prove the two lemmas used above,
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LemMMma 2.1, Under the conditions of Theorem 2.1, as n — oo,
(2.8) sup

t 1 1
- d(HY, —~ HY)
o<t<T |Jo \1—Hzp 1—-Hg

= O{(nhy,) 3 *(logn)¥*)  as.

PROOF. Partitioning the interval [0,7) into k, = O((nh,)/?(logn)~1/?)
subintervals [¢;,t; 1] of length O{(nh,) /?*(logn)'/?), we have, as in the proof of
Lemma 2 of Lo and Singh {1986), that the left hand side in (2.8) is bounded above
by

(2.9) 2 max su ! — ! ! + =
TSl 1= Hay) 1 Hant)  1-Holw) ' 1= Halts)

sUPg<eer [Hzn(t) — He(t)]
(1= Hon(T))(1 — Hy(T))
- max |HE (8i1) — H(6) — H (b)) + HZ ().

1<i<ky

+kn

To estunate the first term in (2.9) we [urther subdivide each [4, (4] into u, =
O{(nh,) /*(logn)~1/4} subintervals [ti;,%; ;1] of length O((nh,)~3*(logn)¥/1).
Using that supg<,<p [Han(t) — Ho{t)| = O((nhy) ™'/ %(logn)!/?) a.s. (which follows
by application of Lemma A.4(b) to H,,), we obtain, as in Lo and Singh (1986)
that the first term in (2.9) is a.s. bounded by C maxy<i<k, maxi<j<a, [Haon(ti;) —
Hop(t:) — Ho (b)) + He (8)|+O((nhy) =34 (log n)3/#), for some constant €' > 0. Ap-
plying Lemma A.5 and Corollary A.1 to the functions H,, and H, gives that this
term is O((nhn)~**(logn)3/%) a.s. The second term in (2.9) is treated similarly
and leads to the same order.

LEMMA 2.2, Assume (Cl1), (C2), H,(t) satisfies (C3) in [0,T] with T <
T, hn — 0, %‘f’ — 0. Then, as n — o0,

sup | —log(l — Fun(£)) — Agn(t)| = O((nhy)™ 1) a.s.

0<E<T

Proor. Because H,(T) < 1 and H,(T) — Hy(T) a.s., we may suppose
that T < Ty,,. If t < T, then

1= Cnls=) dF(s)
Aa;h,(l‘;) _ﬁ 1 — G:h(s) 1— meh,(s)
_ /t Gen(8) — Gen(s—) dFzn(s)
[} 1

Gan(s) 1 — Fop(s) —log(1 — Fen(t)).

Since supgcier |Gon(t) — Gan(t=)| = O{(nh,) ") a.s., the result follows,
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3. Central limit results

In this section we consider some major consequences of the a.s. representa-
tion in Theorem 2.1 concerning the limiting distribution ol Fpp(t). It should be
noted that Theorem 2.1 also leads to other properties of the estimator. For in-
stance, under the conditions of Theorem 2.1, we have the following rate of uniform
consistency result: as n — oo,

(3.1) sup [ Fep(t) — Fo(t)| = O((nhy) "% 0ogn)?)  as.

O T

This follows from (2.5} and (2.7}). We will not discuss this type of properties
of the estimator here. They can be found in Van Keilegom and Veraverbeke
(1996) and include inequalities for P(supgei<t |Fun(t) — Fi(t)] > &) and for
PsUpg<y s<rift—s|<an [Fon(t) = Frn(s) — Fo(t) + F,(s)| > ¢) for some £ > 0 and
a, — 0.

The first major consequence of Theorem 2.1 is of course the asymptotic nor-
mality result for (nhn)'/2(Fyn(t) — Fp(t)). Looking at the main term in the asymp-
totic representation of Theorem 2.1 gives

(32) ani(a};hn)gtz(ﬂaéi)

=1
T
== wnz(:cghn)ftm(Théﬂxz)
i=1
"EH,, — Hy . " d(EHY, — HY)
+ (1= Fe(t)) {/ -mye e *fo ?}

with

Sew (L5 6, i) = G12(Tiy 80) — Egra(Ti, 6:)
t . J—
~(- Fx(t)){/o I = 0) = He8) g

(1 - H(s})?
1_H:1:(t)

YI(T < 5,6, = 1) — HE (s)
o e ey de(s)}'

If (C1) and (C2} hold, and if H, and HY satisfy (C3) and (C5), then we can apply
Lemma A.1(b) to EH,, — H, and to EHY, — H®. This gives that the second term
in (3.2) equals, uniformly in ¢,

(3.3) -;—(1 — Fi(t)) /Gt { Hy ()M (3) + 4 () } ps h% +o(hl) + O(n™").

(1= H(s)? 11— Hu(s)

We have E£,(T},68,2;) = 0. In order to deal with Y1 w2 (@; hn) Var £, (T3,

&;,m;) we recall the following lemma.
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Lemma 3.1. Assume {C1), (C2), hyp — 0, nhp — 00, Ifv:[0,1] R isa
Lipschitz function, then, as n — 00,

D wlilesha)i() = 4 -2(E) K + ol(nha) ™).

We omit the proof of this lemma since it is standard in all variance calculations
with Gasser-Miiller weights. This enables us to obtain the following result for the

variance.

LEMMA 3.2.  Assume (Cl), (C2), H.(t) and HX{t) satisfy (C3) in [0, T| with
T<Ty, , hy — 0, nhy, — oo, Then, fort <T, as n — oo,

IIKH2 b dHY(s)
) (l — F(2))° = Ha(s))2

ar (Z Wi (X35 hn )t (T, 65, 24)

i=1

0((nhn)' )-

Proor. Using integration by parts, we can write

B min(Ted) gy (g T <t,6,=1)
9re(L5,6:) = (1 — Fe(t)) {‘fo (AT S A AN

Hence, some straightforward calculations show that

(3.4) Var(g:(T},6;))

i H.(y) — Hq, Y w
_ (1—Fx(t})2{2f0 - / 17 R (Qy)dﬂ (y)dII(5)
) —

(
t A ) — HE)
“/o eV ADIE / Ty )

(
t dHu, )
N / 1~ H. ()2

T fHAS)  Ha(s)
[ | T e

[ )

from which the result follows via Lemma 3.1.

We are now ready to state the asymptotic normality resnlt for the estimator
F.p(t). The (a) part requires the condition nh2 — 0. Since the optimal bandwidth
hy = Cn~1/5 for some C' > 0 (i.e. the bandwidth which minimizes the approximate
mean squared error) is not covered by (a), we state this case in part (b).
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THEOREM 3.1. Assume (C1}, (C2), Hy(t) and H¥(t) satisfy (C6), (C6) and
(C7) in [0, T withT < Ty,
R
(a) Ifnh3 — 0 and %%%)m — 0, then fort < T, as n — oc,

(Rl Y2 (Fun () — Fu(t)) 5 N(0;2(8)).
(b) If hy = Cn™Y/% for some C > 0, then fort < T, asn — oo,
(nha) 2 (Fan(t) — Fu(t)) 5 N (b, (1); s2(t))

where

1 t{ B (s)dHY(s)  dHX(s)
(3.5)  b.(t) = 5(1 - Fr(t))][] { = (o) +7 _Hw(s)}ué(csm

b dHY(s)

2 . 9 _ 2 Ttz AS
(3.6)  sa(t) = [|K[5(1 ~ Fx(t)) o (1 — Hy(s)2

Proor. (a) The condition nh? — 0 implies fégi — O{1). Hence by Theorem
2.1 and the fact that the bias term is O(h2 +n~') (applying Lemma A.1}, it follows
that the limiting distribution of {nhn)2(Fen(t) — Fo(t)) is the same as that of
(mhn) Y237 Wi (T An )t (T3, 63, 2;). The result follows by checking Liapunov’s
condition. The Liapunov ratio is easily seen to be O{(nh,) /%) = o{1).

(b) Similar to (a), but taking into account the precise form of the bias term
in (3.3).

Under the conditions of Theorem 3.1, it is also possible to show that the
stochastic process Wi (t) = (nhn) V2 (Fen(8) — Fu(£)), 0 <t < T (where T < Ty, )
converges weakly in D[0, T'| (the space of right continuous functions with left hand
limits endowed with the Skorohod topology) to a Gaussian process W (t) with
covariance function (0 < s <t <T):

Cov(We(t), Wals)) = |K[3(1 = Falt))(1 ~ Fals)) f %ﬁ%ﬁ

This is the analogue of the result in Theorem 5 of Breslow and Crowley (1074)
for the usual Kaplan-Meier estimator. In Van Keilegom and Veraverbeke (1997)
we establish this result by showing the asymptotic normality of the finite dimen-
sional distributions together with a tightness argument. The paper also covers
the weak convergence of the corresponding bootstrapped process (where the boot-
strap procedure is defined as in the next section) as well as the analogous results
for the quantile process and the bootstrapped quantile process. As an application,
confidence bands for both the distribution and quantile function are obtained.
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4. The bootstrap procedure

In the rest of the paper we introduce a bootstrap procedure for approximat-
ing the distribution of (nh,)"/?(F,p(t) - #;(t)). This then provides us with an
alternative to the normal approximation in Theorem 3.1 and avoids estimation of
the complicated mean and variance parameters of the latter.

Our procedure combines both the bootstrap ideas of Efron (1981) for censored
data and of Aerts et al. (1994b) for fixed design regression. Given the design points
x;, the responses V; and censoring times C; (i = 1,...,n) we define the random
variables Y;* and C} (independently) as follows:

Y, ..., ¥  areindependent; V¥~ F,,
r.....Cr areindependent; O ~ Ga 4.
Here Fj,, is the estimator for Fy, as defined in (2.1), but with a bandwidth
sequence { g, }, which is different from {h,}. The distribution G, is the analogous
estimator for G,,. Then define, for ¢t =1,...,n,

TF =min(Y;*,CF) and & =I(Y] <Cf).

Tt is readily verified that the above procedure is equivalent to one where
the pairs (T}, 6}) are drawn (with replacement) from (71,61), ..., (T, 8s), giving
probability w,; (2 gn} t0 (T, 8 for j =1, n.

Based on the bootstrap sample (T7,61),..., (T, 6;), the bootstrap analogue

! omn

of the Kaplan-Meier type estimator in (2.1} is given by

w2 8oy
(4.1) ;:hg(t) =1~ H (1 - (i) (25 hn) )) It < T(*n))

im1 .
iyt hI Wy (T5 o

where T, < --- < T(”;L and 6(“?1) and Wy (2; hn) correspond to T(",‘L.). In case of
ties, we make the usual convention that uncensored observations are considered to
occur just before censored observations. It is easy to sec that £, in {(4.1) is well
defined in the case that two or more observations occur at the same time and that
formula {4.1) can also be written as

;hg(t) —1_ H (1 B ’tf);i(‘t}(uTE hn) )) I(f < T?;l))

Tiy<t

where @n(Tihe) = Yopogwnk(@ha) [Ty = Tuy) and ng(@ihn) =
S wak(@ k) I(TE = Ty, 65 = 1). In a similar way, replacing the (I3, 6;)
by (T, 8%), the bootstrap analogues of Hyp(t) and HY, (¢) in (2.3) and (2.4) are
denoted as H}, (t) and ;3 (¢) respectively.

In the sequel we will use notations P*, E*, Var*, ... for probability, expecta-
tion, variance, ... conditionally on the original vbservations.
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The parameter g, which is used to construct the resampled values is an ap-
propriate pilot bandwidth sequence which is typically asymptotically larger than
hy, ie. gn/hy — 0o in a certain way. This technique of oversmoothing with the
initial bandwidth has been successfully used in other resampling schemes in regres-
sion (e.g. Hirdle and Mammen (1991), Aerts et al. (1994b)). It entails that the
bootstrap bias and bootstrap variance are asymptotically appropriate estimators
for the bias and variance terms.

It should be noted that the important problem of bandwidth selection is not
dealt with here, merely hecause this problem is a research topic on its own and
is beyond the scope of this paper. To the best of our knowledge, no research
concerning bandwidth selection in the present situation has been done yet. We
therefore mention below some ideas for future research on this interesting problem.
We propose two methods, both of which consist of minimizing a specific estimate
of the mean squared error defined as

MSE(hn) = B((Fen(t) — Fu(t))?).

Primarily, one could prove an a.s. asymptotic representation for MSE(hy) of the
form
MSE(h.) = AMSE(h,) + remainder term

and minimize the asymptotic M SE(AMSE) with respect to h,. This method,
however, will require further estimation of certain unknown quantities in the ex-
pression of the AMSE (see e.g. Sanchez-Sellero et al. (1995) where this “plug-in”
method is used in the context of density estimation with censored and truncated
data). To overcome this additional problem (it might require the selection of a sec-
ond bandwidth), one could use a bootstrap bandwidth selection procedure, as done
in e.g. Gonzalez-Manteiga et al. (1996) in the context of hazard rate estimation.
Instead of minimizing the M SE, h,, is determined here such that

MSE* (hy) = E*((Fg(t) — Frg(1)?)

is minimal for a given sample (here, the pilot bandwidth g, should first be es-
timated in an optimal way). Again, one could prove an a.s. asymptotic repre-
sentation for MSE*{h,) and minimize the dominant term 1n this representation.
The main advantage of this method is that there are no unknown quantities to be
estimated.

The results require a slightly stronger version of condition {C2). We will
denote it by (C2'):

(C2) K is a twice differentiable probability density function with finite support
[-L, L] for some L > 0, u¥ = 0, K" is continuous and K(~L) = K'(-L) =
K(Ly=K'(L)=0.

From now on we state our results for the fixed bandwidth sequence h, of
optimal rate, i.e. h, = Cn~1/5 for some constant C > 0.

We begin with two lemmas which collect some properties of Hy, (t). Analo-
gous results hold for IIZ} (¢).
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Lemma 4.1, Assume (C1), (C27), Hz(t) sulisfies (C5), (CG) and (C7) in
0,7) with T < Ty, , hn = Cn~ Y5 for some C >0, g, — 0, Fg% — 0o, Then, as
n — 00,

(a) suppecr | bias Hyy (t) — bias Hep(£)] = o{(nhy) 1?) a.s., where

blaS H;hg(t) — E* mh,g{t) mg(t)
bias Hyn(t) = EHon(t) — Ha(t).

(b) supogeer [Hing(t) — Heglt)] = Op= ((nhn)~/2(log m)1/2) a.s.

PrROOF. {a) Partitioning [0,7] into k, = O(ngn(logn)™"') subintervals
[t;, tit1]| of length O((ng,) ' logn), we have that

sup | bias H}, (1) — biasHepn (t)]
0<t<T

<  ax. | bias Hyp, () — bias Hyp ()]

+ | max | Hag(t:) — Hyg(lie1) + BHpp (L) — EHep(ti-1)]

< max |b1asHIhg( i) — bias Hyp(ts)|

1<i<

+ max | Hag(ts) — Hegltion) — He(t:) + Holtio1)]

+  max \EHp(t:) — EHpp(tie1) — Hap(ti) + He(tiz1)|
+2 B {HL(t) — He(tio1)

=T1+T2+T’3+T4.

For T; we have, as in the proof of Lemma 10 in Aerts et al. (1994b) that

(nh, ) /*T) = ch’/?}ing |Haq(t:) — Hy(t:)] + o(1)

where Hoy(y) = P ’w(g)(ﬂ? gn)I(T; < y) and ’w( )(m Gn) = 1n f;:_l K"(222)dz.
Now,

max Ing(tt) H( )] € max |ng( i) — Eﬂmg(ti)l

1<i<k, 1<:<k
+ m EH. He(t)].
1<z%}.‘§ | xg( ) ;I:( ?J|

The first term is o(1), using Bernstein’s theorem. As to the second term, we write

12%23; lEng( ) Hx(ti”

1 f* ,f{z—=z
< max Zw (00 By t) = 5 [ K (Tn )Hz“”‘f"'
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%fmn K" (Ig;z) H.(t;)dz — Ho(t)
1<1<k { Qn/ (mgnz)‘ | Ho, () Hz(ti)ldz}

/ K z hnu( )— Hz(tz)]du

+ max
1<i<ky,

+ max

1<i<k, (for n large)

which is 0(1). Using Lemma A.5 with a, = c(ng,) " logn for some ¢ > 0, it
follows that Ty and T3 are o{(nh,)™!) as. Also, Ty = o((nh,)~'/?), using the
Lipschite continuity of H.

(b) We write: [HZ, () — Hag(t)] < [Hzp (8) ~ E"Hy,, (2)] + | bias HY, (t) —
bias Hyp(t)| + | bias Hop(t))-

The second term is o({nh,}~!/%) as. by the (a) part of the lemma. The last
term is O(hZ + n 1) using Lemma A.1(b). To the first term we apply Bernstein’s
mmequality and the usual argument for replacing the supremum by a maximum:
partitioning the interval [0, T] in O((nh,)!/?(log n)~1/2) subintervals [t;, t;41] such
that Hpg(tig1) — Heg(t:) = O((nhn) " 2(logn)'/?) a.s. This is possible since the

jump sizes of Hyy arc of order O((ng,) 1) and since %’; — oo.

LEMMA 4.2. Assume (C1), (C2), h,, = Cn Y5 for some C > 0, g, — 0,

nq 'ng o
Togs — and Tors o = 0O(1).

(a) If Hy(t) satisfies (C3), (C6) and (CT7) in [0,T] with T' < Ty, , then as

T — X,

sup sup |E" Hpy () — B H 0 (8) — Hao(t) + Heg(s)]
B8 f<T |i—s|<e(nhn,) "1/ 2(log n)1/2
= O({nh,) 3 *logn)**)  a.s.
(b) If Hy(t) satisfies (C3) and (C5) in [0, T) with T < Ty, , then asn — 00,

sup |Hyg(t) — Hy(t)| = O{(nhy) V3 {logn)'/?)  a.s.
0<ts

(e) If (C2') holds and Hy(t) and HY(t} satisfy (C5), (C6) and (C7) in [0,T)
with T' < Ty, then as n — oo,

t 1 1
— d kg
A (1 . mhg 1 ng) ( :chg H:r:g)

= Op-({nhy) **(logn)®*)  a.s.

sup
0<t<T




BOOTSTRAP WITH CENSORED DATA 481

PROOF. {a) We write

E'Hz,o(t) — B Hpg(s) — Huglt) + Hayls)
= anz’(z; hn)[ngg(t) - H;z:tg(s) - Hm (t) + H;m; (3)}

+ (B (t) — Bl p{s) — Hp(t) + He(5)]
+ [He(8) — Hyp(s) — Hyy(t) + Heg(s)]-

The second and the third term arc of the required order by Lemma A.5. For the
first term the proof is completely analogous to that of Lemma A.5.

(b) By using Lemma A.1(b) instead of Lemma A.1(a) in the proof of Lemma
A_3(b), it follows that

P ( sup |Hyg(t) — Ho(8)] > e(nhn) Y% (log n)1/2)

0<LET
< doe(nhy) "2 (log n}?ng, exp (—%dmgncz(nhn)l log n)

< Jt‘('ng,m_dl"'z/4 (for some K > 0 and for n large)

5
NYn hn

provided o o = O{1). Now apply Borel-Cantelli after proper choice of c.

(c) The proof parallels completely that of Lemma 2.1 above: the same par-
titionings and the same inequalities. Also, use is made of part (b) of Lemma 4.1
and parts (a} and (b) of Lemma 4.2,

THEOREM 4.1.  Assume (C1), (C2'), H.(t) and H2(t) satisfy (C5), (C6) and
{C7) in [0,T) with T < Thy,, hn — Cn~V5 for some C > 0, gn 0 9 oo

? logn
and Paba — O(1). Then, for t < Ty, ,
;hg(t) - F:ng(t) = Zwm;(x; he) g6 (17, 67) — Z Wi (T3 gn) gtz (T3 ;) + 15 (t )
=1 i=1

where iz 15 as in Theorem 2.1 and where, as n — 00,

sup [ (t,3)] = Ops (nha) ¥4 (logm)*%)  a.s.
0<t<T

Proor. We have

{4.2)  Fipglt) — Faglt)
= (1 - Fy(t))[1 - elog(l—F;hg(t))—log(lmeg(t))]

:u‘%wﬁﬁmv-%M%mm—amm

~ g1+ F @) — o1 = Py |

1

= (1 - Foylt)) {A - EB}



482 INGRID VAN KEILEGOM AND NOEL VERAVERBEKE

where 6, is between 0 and log(1 — F, (7)) — log(1 — Fyy(t)). It is easy to show
that

_ ft H;h.g B Hﬂ;g dH::g H;#g(t) - H;:Lg(t) _ ft H;}tg HJ:?g dH
o (1 - Hﬂ:g) 1- ng(t) 0 (1 - :cy)

+ Roa(t) + Rua(t) + Rus(t) + Rualt)

where

* tod mhg
Rpi(t) = —log(1 - xhg(t))_/o T
chg

i (H*} H, )2
Rt =f 2hg g dHY
0= T gt - iy s

! 1 1 w
RﬂS(t) *]0\ ( _H* - 1 qu) d( a:hg H:tg)

zhg

i dHY
Roa(t) = [ T 1081~ Fuytt)

Direct. application of Temma 2.2 gives

sup |Rua(t)] = O((ngn) ™) = Ol(nha) 1) ass.

<t

Following the lines of the proof of Lemma 2.2, we obtain

1
sup |R, ()] <2 max Wi (L An TG
D<t£T| (1) <isn ( )(1 .'thq(T))

= Op+{(nhy)™ 1) as.
since maxi<i<n Wai (23 he) = O((nhy) ™1} and Hz, (T) ¥ H,(T) by application of
Lemma A.2 and Lemma 4.1(b). Clearly, supy<;<y [Rn2(t)| = Op.{(nh,) " logn)
a.s. by Lemma 4.1(b). For R,5(¢), we use Lemma 4.2{(c). The first term in 4
equals

i H* _ H
T“zhg  "7T8 rru
/0 (1 — H,)? dH} + Rns(t) + Ras(t)

/( o= 1) ({7~ ) 4

xh H, " u
Rnﬁ(t) A &7[_])2&;(1{ - H; )

where

Rps{t) is uniformly bounded by

2

(1 . IITQ(T)) (1 71}- (T)) Ui?gl |H.7:ha( ) Hzg(t)loz?gq’lﬂxg(t) _H:r(t);
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and this is Qps ((nh,) " logn) using Lemmas 4.1(b) and 4.2(b). Using some ana-
logues of Lemma 2.1, it is easy to show that suppe,cp|Ras(t)) =
Op+ ({nhy) 3 *{logn)/4} a.s. The second and third term in A can be worked
out in a similar way. Hence,

tHY ., — Hy (t) — HY (1) "Hyp — Hy
A_ | Zzhe T g Hihg zg\t) / zhg
/g (I—H)zd 1 — H,.(t) Jo (—-H,)? LdH; + pp(t)

= (=R lz Wi {7 P 00 (T7, 87 ) — an-a(ﬂ?:gn)gm(ﬂ,&)] + pn(t)

i=1 i=1

where supg o, <7 |05 (8)| = Ope ((nh,)~ 3/4(logn)3/4) as.

To dea,l with the term — 1B in (4.2), we first note that B = A?ef and that
efr < m—. From Lemma 4.1(b) it follows that A = Op. ((nh,)"/?(logn)!/?)
a.s. Hence, by Lemma 4.3 below, B = Op-((nhy,) 'logn) a.s. 'I'o complete the
proof of Theorem 4.1, we still have to replace the factor 1 — Fy4(t) in (4.2) by

1 — F;(¢). This is allowed by Lemma 4.3 below.

LEMMA 4.3. Assume (C1), (C2), H,(t) and HZ(t) satisfy (CS) and {C5H)
in [0 T| with T < Ty, hy = Cn=Y5 for some C > 0, g, — 0, %e o0 and

logn
N9y hn _ .
e o = O(1}. Then, as n — o0,

sup |Fuy(t) = Folt)] = O((nhy) "V 2(logn)?)  as.
0t LT

Proor. Applying partial integration on fot d—(—}%*(’s)) and using that

dH -
Agg(t) = Ot e H“Ej 7 = fo I di”gi) 7, it is easy to show that

Fuglt) — Fult) = (1 - Fm(t))/o %g—)d(.l\wg(s) WS

and hence that supge;cp [Frg(t) — Fu(t)] < 3supgeser [Asg(t) — Ag(t)]. For 1 —

H.(T) > & > 0, some easy calculations show that

P ( sup (Fep(t) — Fro(8} > a)

o<t

<o swp Hy(t) - 01> 55 )+ P (s i (0 - 201> 55

0T 0<t<T
and hence, using Lemma 4.2(b),

sup |Fig(t) — Fu(t)] = O((nhy) ™ ?(logn)!/?)  as.
0<g<T



484 INGRID VAN KEILEGOM AND NOEL VERAVERBEKE

5. Strong consistency of the bootstrap approximation

In this section we show the validity of the proposed bootstrap procedure by
proving that P*((nhn)}/Q(F;hg(t) —Ipg(t)) = y) is a strongly consistent estimator
for P({nh, )2 (Fun(t) — F.(t)) < y). We prove this result below for a bandwidth
h, with optimal rate: h, = Cn~1/5. In this way the bootstrap distribution is
an alternative for the normal approximation in Theorem 3.1({b) which is ®{(y —
b, (t))/5.(t)) where b,(t) and s2(t) are the bias and variance parameters as given
in {3.5) and (3.6).

THEOREM 5.1.  Assume (C1), (C2), H.(t) and H(t) satisfy (C5), (C6) and
(C7) in [0,T) with T < Ty, hn = Cn=Y% for some C > 0, g, — 0 ey

' logn
and %Z—: =0(1). Then, fort <T, asn — oo,
sup {P*((nh, )2 (Flng (t) — Fug (D) £ y) — PU(nho) 2 (Fan(t) — Fu(t) < o)
ye
=o0{l) a.s.

Proor. Since from Theorem 3.1,

P((nha) Y2 (Fen(t) — Fu(t)) < y) — @ (E’i—%ﬁ)@) = o(1)

sup
yeR

we only have to show that

P*((nhn)l/Q(F;hg(t) —Fa)<y)—9@ (E{E;%F}(i))‘ =o(l) as.

Since from Theorem 4.1, P*((nh, )4 (t,z)| > £) — 0 as., it suffices to show
that

sup
veR

sup
yeR

P ((nhn)”z (Z Wi (73 ha ) 9o (13, 67) — Zwm(x;gn)gm(ﬂ,&;)) < y)

i=1 =1

(o)

Now, with the shorthand notation G* for gi.(T}.6}) and G; for ¢..(T;,6;), and
using the inequality sup,cg |®(a+bz)—®(z)| < |a|+max(b,b~'})—1, this expression
is bounded above by
o iy wni(ws b )GY — B (507 wni(3: hn)GY)
P (R e <) o)
(nh) V2 by (8) — bun(8)] + [(nh) /28, () — b (1))
((nhy) Var® (357, wnila; bn)GEH2
8z{1)
' m"‘"‘{ ((nhe) Var* (5272, W@ R )GD) 7
(o) Vo (L G
sz(4)

=o(l) as.

(5.1} sup
yeRk
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where

(5.2) ben(t) = 3wz R ENGTY = Y wni(2:00)Gi
i=1 i=1

(5.3) ben(t) = Y wni(w; ha) E(Gy).
i=1

Since the G are conditionally independent we can show that the first term in
(5.1) is o(1) a.s. by checking Liapunov’s condition
2 iy Wi (@ ha)EXIGY — EXGHP

i
Var (>, s (as Aryayyire - o)

(5.4)

Since E*|G} — E*(G})|® < 4{F*|G:]2 +(E*|G|)3} and since the G are uniformly
bounded (by 3(1 — H,(4"))7?), the numerator in (5.4) is O} 7 | wl (x;hy)) =
O((nhy)~%) as. The denominator in {5.4) 18 O{(nh,)~?/?) a.s. by Lemma 5.1
below, so that the Liapunov ratio in (5.4) is O{(nh,)"1/2) a.s. For the second and
third term in (5.1}, we use Lemma 5.1 below and (3.3) to see that these are o(1)
a.s. as n — 0o. This proves the theorem.

It remains to prove a lemma on the bootstrap bias and variance which was
used in the above theorem.

1

LEMMA 5.1. Assume (Cl), hp, = Cn™5 for some C > 0, g, — 0, lggﬂn —
00, t < T < TH,.
(a) If (C2') holds, H.(t) and H*(t) satisfy {C5), (C8) and {C7) in [0,T],

then, as n — 00,

(he) 2 (bgn (1) — ban(t)) > 0 as.

where by (t) and byn(t) are given by (5.2) and (5.3).
(b) If (C2) holds, H.(t) and H¥{t) satisfy (C3) in [0,T], then, as n — oo,

(nhy} Var” (Z Wi (25 B Y Gt (TS, 67 )) - S;‘f_(t) a.s.
=1

Proor. (a) Because

(R ) 72 b (£) = ban (£)]
= (nha)'?(1 = Fi(#))

N[ T 7 o) ~ Haol9) = BHan(s) + AR ()
T [ T () — () = BI) + E0)

£
1 * U U U u
- /0 "(TTW[ () — HY () — EHY (y) + H (y)|dH (y)



486 INGRID VAN KEILEGOM AND NOEL VERAVERBEKE

the result follows from Lemma 4.1(a).

{b) The left hand side equals (nh,) ¥ . | w2, (z; hy)h(z;) where h(z;) is ob-
tained from the expression (3.4) by replacing every I, by H,, and every H} by
Hy . Since Var(3 7, wni(Z; hn)g:iz (T3, 6;)) — s5(t) as n — oo (see Lemma 3.2),
it suffices to prove that

max sup |Hy(t) — Hy, (8)] (Zwﬁi(m;hn)) =o((nhn) 1) as.

1Si<n o<
which is obviously satisfied.
Appendix

In this Appendix we prove some basic results for empirical distribution fune-
tions of the kernel type which play a major role in fixed design regression models.
In the paper these results are frequently applied to either H,, or HY, in {2.3) and
(2.4). We state them for a general empirical

Lon(t) = zn:'wm-(m; ho VI Z; < F)

i=1
which is an estimator for the (sub)distribution function
Lo(t) = P(Z, < ¢)

and where Zy,...,Z, are independent random variables with (sub)distributions
Ly y...,Lg, and Z, is the response at an x € [0,1]. (The proofs go through in
exactly the same way for empiricals of the type 30 wni(2; hn)I(Z; < t,6; = 1).)

We start with a result on bias and variance which is well known and can be
found in e.g. Aerts et al. {1994a).

LEMMA A.l. (Bias and variance)

(a) Assume (C1), (C2), L(t) satisfies (C3), h, — 0, nh, — oco. Then, as
n — 00,

sup !ELp(t) — L. (t)] = o(hy).
0<t<T

(b} Assume (C1), (C2), L,(t) satisfies (C3) and (C5), h, — 0. Then, as

7 — 00,
sup |ELgp(t) — Ly (8} = O(h2 +n™1).
0<t<T

More in particular:

1 g -
sup | ELqn(t) — La(t) = 548 Lo (h5) = o(h?) + O(n™).

05T
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(c) Assume {C1), (C2), L,(t) satisfies (C3), hp, — 0, nhy, — oco. Then, as
n — 0o,

Var Fnt) = = T()(0 = L) K1 +ol(hn) ™).

T.eMMa A2 (Pointwise strong consistency)
Assume (C1), {C2), Lg(t) satisfies (C3), hn — 0, l:ﬁ — 0. Then, as
n— oo, fort <T:
Lon{t) —L(8) — 0 as

Proor. With X;, = w.. (xR )I{Z; < t)— L., (t)] we have L ,{t)— I.(t) =
S Xin v ELyn(t)—L(t), and by Lemma A.1(a) it suffices to prove strong consis-
tency of 3.0 | Xin. We have: | Xin| < wpi(z;hy) < | & || coAn/Pn. Also EX;p, =0
and Y1) Var(Xin) = Simg wii@miha)le (1)1 Lo, (1) £ 300, was(@shn) <
| K{|scAn/hn- Hence, by Bernstein’s inequality (see e.g. Serfling (1980)), for all

£ >0,
ZXin
i=1

f(;

for some constant ¢ > 0. By {C1) and the condition %ﬁ—: — 0, the right hand side
can be made integrable.

> 5) < 2exp{—ce?h, [A,)

LEMMA A.3. (Dvoretzky-Kiefer-Wolfowitz type exponential bounds)
Assume (C1), (C2), hy, — 0, nhy, — oco.
(a) Fore > 0 and n sufficiently large such that

3 1
2, 2 2
(A1) > K=
we have for any T > 0
(A.2) P ( sup |Lgn(t) — ELop{t)| > 5) < dgenhne'dlnhﬂsz.
0<t<T

(b} If moreover L,(t) satisfies (C3), then for ¢ > 0 and n sufficiently large
such that

. 1 2
(A.3) £? > max (ESHKH%W, 16C7 (/ |uK(u)du) hi)
we have
1 2
(A'4) P( Sup IL;rh,(t) - Lm(t)| = E) S §d05ﬂhne_(dlnhﬂt }/4'
0<t<T

Here dy and dy are absolute constants (do = 8¢2/| K |13, d1 = 4/ (3|1 K12)).
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Proor. (a) Applying a general exponential bound result of Singh (1975)

gives that the left hand side of (A.2) is bounded by
de2e e?

S @k {‘?‘zr w2 fm}

provided €2 > 30 w2 (z; hy). Now,

Z'w i(25hn) - — IIKII‘2

2
z T T—z ez —xio [T T —z
- —K dr| -y 2 =i=l / —KQ( )dr
-E (f:c,, hn ( fin ) ) hae i1 hay, by
1

=

f [ (e
g(n ha) %) + o{(nha) 1) = o((nha) 1)

(see also Aerts and Geertsema (1990))

Hence, for n sufficiently large, % |K|E2nh < S wii(aha) < SIK|B -
This, together with condition {A.1) m] £ gives the desired hannd.

(b) For & > 0, the left hand side in {A.4) is bounded above by

i3

(A.5) P( sup 1Zen(t) = BlLan(t)| > < — sup |BLan(t) - m(t)f).
0<t<T 0<t<

Now, from the proof of Lemma A.1(a) and the condition {A.3} on ¢,

sup |ELen(t) — Ly (t)] < 2C;, ( ] ]uK(u)du) b <

0<t<T

b

Agzin by the condition on ¢,

2
— s ELyp(t) — Ly(2 > > " |K|3—.
(e= 2o, 1BLantt) - L) > > JIK I

This allows to apply the (a)-part to (A.5) which leads to the bound in (A .4).

LemMa A4, (Rates of uniform strong consistency)
3
(a) Assume (C1), (C2), Ly(t) satisfies (C3), hn — 0, nhy — 00, fe= —
O(1). Then, as n — oo,

sup | Lon(t) — Le(B)] = O((nha)~2(logn)/2)  a.s.
0<t<T

(b) Assume (C1), (C2), L. () satisfies (C3) and (C5), hn — 0, 2 — O(1).
Then, as n — oo,

sup |Lgn(t) — Lo ()] = O((nha) "2 (logn}*'?)  as.
0<i<T
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Proor. (a) Apply Lemma A.3(b} with the choice ¢ = ¢, =
¢(nhy)~ ?(logn)'/? for some appropriately chosen constant ¢ > 0. Apply Borel-
Cantelli.

(b) This follows in a similar way if we use Lemma A.1(b) in the proof of
Lemma A.3(b).

LEMMA A5. (Almost sure behaviour of the modulus of continuity)
(a) Assume (C1}, (C2), L. (t) satisfies (C4), h,, — 0. Let {an} be a sequence
of positive constants, tending to 0 as n — oo, with
an(nh,)(logn) 1> A >0
Sfor ol n sufficiently large. Then, es n — o,

(A.6) sup  sup |Lpp(t) — Lgn(s) — ELgp(t) + ELyp(8)]
0<s,t<T |t—s|<an

= O0(a}?(nh,) " Y2(logn)/?)  as.
(b)Y Assume (C1), (C2), L.(t) satisfies (C3), (C6) and (C7), h, — 0. Let

{an} bec any scquence of positive constants, tending o 0 as n > co. Then, as
n — oo,
-sup sup |ELyp(t) — ELgp(s) — Lo(t) + Le(s)] = O(n~! + azhy + a2).

08, t5T |L—8|<an

Proor. (a) Partition the interval [0, T into m = [-L] subintervals of length

an = 2 10 =1 <t < - < ty, =T with t; = i, for i = 0,...,m. Let
Ini = [ti—@n, ti+a,],i = 1,...,m—1. We have: a, < @, < 2a, for nlarge. Hence,

for s,t € [0,T] with [t — s| < @, there exists an interval I,; such that ¢,s € I,;.
Partition each interval I,; by a grid ¢;; = t; -I—j%ﬂ, j=—bn,..., by, where {b,} is
a sequence of positive integers such that by, ~ a%/*(nhn)/2(logn) /2. Using the
monotonicity of L.,(t) and EL.x(t), we have that the left hand side in (A.6) is
majorized by

(A7) max  max  [Lon(tic) = Lan(tiy) — ELen(tic) + ELen(tis)l

+2 max o omax  |ELey(tjen) = BLan(ti)].

From the Lipschitz continuity of L. {(implied by condition (C4)}, it follows that
the second term in (A.7) is O(‘;‘T:L) =0(g) = O(a,lrb/z(nhn)”/z(log n}/?). As to
the first term in (A.7), we have that Lop(tix) — Ln(ti;) — ELgn (i) + ELgn(t;) =
S Xrijks where Xpye = wr (23 ho) {([1(2r < tifcl H{Z < ty)]  [Lz, (t)
Ly, (ti;)]}. We have: | Xpiiu| < wWae (25 h0) € | K ||ooBn/Pn, E(Xrijr) = 0 and
Var(X,ij) = wh (2 hn) {Lg, (k) (L — Lg, (tis)) + La, (ti5) (1 = L, (t:5))
— 2(Ly, {min(tix, t;;)) = Lo, (ti) Lo, (ti5))}
= wi (& ho){—(La, (tix) — Le, (£5))°
+ [Lz, (tik) — Lg, (min(tz, ;)]
+ [La, (ti5) — Lo, (min(ti, t:;))]}

< Cw?‘,r {(z; hr)an
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for some constant ' > 0, using the Lipschitz continuity of L,. It follows that
" Var(Xpin) < ClK |looBnan/hn. Let Ay = cran *(nhy)~1/2(log n)V/2, where
¢1 is a positive constant to be specified further on. By Bernstein’s inequality,

P ( max max JLmh(tik) — Lxh(tij) — ELmh(tik) + ELu:h(tij)i > An)

1<i<m—1 —b, <j,k<b,
‘ KloBn | 2|K|wds
< 2(m — 1)(2b, + 1)% exp {—)\i / (20” lilz n, + 3 | LIL = )\n) } .
n T

From the condition in the lemma it follows that A, < ¢; %5 for n large, so that the
bound becomes 2(m — 1)(2b,, + 1)? exp{—?,—i—qc% logn} = O(%)n*(cf/(ﬂ"ﬂi))ﬁ
for some ¢/, ¢” > 0. Since, by proper choice of ¢;, this can be made summable, we
arrive at the conclusion via the Borel-Cantelli lemma.

(b) |EL$h(t) - ELzh(S) - Lw(t) + La:(s)l

n

< Zf Lx (m = z) {IL2, () = Lo ()] 4 | L (3) = La(s)[}lz

i=1 Y Fi-1 fin

7k (B 80 - L) - L)~ Lol

The first term is O(n ') uniformly, using (C1) and (C3). The second term can be
written as

z/hn
f( KN La i (®) — Lo(8)] = [Lumnnuls) — Lo(s)lidu

=% )/ hn
Z b
= [ K= 9T ()~ L)
(@—Tn)/hn
1 1
45t (L (60) = LL(00))

where g is an intermediate point between t and s. In view of (C6) and {C7), this
is niniformly honnded as (3(a, b, + a2}

COROLLARY A.l.

(a) If we assume %ﬁf — 0, then we can apply Lemma A.5(a) with u, —
co(nhy,) "2 (logn)'/?, ¢y some constant. The order is O((nh,) =3 *(logn)3/4) a.s.

(b) If we take an = co(nhn)~"/?(logn)!/2 in Lemma A.5(b), then the order

is O((nhy) =4 (logn)*/4), provided &2 — 0 and L2 = O(1).
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