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Abstract. In this paper a simple way to obtain empirical likelihood type
confidence intervals for the mean under random censorship is suggested. An
extension to the more general case where the functional of interest is an M-
functionat is discussed and the proposed techuigue is used to construct confi-
dence intervals for quantiles. The results of a simulation study carried out to
assess the accuracy of these inferential procedures are also given.
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1. Introduction

Let X1,..., X, be a sequence of positive i.i.d. random variables with a com-
mon unknown distribution Fy. Let 7, .., (), be another sequence of positive
i.i.d. random variables, independent of the X’s and with unknown distribution G
In the random censorship model from the right, one observes only the pairs (13, 8,),
i=1,...,n, where T; = min{X,,Cy} and §, — I{X; < C;}. The observation T;
is censored when §&; is equal to 0 and uncensored if §; is equal to 1. In survival
analysis the variables X’s are lifetimes so that an uncensored observation identi-
fies a death time while a censored one represents the random loss of an individual
under study. Usually, Fy is estimated by the Kaplan-Meier (1958) estimator. Let
Ty < Tgy £ -+ < Ty be the ordered T-values, where ties within censored or
uncensored data are ordered arbitrarily and ties among censored and uucensored
data are treated as if the former precedes the latter. Let §(;y be the concomitant of
T, and assume that there are n,, distinct uncensored values TT <73 < .. <15
in the sample. The Kaplan-Meier estimator 1s

K(#)

D e e
F(t) = i=1
1 if &> T and 8ny =1
undefined if t> Ty and 6y = 0.
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Using the survival analysis terminology, K(t) denotes the number of (distinct)
death times in (0,¢], D; the number of deaths occuring at T and N; the number
of individuals still at risk at T, that is the number of individuals neither dead or
lost just before time T, In the following we will often refer to £'(t) as a distribution
function attaching, in particular, positive mass to the uncensored observations. If
in the sample there are no censored data, F' coincides with the usual empirical
distribution function, here denoted by ¥

It is well known (see Kaplan and Meier (1958)) that F maximizes the non-

parametric likelihood

L(Fy) = [J(1 = ha)Pepi=Pd

=1

defined on the family F, of distributions Fj, with support {T7,...,T; } U A,
A C [T}y, +00), characterized by the vectors h = (hy,...,h,,) of conditional
survival probabilities

* * _ 1- Fh (T.i*)
hi=hi(Fp)=pr{Y >T} |Y > T ;Y ~ Fp} = TR (T}’
i=1,...,n,, with F),(T§) = 17§ = 0. Using this property of F, Thomas and
Grunkemeier (1975) propose a technique to construct confidence intervals for sur-
vival probabilities. For a fixed a such that K(a) > 1, the authors obtain a non-
parametric likelthood L£4(8) for the functional of interest #(F) = 1 — F(a) by
profiling £{F}p). They show heuristically that, when 8 = 8y, 8y = 8(F}), the log
likclihood ratio £5(8) = 2log{Ly(8)/L4(8)}, wherec 8 = §(F) = 1  F(a), has
asymptotic x? distribution. So, as in the parametric case, a confidence interval
for g with nominal coverage <y is given by the set {0 : £3{) < ¢,}, where ¢, is
such that pr{x] > 64} == 1 — 7. A rigorous justification of this method is given by
Li (1995). Owen {1988, 1990, 1991) shows that this technique can be successfully
applied to a wide range of problems under the usual random sampling model and
to linear regression problems. In the uncensored case, that is when the observed
data are Xy,..., X,, Owen (1988, 1990) suggests to associate to the sample the
nonparametric likelihood

L(Fp) = ﬁpi

defined on the family 7, of the multinomial distributions on the points X,, ..., X,,
F,, characterized by the probability vectors p = (p1,...,pn) satislying the con-
straints p; > 0,4 =1,...,n, and .1, p; = 1. This likelihood is maximum when
= I, TFor a given functional of interest 8(-), the nonparametric likelihood
Ly(8), called empirical likelihood, is deduced from L{F,) as a profile likelihood.
In regular cases, the statistic lg(8y) = —Qlog{Lg(Bo)/Lg(é)}, where 8 = O(F), has
asymptotic x? distribution. An explicit expression for lg(f) is generally obtained
using the Lagrange multipliers technique. In particular, when the functional of in-
terest is the mean, i.e. when 6(F) = u(F) = [ tdF(¢), the empirical lug likelihvod
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ratio function is defied (or g belouging to (X1y, X(n)) and its expression is

(1.1) Le(p) =2 log{l + M) (X, — )},

i=1
where A(u) is the unique solution of the equation

n

2 TG
n L EA) (X —p)

i=1

From a practical point of view, outside (X(1), X(,)) it is adequate to set {,(u) =
| oc. Obscrve that finding the explicit expression (1.1) constitutes the first im-
portant step to establish the asymptotic distribution of the statistic 1, (1), with
to = p(Fp). This way of proceeding is quite common in empirical likelihood
(rameworks and can be found also in the paper of Li (19953). Moreover, defin-
ing the nonparametric likelihood L{-) over a family of distributions which are
absolutely continuous with respect to £ assures that the confidence intervals con-
structed using /,, are bounded. Under the random censorship model, an analogous
restriction on the domain of £(-} would be necessary to construct confidence in-
tervals for the mean of £3. In this case, a natural choice would be to limit the
domain of the nonparametric likelihood function to distributions with support on
{1y, ..., Ty Yy U{T }, that is, treating the largest observation Ty, always as un-
censored, to distributions with support on {17,...,T7 }. However, even with this
device, it might be hard to justify the construction of a confidence interval for pg
according to the Thomas and Grunkemeier scheme. In fact, we should maximize
L{Fy) under the constraint

., K(T7 )
I+ Z(Tf — 1) H h; = u.
=2 j=1

and an explicit form for the log likelihood ratio function seems to us difficult to
obtain.

In this paper we suggest a simple way to construct empirical likelihood type
confidence intervals for the mean under random censorship. We propose to refer
to the function

(1.2) ) = 203 plog(1 4 ATF — @),
i=1
with A u) satisfying

T

(1.3) Z Pi(ly —p) 0,

1+ M) (I — p)

and where §; represents the probability mass that the Kaplan-Meier distribution
attaches to 7;*. The Kaplan-Meier distribution is computed on the sample (7}, 8,),
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j=1,...,n, where the largest observation is always assumed to be uncensored.
Thus, except for the proof of Lemma 2.2, we will always assume in the following
Ty = Timy- The modified version of the Kaplan-Meier estimator will be denoted
by F(t). Observe that the function [, is the obvious extension of the function I, to
the censored case and coincides with [, when censoring is not present. In Section 2
we justify our choice of (1.2) as a tool to construct confidence intervals for the mean
under random censorship. In particular, we show that, under some conditions, the
statistic [}, (p0), suitably corrected, has a x3 limit distribution. Furthermore, in
Section 2, we discuss how this approach can be extended ta the more general casze
where the functional of interest is an M-functional, and in Section 4 this technique
is used to obtain confidence intervals for quantiles. Finally, Section 5 gives the
results of a simulation study carricd out to assess the accuracy of the proposed
inferential procedures.

2. Confidence intervals for the mean

Using the function [}, to construct confidence intervals for pg is equivalent to
base the inferential procedure on an artificial Z(+) type likelihood function defined
on the multinomial distributions on the points I7,...,7; and maximized by F.
An example can help to explain. Suppose that the sample T(y < Ty < -+ < Tis5y
is observed with () = 69y = 05 = 1 and (zy = 6(4) = 0. In this case, the Kaplan-
Meier distribution assigns masses equal to 1/5, 1/5 and 3/5, respectively, to the
uncensored data T7 = T(1y, T3 = Tyg) and T3 = Ti5). Thus, the nonparametric
likelihood tunction L(-) based on the sample Ty, T3, three times T3, thought
of as a set of independent observations from Fjy, would be maximized by F. In
general, given the sample data (T}, 6;), 7 = 1,...,n, we can always find n,, integers
Vly...y¥n,, such that p; = v /v, with v = 3™, v, and for which the likelihood
L(-) constructed on the artificial sample

vy times 17, v, times 13, ..., vy, times 17 |

is maximized by F. For such a sample, the empirical log likelihood ratio, using
(1.1), becomes

() =2 wlog{1 + AT - ),

with A(u) solution of the equation

i Vi (T'L* _ -u) =0
2 TN~ 1)

It may be easily verified that [;(1) = (n/v)l},(11). This formal link between the
function I}, (1) and Owen’s empirical likelihood function leads us to estabilish that
the former one is well defined and finite over the interval (T, T, ). Of course, in
order to justify the use of the function [},(-) to construct confidence intervals for
the mean of Fy, it is necessary to check its asymptotic behaviour, at least under
some suitable conditions on 5 and the censoring mechanism.
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Lel 75 = sup{t : Fo(¢) < 1}, +; = sup{t : G{t) < 1}, and suppose that the
following hypotheses hold:
(1) Fp is a continuous distribution;

(1) 7 < 7'1,
2 dn(t)
(a-1) 0 <o} 1= Fol)He) mmmprany < %
{a- II) nli? f;(o ){1 — Fo(t ) }d#t converges to zero in probability.

Let 0% be the variance of Fp, and denote by [t and &% the estimators for pg and
0% based on the Kaplan-Meier distribution, that is

=351 amd o= YA
=1

tm=]

THEOREM 2.1.  Under conditions (1)-{i1) and {A-1)-(aA-11), if 0 < 0% < o0
then
(i — Mo)

X

o) = +0,(1).

In order to prove the theorem the following two results are useful.

LEMMA 2.1. Let Zy,...,Z, be an i.i.d. sequence of positive random variables
from a distribution admitting finite second moment. Then maxi<icn Z; = o(n/?)
with probability 1 when n — 0o,

Proor. See Owen ((1990), pp. 98-99}. O

LEMMA 2.2. Under conditions (1}—(iI), for each Fy-integrable real function

g(t}, .
> hal@) — [ aar(o
i=1

with probability 1 when n - 00.

PrROOF. Put F(t) = I{t < Ty }F(t) + [1 — I{t < Tiny)}F(Tny)- Further-
more, for each £ > 0, let

S0 [ " gware, 3@ - | " gaB@),  S(e) = / " dm).

4}

Clearly, the functions f‘(t) and F(t) can differ only for ¢t > Tj,,,. For each ¢ > 0
we have
15() = §(0)] < 5(c) ~ S(e)] +|8(e) ~ S(0)
< 18(e) - 8(e)| + 18(e) - S(e)| + [S(=) — S(O)]

Under the condition (1) Ti,y — 7o with probability 1 when n — oo. Thus,
|8() —~ S(z)| — 0 with probability 1. On the other hand, as a conscquence of
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Theorem 1.1 of Stute and Wang (1993), |S(<) — §(c)} — 0 with probability 1 when
n —» co. The result follows from the arbitrariness of ¢ and the integrability of ¢{t)
with respect to Fy. O

Proor orF THEOREM 2.1. Under conditions {1}-(11) and (A-1)-(A-11), we
have, by Gill {1983),

(2.1) n'2(f = po) 5 N(0,02).

Then ji — g = O,(n~1/2). On the other hand, under the hypotheses made, T} and
T converge, w1th probability 1, to inf{t : Fg(t) > 0} and 7, rebpectwely So,
pr{T1 < pp < Ty} — 1 when n — oo. Consequently, I} (i) exists (finite) with
probability tendlng to 1. By Dini’s theorem, the functlon Alp) implicitly defined
by equation (1.3) is continuous in a neighbourhood of [i resulting

coon dA 1
M) =+~ T
Kolp=a X
Since
(2.2) Z ;= o)+ 0p(n7Y),
and, as a consequence of Lemma 2.2,
MNu
(2.3) D BT = po)* = 0% +0p(1),
i=1
we have % = o% | op(1). Then it is possible to consider the Taylor series

expansion of A{g) around 2, A{p) = A(R) + N (@) (e — @) + o{ju — 2]). Since
A(j) = 0 and putting Ap = A{p0), at g = o this expression becomes

(2.4) o= BTHO o a2,
X

Thus Ay = Op{n~'/?) and, by Lemma 2.1,

ol max (77— piol < Aol max |T; = pol = 0p(1)-

Then, using the McLaurin series expansion
3

1, S .
(2.5) log(l+2) =2 — 37+ AT |Z] < |z,

in the expression of 7(1s), we obtain, after some algebra,

Ty,

(2.6) 0 (o) = 2nho > Bl Ty = po) — nAg sz — po)?

=1

+ 2”’/\0 Zpa IU‘U) C’é:

i=1
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where the variables ¢; are such that pr{|(;| < B,2» = 1,...,n,} — 1 when n — o,
with B a suitable positive constant. Using again Lemma 2.1 and (2.3),

sz(T* - JUD) G

i=1

< max |T Hol sz — po?&| = Op(nlfg)

So, keeping in mind that Ag = Ou{n"1/2), we have

QHAS sz P MO) C‘i. - Op(l)v

and, on the basis of relations (2.2) and (2.4), the result follows from (2.6). O

As a consequence of Theorem 2.1 and (2.1), if & (r denotes a consistent esti-
mator for the asymptotic variance of n2/2(ji — ug), we have that

* d
[ (o) = 250 (o) = x1-

Q
1;?:\':|><w

Thus, under conditions (I)—{(i1) and (aA-1)-(a-11), the set T, {v) = {u : I;"(p) <
¢}, constitutes a confidence region for pe with asymptotic coverage ~v. The link
between [ (-) and Owen’s empirical likelihood makes us conclude that Z,(7v) is
an interval. Furthermore, the shape of the confidence intervals constructed in
this way is not suhject tn predetermined symmetry econstraints (characterizing,
on the contrary, classical methods based on the normal approximation}. Such
constraints would make them not much adequate in contexts, like the ones we
are dealing with, in which the underlying distributions are typically asymmetric.
Evidently, in comparison with the use of a procedure based on the likelihood £(-),
the simplification introduced by considering the function I} () requires to estimate
a correction factor constituted by the ratio of two variances. A possible estimator
for the asymptotic variance of n}/2(ji — pg) is

. 2/
T"“{l - I?‘(t)}dt) S HT > T7)

Conditions (1)—(11) and {A-1)—(A-11} are substantially necessary to assure the
asymptotic normality of /i and the validity of a strong law under random censor-
ship. As Gill (1983} observes, conditions (A-1)-{a-11) hold, in particular, when
Fy is a distribution with bounded mean residual life function, provided that
(1 -G) = all — Fy)? close to my for some constants a > 0 and § < 1, L.
provided that the censoring mechanism is not too heavy in the tail.
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3. Extension to M-functionals

Let 1(t,8) be a real function defined on R x ©, © being an open subset of R,
Borel measurable on R for each 8 € ©. A functional §(F) defined as a golution of
the equation in #

(3. [ we.oaro =o

is called M-functional corresponding to . In the uncensored case, when the
observed data are Xq,...,X,, the usual estimator § = 0(F) for 8y = 0(Fp) is
called M-estimator corresponding to ¢ and, under suitable conditions (see Serfling
{1980}, Chapter 7), is consistent and asymptotically normal. A generalization of
the concept of M-estimator to the censored case is given by the statistic § = 8(F),
i.e. by a solution of the equation 3 . §;% (T}, 8) = 0. In this case, for some par-
ticular 7% functions, the asymptotic properties of the corresponding M.estimators
are studied by Reid (1981) and Oakes (1986). Furthermore, general results on the
strong consistency of # can be obtained following a recent paper of Wang (1995)
using Lemma 2.2, given in the previous section, instead of his Lemma 1. Regard-
ing the asymptotlc distribution of &, at the best of our knowledge, a general result
does not exist. However, if #(-) is compactly differentiable, then we can establish
the asymptotic normality of n'/ 2(5 — 0p) using the functional delta-method (see
Andersen et al. (1993), Section II.8).

For an M-functional 6{.), Owen’s empirical log likelihood ratio is defined (fi-
nite) for those values # such that min<;<, ¥(X;,0) < 0 < maxi<i<n ¥(X;,0) and

its expression is
™

Z log{l + A(8)% (X, 8)),

=1

where A(f) is the solution of the equation

1 o (X5, 8) -
n ; 1+ M0)(X,,0) — 0

By analogy to the mean case, extending lp(#) to the censored case leads to the
function

(3:2) 56) = 20> Filog{1 + NB)B(I}, O)),
=1
with A(@) satisfying the equation
< {7, 8)
3.3 2 = 0,
(33) 2 TTAB T B
defined for ¢ such that minyc;<n, ¥{T;,60) < 0 < maxi<icn, ¥(17,8). In the
following, we study the asymptotic behaviour of {; assuming the asymptotic nor-
mality of  and sufficient regnlarity conditions an the shape of 25(-, -). Tn partienlar,
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Theorem 3.1 provides an expression for {3(8,) like that given by Theorem 2.1 for
L o)
Let 6 be the unique solution of (3.1) when F = Fp. Let o} denote the
variance of (X1, 0p) and suppose that the following hypotheses hold:
(B-1) (¢, 8) admits derivative @{t,8) = (8/90)1)(t,0) at 6 = by;
(B-1) 0 < o3, < +o0 and 0 < E{@?*(X1,60)} < +oc;
(B-11) E{p(X1,00)} # 0;
(B-1v) (2, 8) is continuous at # = #y uniformly with respect to ¢,
or,
¥(t,8) is twice differentiable at 0, and E{{6%/06%)¥(X1,8) |s=s, } is finite.

THEOREM 3.1. Under conditions (1)—(11} and (B-D-(B-1vV), if & — By is
O, (n~1/2) (but not 0,(n~"1/2)), then

4-—8 ]
15(00) = ng—;—% +0p(1),
G/&
with n
5’3) = Zpl’{)[)z T* ~ and é:: ZﬁgW(T:;g)
g1 i=1

Proor. Let Ag = A(fy). Since 1+ Agp(TF,8p) > 0, we have

-1
11+ Ao (T}, 60)| * = {1 + |Ao| max ITJJ(TQ,H())} :
1<isn

Furthermore, from (3.3) with 8 = #y,

_— Tha . AO’I,L?(T;.,QO) ~ . }
" ;pz { L+ Ao (17, 60) (7, 80)
UL Aoyt (T}, 8)
> Z T+ 2w (Tr, 80) ;pzw (T7, 66)
—1 ny

> ol {1 ol s AT, 0 | 305 -

D Bip(T}, 00)| -
i=1

Putting My = max)<j<x |¥(T}, 60)|, it follows that

| 220 By (T, 6o)

(3.4) ol & S 5 GRTTF  Bo) — Mol S, o (T, 8ol

By Lemma 2.1 My = o{n'/?) and, as a consequence of Lemma 2.2,

(3.5) Zp,, (T, o) —J¢+op(l)
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Moreover, a Taylor series expansion provides the relation

Ty Ty,
(36) 0= p(Tr80) + 3 (TS )8 )+ op(nH),
i=1 i=1

from which we obtain Y i By (T, 00) = Op(n n~1/2). Thus, from (3.4), Ay =
0,(n"1/2). On the other hand, equation (3.3) can be rewritten as

(3.7) 0=> fv /\OZPL (T7,65) +/\22p21,b3 (T, o),
i=1 i=1
where 7; = {1+ Ao¥(TF,00)} 1, i=1,...,n,. As

Pl max (T}, 00)| = Moldol = op(1),

it is easy to verify that pr{|m| < B1,i=1,...,n,} — 1 when n — oo, being B; a
suitable positive constant. So

)\Ozpz (T}, 8o)mi| < AgMo sz 2T, 6o) il = op(n™VE),
=1

and, from (3.7), using equation (3.6), we have

(8o — ) 0 Pa(Ty, Bo)
S B (T, 6o}

Using the McLaurin series expansion (2.5) in the expression of I7(6y) given by
(3.2), we obtain

{3.8) Ag = 172y,

+ Op('nu

(39) l; (30) = 2?'!,/\0 Z ﬁzw(T:, 90 'FLAO Z pt T* 90
i=1

My
+2nA3 > B (T, 60)Gis
ja=1
where the variables (; are such that pr{|(;| € B2,i = 1,...,n,} — 1 whenn — 00,

B, being a suitable positive constant. Since 2nA3 Y .1 pz¢3(ﬂ*, 80)¢ = o0p(1), on
the basis also of relations (3.6) and (3.8), equation {3.9) becomes

9 B0)2 {31, Bip(TY, 00} )2
E?:uj pﬂ/’ (7:*390)

(3.10) 13 (00} = + o,(1).

Finally, S0, 5ib?(Ty, o) = 63, + 0,(1), and 35 Bip(T7, 0o)

agsunplion (B—IV) Thus the result follows immediately from (3.10

£ + 0,(1) from
). 0
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As a direct consequence of Theorem 3.1, we have the following

COROLLARY 3.1. Assume that n'/2(6 — 6,) is asymptotically normal with 0
mean and variance crg. Denote by &g a consistent estimator for 09"3. Then, under

conditions (1}~(11) and (B-1)-{B-1v),

53/€
52

a

. d
59(90) —’X?‘

Therefore, when the conditions of Corollary 3.1 hold, the function I}(6), suit-
ably corrected, can be used to construct confidence regions for #y with asymp
totically exact coverage. Furthermore, on the basis of the link between {3(-) and
Owen’s empirical log likelihood ratio, if ¥(¢,6) is monotone in  for each t, then
the confidence regions obtained in this way are intervals {cfr. Owen (1988), The-
orem 2). Observe that, under conditions (1)-(1) and (B-1)~(B-1v), 47 /¢% is a
consistent estimator for the asymptotic variance of n'/2(8 — ), that is for the
asymptotic variance of the M-estimator in the uncensored case. Thus, as in the
particular case of the mean, the correction factor needed to relate [3(f) to a
known asymptotic distribution, is a ratio between variances. More precisely, it is
the ratio between the M-estimator asymptotic variances, in the uncensored and
censored case.

In specific cases, the assumptions made so far on the censoring mechanism and
the regularity conditions imposed on the function ¥ may be not strictly necessary
to show that, up to a correction factor that we can estimate consistently, I;{6)
has asymptotic x? distribution. Let us think, for example, to the case where
$P(¢,8) = I{t > a} — 0, that is when the functional of interest is the survival
probability 1 — F'(a) which does not depend on the whole distribution F: in such
a situation assumption (IT} scems to be excessive. Another case highlighting these
aspects, which is strictly connected to the just mentioned one, is discussed in detail
in the following section.

4. Confidence intervals for quantiles

For 0 < g < 1, let 8 = inf{t : £u(f) = ¢} be the g-th quantile of the distribu-
tion Fy. Assume that Fy is continuous and strictly increasing in a neighbourhood
of . On the basis of the sample (13,6;), ¢ = 1,...,n, iy is usually estimated by
the g-th quantile # of the Kaplan-Meier distribution,

(4.1) 6 = inf{t: F(t) > g},

for 0 < g < Fy(r), with 7 = min{7p, 1 }. Under the assumptions made on Fy, for
8y < 7, 8 is a consistent estimator. Moreover, if Fy has a positive and continuous
density fo in a neighbourhood of 8, then @ is asymptotically normal (see Shorack
and Wellner (1986), p. 657). The estimation of the asymptotic variance of &

involves the cstimation of the density fy(fg). Thus, in order to construct confidence
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regions for fy, rather than use the asymptotic normality of n'/ 2(5 —0p) it is better
to follow the idea of Brookmeyer and Crowley (1982} and use the function

{F(8) — q}*
{1 F(6)y252(6)

(4.2) w{f) =n

obtained as a generalization of the sign test for censored data. In expression (4.2)
it is

K8
...2 _ ~
o (6) = %; N(N; = D)’

so that {1 — F(6)}?3%(9) is the Greenwood’s estimator for {1 — Fp(8)}?02(4), with
a2(0) = f(f {1~Fﬂ(ctiﬁl)2({ti—c(t)}’ that is for the asymptotic variance of n'/2{F(8) —
Fo(6)}. Asymptotically, w(#n) has a x? distribution.

Alternatively, confidence regions for fg can be obtained following the approach
proposed in this paper. In fact, under the assumptions made on Fj, the g¢-th
quantile 8, is the unique solution of equation {3.1) when F' = F; and

—1 if t—68<0
(43) Y. 0) = {q/(l—q) if t—0>0.
Thus, inference can be based on the extension to the censored case of the empir-
ical log likelihood ratio for M-functionals. Consider the function [3(0) defined by
relations (3.2} and (3.3) with %(-,-) given by (4.3). In this case, [3(-) is finite on
[Ty, T,;,) and it is easy to show that, when # belongs to this interval, the solution
A(#) of equation (3.3) has expression A(0) = {g — £(#)}/g. Consequently,

(4.4) 1;(0) = 2n {F(e) log %@ + {1 — F(8)}1log

1— F(8)
1—g¢g '

'1'HEOREM 4.1. Let Fp be continuous and strictly increasing in a neighbour-
hood of 8. When ©{t,8) is given by (4.3), if 60 < 7 then nlg(ﬁg)ﬁrxf, where
k= a/{{1 — a)o*(f)}.

PrROOF. Since F(fp) = g + Op(n~/?), by the expansion log(z) = z — 1 —
(z—1)2/2 + o({z — 1)?), from (4.4) with 8 = f; we obtain, after some algebra,

1580 = n{F(80) ~ g} {2‘1 —8¢” F(fo) 1248 (00) } T op(1),

(L —q)?
which gives, using again the consistency of F {8a),

{F(6o) - g}

(60} =n g(1—gq)

+ 0p(1).
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The result follows immediately from the asymptotic normality of n'/2{ F(fy) —q}. U

Theorem 4.1 establishes that, up to the factor &, I}{6n) has an asymptotic xf
distribution. Of course, from a practical point of view, there are several asymptot-
ically equivalent ways to correct the function I3(-). In particular, here we propose
to estimate x by using

(4.5) & =F(0)/{(1-q52(0)},

where 6 is the g-th sample quantile, given by (4.1), and

K{? nD
63(9) = Z N;
t=1 i

is an estimator for o?(#) alternative to 52(6) (see Andersen et al. (1993), Sec-
tion IV.3).

COROLLARY 4.1. Under the conditions of the Theorem 4.1, [5*(y) =
I3 (00) 5 2.

I’rooF. Using the consistency of @, the continuity of Fi(-) at 8, and the
uniform consistency of F'(8) in a neighbourhood of f, it is easy to show that
F(f) = q+0,(1). On the other hand, |72(8) —o%(6)| 2 0 uniformly in a neighbour-
hood of 8y {see Andersen et al. (1993), Section IV.3) and o(-) is a continuous func-
tion at f. Therefore, in a similar way we can show that 52(8) = a2(8) + 0,(1). T

In expression (4.5), F(f) can be substituted by the asymptotic value g, but,
in this case, simulation results show a worsening of the x? approximation for the
distribution of I5* (). Still in expression (4.5), the choice of the estimator 52(#)
instead of 32(f) is justified by the fact that, unlike 3%(8), 52(8) is different from
zero also for samples where, due to heavy censoring, the sample quantile # coincides
with the largest observed death time. Under the conditions of Theoremn 4.1, the
set Zo(y) = {0 : 1;*(8) < ¢,} is a confidence region for 8y with nominal coverage
v. Actually, Tp(7y) is an interval. More precisely, since {3{#) is a step function with
jumps at the uncensored data I}, Tg(7y) is an interval of the kind [t;,t3), where 1)
and ¢, are two observed death times.

We conclude this section with an example based on the data on the treatment
by radiation therapy of head and neck cancer {Efron (1988)). Figure 1 shows the
functions I3* and I** for the median and the mean for these data. The horizontal
lines shown are at the asymptotically justified 90%, 95% and 99% levels.
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Fig. 1. Functions {3* and [}* for the median and the mean for the data from the
Head-and-Neck-Cancer Study.

5. A simulation study

Sections 2 and 4 provide asymptotic results that justify the use of functions I},
and [}, given by expressions (1.2) and (4.4}, to obtain confidence intervals, respec-
tively, for mean and quantiles under random censorship. To assess the accuracy of
the confidence intervals constructed according to this approach (in the following
called ELT approach) some simulation experiments have been carried out. This
allows us also to compare these inferential procedures with alternative procedures
such that based on the normal approximation (in the following called AN ap-
proach), in the mean case, and that proposed by Brookmeyer and Crowley (in the
following called BC approach), in the quantile case.

For the mean case, which is, from a pratical point of view, the less relevant in
this context, a unique experiment was carried out assuming that the distribution
of interest and the censoring distribution were exponential, the former with mean 1
and the latter with mean b. For b we chose four different values in a way such that
the censoring probability # = pr{C] < X;} was equal to U.1, U.15, 0.2 and 0.25,
respectively. From each model we generated 5000 samples of size n, with n = 40,
60 and 100. On each sample the statistics 1**(po} and (n/62)Y/2(f — po) were
calculated, with go the true value of the mean and 3% given by (2.7). Then, on
the basis of these 5000 values of the statistics, the actual coverages of the confidence
intervals constructed according to ELT and AN approaches were estimated.

Regarding the quantiles, we considered the median case. We performed four
experiments each related to a different choice of the distribution of interest: expo-
nential(1), Weibull{1,0.5), Weibull(1, 1.5), log-normal(0, 1). The four distributions
are characterized by a hazard function respectively constant, decreasing, increas-
ing and non-monotone. In all the experiments we assumed that the censoring
distribution was uniform over {0, 7], with 7 chosen in a way to obtain censoring
rate w equal to 0.2, 0.4 and 0.5. In each experiment, 5000 samples of size n were
generated from each model, choosing for n the values 20 and 40 when 7 = 0.2 and
20, 40 and 60 in the other two cases. On each sawple we computed the statistics
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Table 1. Simulation results in the mean case.
0.990 0.975 0.950 0.900 0.700 0.500
=101 n = 40 AN 0087 0046 0.919 0N.R71 (LARND 48R
ELT 0.980 0.962 0.932 0.884 0.6834 0.485
ELT, 0988 0972 0951 0903 0.713 0.511
n = 60 AN 0.975 0.956 0.920 0.887 0.698 0.496
ELT 0.983 0.969 0.942 0.891 0.701 0.495
ELT, 0987 0.973 0.94% 0.900 0.710 0.504
n=100 AN 0.980 0.965 0.938 0.890 0.701 0.507
ELT 0.988 0.970 0.945 0.893 0.700 0.507
ELT,, 0990 0.972 0.948 0.897 0.704 0.509
=015 rn=40 AN 0.958 0.937 0.910 0.861 0.669 0.474
ELT 0.978 0.954 0.924 0.873 0.669 0.474
ELT,, 0988 0.974 0.949 0903 0.712 0.511
n = 60 AN 0.967 0945 0.918 0.871 0.682 0.483
ELT 0077 0081 0.631 0.8R1 (AR2Y N4RAR
ELT,, 0985 0971 0.950 0907 0715 0.512
n=100 AN 0.972 0.954 0.931 0.882 0.689 0.502
ELT 0.984 0.962 0.936 0.891 0.689 0.501
ELT, (.98 0971 0.946 0.903 0.708 0.518
o =0.2 n =40 AN 0.954 (0.933 0.906 0.858 0.674 0.478
ELT 0.967 0.948 0.917 0.867 0.671 0.475
ELT,, 0985 0970 0946 0906 0727 0.521
= GO AN 0.965 0.942 0.919% 0.87% 0.G682 0.494
ELT 0.978 0.960 0.927 0878 0.683 0.492
ELT,, 0985 0971 0.947 0.902 0718 0.517
n=100 AN 0.974 0.956 0.930 0.879 0.688 0.494
ELT 0.983 0.968 0.940 0.884 0.686 0.492
ELT.. 0988 0.974 0.951 0.898 0704 0.512
7=025 n=40 AN 0.946 0.924 0.894 0.848 0.665 0.476
ELT 0.960 0.939 0.912 0.861 0.663 0.476
ELT,, 0982 0.067 0045 0.611 0.738 0.541
n==60 AN 0.958 0.939 0.911 0.860 0.669 0.477
ELT 0.970 0.951 0.925 0.871 0.669 0.471
ELTm 0983 0970 0.949 0910 0.720 0.511
n =100 AN 0.967 0947 0.921 0.872 0.682 0.485
ELT G.975 0.957 0.828 0.876 0.682 0.488
ELT, 0.988 0971 0.946 0.898 0.713 0.513

461
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Tahle 2. Simnlation results in the median case. Distribution of interest exponential(1).

exciuded
0.990 0975 0.950 0.900 0.700 0.500 samples

T=02 n=20 RC 0.975 0.057 0.936 0.877 0.604 0.407 0
ELT 0.989 0975 0.952 0.899 0.703 0.5304
ELTy 0990 0.975 0,948 0.898 0.699 0.500

n =40 BC 0.985 0.967 0.935 0.886 0.688 0.495 0
ELT 0.991 0976 0.950 0.895 0.691 0.497
ELT,, 0992 0975 0951 0.898 0.696 0.501
7=04 n=20 BC 0.972 0951 0926 0.873 0.682 0.491 0
ELT 0.989 0977 0.950 0.885 0.702 0.506
ELT.. 0989 0974 08951 0.901 0.701 0.R03

n=40 BC 0.981 0.964 0.93¢ 0.885 0.608 0.497 0
ELT 0.991 0977 0954 0905 0.713 0.507
ELTy 0.982 0.973 0.947 0.838 0.708 0.504

n=460 BC 0.986 0.968 0.943 0.893 0.696 0.501 0
ELT 0,992 09879 0.955 0.907 0.700 0.505
ELTy 0991 0975 0.951 0.903 0.699 0.505
=058 n=20 BC 0.969 0.951 0.920 0.873 0.685 0.480 6
ELT 0.980 0.880 0.962 0.92G6 G762 0.5360
ELT, 0.991 0.974 0549 0.900 0.70% 0.495

n=40 BC 0.978 0.956 0928 0.878 0.674 0.484 0
ELT 0.990 0976 0.956 0.915 0.720 0.514
ELT» 0991 0.974 0.949 0.902 0.701 0499

n=060 BC 0.983 0.962 0.937 0.892 0.695 0.491 0
ELT 0890 0973 0.953 0916 0.723 0.509
ELT,,» 988 0971 0.948 0.905 0.709 0.497

{57 (0o) and w{fy}, with 8y the true value of the median, and on the basis of 5000
values of these statistics we estimated the real coverages of the confidence intervals
constructed following ELT and BC approaches.

Tables 1-5 summarize the simulation results. They provide, for some values
of the nominal coverage ~v, the empirical coverages of the confidence intervals con-
structed using the three considered approaches. Furthermore, in each table the
rows marked by ELT,, report the estimates of the coverages achieved by correcting
the statistics l;‘;(po) and I3(fy) through their Monte Carlo mean. In other words,
the estimates, in this case, refer to the coverages of the confidence intervals based
on the functions m;ll;(-) and my, '{3(-) where m, and mg are the Monte Carlo
means of I} (ug) and I5(fy) respectively. If the confidence intervals based on the
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Table 3. Simulation results in thc median case. Distribution of interest Weibull{1,1.5)

excluded
0,090 0.975 ©0.950 0.900 0.700 0.500 samples

w=02 n-20 BC 0.072 0.047 0.022 0.864 0.682 0.487 0
ELT 0.98% 0972 0943 0.880 0.690 0.488
ELT,, 0991 0974 0.946 0.892 0.697 0.512

n=40 BC 0.986 0.967 0.940 0.88% 0.688 0.498 0
ELT 0.992 0.977 0.950 0.900 0.694 0.498
ELT,. 0892 0.978 0.949 0.900 0.694 0.500
7=04 n=20 BC 0.965 0.943 0.915 0.856 0.671 0.489 3
ELT 0.989 0.977 0.850 0.895 0.702 0.506
ELT,, 008 0.077 0.850 0809 0700 0.510

n=40 BC 0.981 0962 0.935 0.887 0.680 0.494 G
ELT 0.950 0.978 0.8952 0900 0.698 0.501
ELT,, 0.990 0.974 0950 0901 0.699 0.504

n==60 BC 0.983 0.964 0933 0.883 0.692 0.504 0
ELT 0.991 0.072 0.048 0.808 0.699 0.508
ELT,, 0.990 0.972 0.945 0.897 0.705 0.513
=05 n=20 BC 0.964 0.944 0.915 0.860 0.670 0.482 11
ELT 0.991 0.976 0.955 0.917 0.728 0.519
ELT,, 0.990 0973 0949 0.899 0.699 0.502

n =40 BC 0.981 0.962 0.933 0.885 0.684 0.433 0
ELT 0.991 0977 0956 0.911 0.713 0.503
ELT» .08 0975 0950 0902 0.699 0.494

n==60 BC 0.981 U963 0.932 0.878 0.681 0.488 0
ELT 0.991 0.976 0.952 0.897 0.698 0.496
ELT,, 0.983 0.976 0.549 0.898 0.703 0.506

functions [3(-) and [3(-) admitted Bartlett correction, the values provided in the
ELT,, rows would reflect this feature and would turn out to be an useful term of
comparison. Of course, the Monte Carlo means of £ (u0) and I5(6o) were computed
provided that these statistics assumed finite value. The samples for which this did
not occur, all related to the median ease with n = 20} and high censoring rate, were
excluded from the study. Their number, indicated in the tables, is not significant
for the evaluation of results. The estimates of the empirical coverage standard
errors cau be computed through the binomial formula. Their value decreases with
the empirical coverage value, varying approximately between 0.0042 and 0.0014
on the interval [0.90,0.99]. In the mean case, the simulation results show that,
as one should expect, the ELT confidence intervals are sufficiently accurate for
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Table 4. Simulation results in the median case. Distribution of interest Weibull(1,0.5).

excluded
0.990 0975 0.950 0.900 0.700 0500 samples

=02 =n=20 RBRC 0.969 0056 0047 0.878 0.711 0.492 0
ELT 0.991 0970 0.950 0.884 0.712 0.492
ELT,, 0.98% 0981 0951 0.886 0.711 0.491

n=40 BC 0.982 0.963 0.937 0.805 0.700 0.509 0
ELT 0.990 0973 0.946 0.899 0.698 0.506
ELT,» 0991 0977 0947 0.899 0.705 0.512
T=04 n=20 BC 0.968 0.950 0.928 0.867 0.673 0.487 0
ELT 0.992 0.979 0.962 0.921 0.729 0.539
FElT» 0.992 0973 0947 0899 0.691 0.503

n=40 BC 0.983 (.968 0.942 0.808 0.694 0.503 0
ELT 0.993 0.981 0.962 0.922 0.724 0.520
ELT. 0.989 0974 0.951 0.905 0.698 0.500

n =60 BC 0.985 0970 0.940 0.889 0.691 0490 0
ELT 0.001 0.980 0.952 0.905 0.7068 0.4032
ELT;, 0.990 0.975 0.945 0.867 0.700 0.496
=05 n=20 BC 0974 0.952 0.928 0.869 0.685 0.503 3
ELT 0,990 0.979 0.964 0.931 0.800 0.631
ELT,, 0992 0974 0.947 09803 0.701 0.509

n=40 BC 0.983 0962 0.936 0.801 0.600 0.492 0
ELT 0.990 0.980 0.966 0.940 0.775 0.592
ELT» 0990 0974 0.947 0905 0.700 0.496

n =60 BC 0.983 0963 0.934 0.882 0.701 0.508 0
ELT 0.991 0978 0.957 0919 0.761 0.568
ELT, 0988 0973 0.942 0.893 0712 0.516

medium-large sample sizes provided that the censoring rate is small. However,
compared to the AN approach, the ELT one yields intervals with coverage closer
to the nominal one. Also in the median case the ELT approach yields confidence
intervals generally more accurate than those obtained by the reference approach
BC. In this case, the accuracy is good also for small sample sizes and high censor-
ing rates. ‘lo conclude, ohbserve that, in the mean case, the discrepancy between
ELT and ELT,, empirical coverages seems to suggest that a more efficient esti-
mator for the correction factor for [, should improve the ELT confidence intervals
accuracy. With regard to this, it could be interesting to assess the accuracy of the
confidence intervals constructed by using the function mg;l:(-) where my,, denotes

the bootstrap mean of I, (1)
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Table 5. Simulation results in the median case. Distribution of interest log-normal(0,1).

N
excluded

0.990 0.975 0.950 0.900 0.700 0.300 samples

T=02 n=20 BC 0974 0.954 0931 0.874 0.681 0.481 0
ELT 0.990 0.974 0.948 0.897 0.686 0.484
ELT,, 0.891 0.975 0950 0907 0692 0.506

n=40 BC 0.987 0.969 0.943 0.807 0.707 0.510 0
ELT 0.992 0.978 0.954 0.905 0.711 0.511
ELTy 09881 0.974 0.950 0.899 0.703 0.503
m=04 n=20 BC 0970 0.849 0.924 0873 0.687 0.495 2
ELT 0.992 0.978 0.957 0916 0.719 0.515
ELT, 0988 0974 0946 0901 0.703 0.508

n=40 BC 0.983 0.964 0.935 .8856 0.689 0.490 0
ELT 0.993 0.978 0.951 0.904 0.702 0.494
ELl'pw 0891 04975 0449 0803 0.70U0 U499

n =60 BC 0.984 0967 0942 0.894 0.694 0493 0
ELT 0.988 0.978 0.951 0.904 0.702 0.496
BELT, 0989 0.975 0.94% 0904 0.703 0.500
=05 n=20 BC 0.569 0.948 0.920 0.867 0675 0.488 4
ELT 0.080 0.976 0.958 0.921 0.741 0.538
ELT,, 0.988 04976 0.951 0.901 0.704 0.505

n=40 BC 0.981 0.958 0.930 0.879 0.682 0.485 0
ELT 0.990 0.978 0.957 0.915 0.718 0.510
ELT,, 0.991 0.275 0.948 0.900 0.701 0.300

n =60 BC 0.985 0.968 0.944 0.893 0.693 0.487 0
ELT 0.993 0.979 0959 0918 0.708 0.499
ELTx 0.890 0974 0.951 0.903 0.697 0.490
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