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Abstract. Inthis paper we interpret Dykstra’s iterative procedure for finding
an I-projection onto the intersection of closed, convex sets in terms of its Fenchel
dual. Seen in terms of its dual formulation, Dykstra’s algorithm is intuitive
and can be shown to converge monotonically to the correct solution. Moreover,
we show that it is possible to sharply honnd the lacation of the constrained

optimal solution.
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1. Introduction

For finite probability vectors (PV's) p = (p(1),...,p{m)} and g = (g(1), ...,
g(m))’ of length m, the I-divergence of p with respect to g (also known as the
Kullback-Leibler information number) is given by

L& (28
e 10y = Y nti (55)

Since I{p | q) > 0, and equals zero if and only if p = g, I{p | q) is often treated
hcuristically as a mcasurc of distance or divergence between p and g. It is natural
to consider the “closest” PV to g which lies within a specified set of PV’s C. A
PV u € C that satisfies

(1.1) I(u | g} =minl(p | g) <oo

is said to be an I-projection of q onto C. The I-projection 4 always exists uniquely
if C is closed and convex (Csiszar (1975)).

* Partial suppoert was provided by National Science Foundation Grant DMS 81-04673.
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I-projections play a basic role in the information theoretic approach to statis-
tics (Kullback (1959), Good (1963)). They are also important in the theory of
large deviations {Sanov (1957)) and in statistical physics for the maximization of
entropy (Rao (1965), Jaynes (1957)). For a duality approach to I-projections for
general probability distributions, see Bhattacharya and Dykstra (1995).

Depending on the form of the set C, it may be difficult to find a solution to the
I-projection problem in (1.1). Csiszar (1475) has shown that if C can be expressed
as ﬂzzl C,, where each C; is a closed, linear set, then the sequence of cyclic iterated
I-projections converges to the solution of (1.1). Dykstra (1985a) modified Csiszar’s
procedure to encompass the case where each C; is an arbitrary closed, convex set.
He showed that the desired I-projection can be obtained as the limit of cyclic
I-projections onto the C; if the projected vectors are appropriately modified and
a mild condition holds. Winkler (1990) showed that the stated condition always
holds, and hence the algorithm is always valid. In this paper, we use an extension
to a Fenchel duality theorem for R™ fo prove Dykstra’s result in a much shorter
and more intuitive fashion.

2. Main results

For a closed, proper, convex function f on R™, the convex conjugate f* defined
on R™ 18 given by

[*(y) = sup {Zm(ﬁ)y(k) - f(w)} :

k=1

It is well known {Rockafellar (1970)) that f* is also a closed, proper, convex
function on R™ and that f** = f. For a convex cone K in R™, the dual cone K*
in R™ is defined as

=1

Corollary 2.1, from Rockafellar ((1970), p. 335), will be used to identify the dual

problem. By “ri” we mean relative interior as defined in Rockafellar (1970).

COROLLARY 2.1. Let f be a closed, proper, convex function on R™, and let
K be a nonemply, closed, conves cone in R™. Then

(2.1) () jnof f(e)= sw -f*(-y) (D)

yeE

provided ri(dom f) Nri{K) # 0, and moreover, the supremum on the right side is
attained. In general, & and § wre solutions to these problems which satisfy

J(&) = inf flz)= swp —f"(~y)=-f(-9)

g I
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if und only if
(i} —4 is a subgradient of f at &,
(i} &€ K,
(i) g€ K*, and

{iv)

Nk

#(E)g(k) = 0.

=
Il
—

For a given convex set C of PV’s, the I-projection problem (1.1) can be ex-
pressed as the left side of (2.1), if we define

3 N (k) =
22 )= gm(_mln(qm), if z(k) >0, Vk,gx(k)_l

+00, otherwise,

and K by
K={ax:zcCa>0}

Dykstra (19855) has shown that the convex conjugate of the function in (2.2}
is given by

[ly)=n (Z q(k) exp(y(k)))
k=1

{g need not sum to 1). Note that f* gives the cumulant generating function of g

(with probability on a particular set of values z{1}, 2(2),...,z(m)) if f* is evaluated
along the one-dimensional path y-(z(1), 2(2),. .., 2(m})’. Thus minimizing f* over
the (one-dimensional) region K* — {v € R™ : v — az,a > 0} is equivalent to

minimizing I(p | g) over the set —K = {& € R™ : 37 «(¢)z(¢) > 0}, since K*
is the dual of K. Restricting —K to the PV's, the duality theorem then shows
that minimizing the cummnlant generating function over nonnegative values of y
is equivalent to finding the I-projection of g onto the set of distributions over
(2(1),2(2},...,2(m)) with a nonnegative mean.

Dykstra {19856) has also shown that if ¢ solves the dual problem (1) in (2.1),
then the vector p = {p(1),5(2),...,p(m)) given by

g(k) exp(—g(k))
> ey q(s)exp(=4(s))’

solves the L-projection problem (1.1) if C is closed and ri{dom f) N ri(K) # @.

In some problems C may constrain some of the 2(k) to always be zero, which
causes the condition ri(dom f} Mri(K) # @ to be violated. It can be shown that
the dual formulation above is still valid if the domain of f* is expanded to be
R] x R3 x -+ x Ry, where RY = RU {Zo0}. The results hold as before with the
interpretation that e=™ — 0 and 000 — 0.

(2.3) p(k) =

E=12...m,
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We now let ¢ be a fixed PV of length m. We wish to find the I-projection of
q onto the nonempty set C = ﬂ;f: | Ci, where each C; is a closed, convex set of PV's
of length m. We only assume that there exists an r € € such that I{r | q) < cc.
Winkler (1990) has shown that each of the I-projections required for the algorithm
exists. We can use the Fenchel duality theorem in each step of the algorithm to
identify a corresponding dual problem. Qur point is that matters are much simpler
and more intuitive in the dual formulation.

We present the algorithm below incorporating the primal and the dual formu-
lations separately. Multiplication and division of vectors is done coardinatewise.
To implement the algorithm for the primal problem at the i-th cycle and j-th
step, we first form s;;, the vector to be projected; the I-projection obtained by
projecting s;; onto {; is denoted by p;; {although &;; may not be a PV, we can
define the I-projection p;; of 8;; in the same way, for further details see Dykstra
(1985a)); and the solution to the corresponding dual problem is y;; (used in the
dual formulation of the algorithm). We note that it is straightforward to show
that at the i-th cycle, j-th step, p,;;(k) = 0 if and only if s,;(k) = 0 or there exists
v such that p(k) = 0, for all p € C, (Winkler (1990}).

We {irst state algorithm in the primal form (Dykstra (1985a)) and then re-
formulate it in terms of the much more intuitive dual problem. The key point
is that the intersection constraints in the primal problem translate to direct sum
constraints in the dual problem. ‘Lhis is what allows the dual formulation of the
algorithm to be phrased as a cyclic, descent algorithm which successively mini-
mizes over one vector at a time while the rest are held fixed. We use the duality
structure to give a short proof that the algorithm must work correctly. It will be
convenient to let 7;(s} denote the I-projection of the vector s onto the set C;.

Primal formulation of the algorithm.

(1) Initialization. Set 8p; = pg; = q, and begin with n =1, ¢ = 1.

(2) Implementation.

(i) Fori =1, set 8p1 = Po1,6/(Pn-1,1/8n-1,1); for 2 < i < ¢, set 5, =
Pri—1/(Pn-1,i/8n—1,); {we assume that 0/0 = 0).

(il) Let pri = mi(8n,i)-

(iif) If ¢ < ¢, increment i by 1 and repeat {2). If i = {, increment n by 1, set
i = L and repeat (2).

Of course, the key peint is that p,, ; must converge to the I-projection of g
onto € = ﬂ:zl C;. However, the proof (Dykstra (1985a)) is quite complicated and
involved. It is much cleaner in the dual formulation.

The dual problem is equivalent to

m ™

inf Z glk)e ¥k) — inf : Z gl{k)e ¥k)

t e o T -
ye{N K Pt yECl( KT+ + K| el

m
= inf e ¥ (B) =~y (k)
werli 210

Typically the dual constraint region would be the direct sum K} + -+« + K.
However, the direct sum of closed sets need not be closed (Hestenes {1973)) and
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hence our dual constraint region is the closure of the direct sum. This possible
lack of closure of the direct sum complicates the proof substantially.

One of the drawhacks to iterative methods of optimization are the difficul-
ties in specifying the distance of the current estimate from the actual solution.
Small changes in the objective function between successive steps of the iterative
procedure are no guarantee that the actual optimal value is close by.

However, consider the situation where p* is a feasible PV (ie. p* € N K;)
which is close to p, ;. We let p denote the actual, constrained solution to our
problem. We note that p* may be obtained by a least square projection onto a
stthset of ﬂ:zl K, by a cyclic descent method if the constraint region can also be
written as a direct sum of convex sets, or by some other procedure. However, since

24 iﬁh(w)>ii%“ (520

k= =1 k=1

with the difference between the two sides of (2.4) converging monotonically to
Zero as n — 0o, we can estimate I{p | g) to arbitrary accuracy by choosing n
sufficiently large. Moreover, since

(25) I(p* 1 @) =D I{pnilsni)>1(p* | @)~ I{p]| q)
i=1

> I(p* (me MO

{Csiszar (1975)), we can specify an upper bound on both the I-divergence distance
and the variation distance (Ly-norm) between the vector p* and the true solution
n.

In similar fashion, we can expand I{p* | ) using a Taylor series expansion

to obtain the bhound

s Iy L PR ABRY L
(26) prmagﬁwEH@@)um

where “A” (“v") indicates infimum (supremum). Thus, for example, if I(p* | p)
is bounded above by ¢, it is straightforward to show that for each i,

p*(4)

a;p* (i} < p(i) <

where a; = 1—/2¢/p*(i). For ¢ sufficiently small, this gives a bound on how far p
can fall from the vector p*. Of course one can also find an approximation region
for possible values of p by numerically checking whether candidate p’s (plugged
in for p) satisfy (2.5) and (2.6). However this becomes rather intractable for large
m.
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The efficiency of the algorithm depends largely on the nature of the K;’s. If
all the K,’s are orthogonal with each other (in terms of I-divergence) a single pass
through each constraint will suffice.

The algorithm stated in terms of the individual dual problems is just the
following simple, eyclic, descent procedure. In the dual formulation, the algorithm
amounts to just sequentially minimizing the objective function with all ¢’s but
one held fixed, and then updating that y.

Dual formulation of the algorithm.

{1} Initialization. Set yo; = 0, and begin withn =1,{=1.
{2} Implementation.

(1} Let ¥, ; denote the solution to

=yn1 (k)= —ya i1 {(K)—y (k) —yn—1ap1(B) =~y 1,2 (k)
ot > alk)e -

“ k=1

(ii) If 7 < ¢, increment ¢ by 1 and repeat {2). If i = ¢, increment n by 1, set
¢ = 1 and repeat (2).

Careful inspection of the two algorithms together with (2.3) will reveal that

gk)e=¥n 1 F) = —Un i) =ynsits (R) = =yn—1.0(k)
Pri(k) = T g(s)emuma (D= pn () yn ik (5= Y1 (5)

for 1 <k <m.
If it should happen that

Yn i+ F Unit Un—1it1++ Ynors — ¥
for some vector § as n — oo, then it would easily follow by continuity that

q(k}e—ﬂ(’“)
oot q(s)e 9

as n — 00. Moreover, if p and § should satisfy conditions (i)-(iv) of Corollary
2.1, then p and g would have to solve (1.1) and its dual, respectively, which would
establish the validity of both the primal and dual forms of the algorithm. That
this is indeed the case is the gist of the following theorem.

:ﬁ(k)’ kzl?"'im?

pn,i(k} —

THEOREM 2.1. Let the sets C;, 1 < i < t, be closed, convez sets of PV’s of
length m and let q be a positive PV such that there exists v € C = ﬂ,E:lCi with
I(r | g) < co. Then pn; — P asn — 0o, for 1 < i < t, where D is the unigue
I-projection of q onto C and the py; are obtained as in the algorithm.

Proor. It is easily shown that

Zq k)e_yﬂ (k)= =yn (K} =yn—1a01 (k) = —yn—1 :{k}
k=1
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is nonincreasing in n and ¢. Moreover, it easily follows that every subsequence of
{n}2%, has a further subsequence {n;}72, such that
Yo, 0+t Ynyr — Y
where § may have coordinates that are +oc. Clearly, §§ € (K} +--- + K}) =
(Miey Ki)* = K~
It easily follows by continuity that
q(k)e—ynj.dk)—"-—ynj‘t(k)
221:1 q(s)e—yn,-,l(S)--Hynj.e(S)
e~ 80k)
. Zg‘i(l 31(5)@—@@) —50), k=1,...m.

Dykstra (1985a) has shown that I{pn; | 8ni) — I{Pn-14 | Sn-14) = I{Pni |
Dni-1) — 0. Then using the inequality that

Z lg(s) —7r(s)| < [2I(q | .,.)]1/2

pnjgt(k) =

for any two vectors g, , it follows easily that p,, ; is arbitrarily close to pn,, if
j is sufficiently large, for any i. Then it must be the case that p € 02:1 K, =K.
It follows from Dykstra ((1985b6), Corollary 2.1) that —# is a subgradient of
the f from (2.2) at p.
Thus if,

(2.7) > ak)pk) =0,

the four conditions of Corollary 2.1 will be met and $ and g will be the solutions
to the primal and dual problems. Since every subsequence of {pn;}o>, has a
sub-subsequence which converges to P, the enlire sequence must converge to p.
To establish (2.7), recall that
8n,i = pn,é—l/(pn-—l,-i/sﬂ—l,i)

(for 2 < i < t). It follows that (suppressing the index of summation k) for

2<i<t,
I(pnj,'i | Sn,-,i} = an,-,i ]-n(pnj,i/snj,i)
k

= Z pﬂj,i 1n(pnj,i/pn3- ,i—l) + z pnj,i ln(pnjfl,i/snj —l,i)
k

k
= Z anj,i ln(pm,i/pm,i—l)
m=np+1l k

+ Z(pnj,‘i - Puh ,‘i) 1n(Pnh,i/snh,.«;)
k

+ E Dn,, i ln(pnh,i/sﬂh,i)‘
k
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A similar expression can be derived when ¢ = 1.

Dykstra (19854} has shown that the left side is nondecreasing in j and
bounded above. Then, since the left side limit exists as j — oo, as does the
limit of the last two summations on the right side, the limit of the first right side
summation must also exist as j — co.

Then summing over ¢ and letting A — oo, we obtain

t
0= hlLII;-O Z Z(pnh,i - ﬁ) In(pﬂh,‘i/sﬂh,'f;)
=1 k&

t
= lim ZZ(pnh,i - ﬁ)(_ynh,i)
i=l k

h—oc

t
= hlgiz;zk:ﬁy”” (Since ;pn,iyn,,; = (}, Vn, i)
1=

Il
Te
23

=[]
g
e
2

which is condition (2.7}. O

Caiszar (1975) showed that sequerntially projecting Lhe I-projectious onto the
individual constraint regions gives a sequence of probability vectors that converges
to the true I-projection of ¢ if all the C; are linear sets (i.e., p1,p2 € C; = ap1 +
(l—a)ps € C,, for all a for which ap; + (1 —a)py is a PV). However, this algorithm
will typically not work if the C; are not linear sets and the reason is clear from
the dual formulation. If the C; are linear sets, then each projection (in the dual
formulation) allows each point in K as a possible value of #,; (thus all of K is
feasible) since K} = {y + z : y € K} for every 2 € K. This won’t be true,
however, if the C;’s are not linear sets. Although Csiszar’s procedure is simpler in
the primal formulation, it is more complex in the dual form (and, of course, only
works if the constraint regions are linear sets).

3. Example

We consider the problem of finding the maximum likelihood estimates of the
probabilities for a two-way classification with multinomial sampling under the
constraints that the local odds ratios (0i; = Pijpiv1j+1/Pir1,;Pi541) are all at
least 1 without any additional model assumptions. As is well known #,; = 1, Vi, j
implies the two classifications are stochastically independent and 6;; > 1, Vi, j
implies there is a positive association between the ordinal variables.

The prohlem we eonsider can bhe expressed as

[ r
(3.1) s [P

Inper;1 Mi2i Ko j=1i=1
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where p ¢ P (the class of all PV’s of length rc}, the m;;’s are the observed
frequencies and the closed convex cones K;; are defined as

Kij={® 2y — Ty 41 — Tig1,5 + Tivr541 = 0}

fori =1,...,r=1,7=1,...,c— 1. Let g denote the (r x ¢) matrix of the
empirical distribution. Dykstra and Lemke (1988) have shown that (3.1} has the
same solution as the I-projection problem

(3.2) Ipla)

inf
PEﬂLl ﬂ;:l(g—Hij)

where

k=1m=1

wheni=1,...,r-1,j=1,...,¢~1, and
i j
H,;j: {m:Zkamzo}
when i =7 or j = ¢, and ¢ is the uniform PV which has values g;; = (r¢)~t. In
words, this amounts to the sum of every upper-left corner of cell (i, j) of p being
as large as the same of g and equality holds whenever i = r or j = ¢. The (i, j)-th
constraint (1 <i<r—1,1<j<e¢—1) can be expressed as
g—Hj;={p:pisaPVand e/ p <0}
where the (k, m)-th term of the vector a;; is given hy
i
33 0u-T0<k<i1<m <),
s=1 t=1
where I is the indicator function. The dual cone (g — H,;)* is then given by
(g — Hi;)" = {eay; o > 0}
wheni=1,...,r~1,4=1,...,c—1, and

wheni=rorj=c.
Solving (3.1) is thus equivalent to solving the problem

inf Z Z e P11 aijaii{km)
E m
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Table 1. Cross-classification of job satisfaction by income.

Job Satisfaction

Income (UUS$} VD LD MS VS
<6000 20 24 80 82
6000-15,000 22 38 104 125
15,000 26,000 13 28 81 113
>25,000 7 1B 54 92

(VD — Very Dissatisfied; LD — Little Diesatiefied; MS — Moderately Satisfied;
VS = Very Satisfied).

Table 2. Maximum likelihood estimates of data in Table 1 subject to the constraints 6;; > 1
V1,7 (values in first parentheses are the unrestricted male and values in second parentheses are
the expected counts after smoothing).

Job Satisfaction

Income (US$) v LD MS VE

<6000 0.0222 0.0293  0.0862 0.0910
(0.0222) (0.0266) (0.0888) {0.0910)

(20.00) (26.37) (77.63}) (82.00)

6000-15,000  0.0244  0.0400  0.1176 0.1387
(0.0244) (0.0422) (0.1154) {0.1387)
(22.00) (36.00) (106.00) {125.00)

15,000-25,000 0.0144  0.0307  0.0903 0.1254
{0.0144) (0.0311) (0.0899} {0.1254)
(13.00y (27.63) (81.37) (113.00)

>25,000 0.0078  0.0200 0.0599 0.1021
{0.0078) (0.0200) {0.0599} (0.1021)

(7.00} (18.00)  (54.00)  (92.00)

(VD — Veiry Dissatisfied; LD = Little Dissalisfied; M3 = Moderalely Salislied;
VS = Very Satisfied).

where the infimum is taken over the set
{fa;20,1<i<r-1,1<j<c¢—land ey eRi=rorj=c}

However, equivalently, we can consider each I-projection problem at hand, find
its dual problem, and the corresponding dual solution and then relate the primal
solution to this dual solution.

We illustrate the procedure using the data described in Table 1 taken from
Agresti ({1990}, p. 21), also in 1984 General Social Survey (see Norusis (1988)).
Thus we wish to solve the problem in (3.1) using the n;; in Table 1. Since 3 =
0.82, some constraints will have to be active. When written in terms of (3.2) there
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are essentially fifteen constraints (in addition to the always present probability
vector constraint). For every constraint, the dual problem is solved by using a
one-dimensional Newton-Raphson method. The maximum likelihood estimates
subject to the constraints 8;; > 1 V4,7 = 1,2,3 are listed in Table 2.

We calculated the bound given in (2.5) for this example. We obtained p*
by changing some elements of the solution given in Table 2 (p}, = 0.0291, pi; =
0.0863, p4, = 0.0308, p3; = 0.0903). It is easy to check that this p* is feasible.
Then the left side of (2.5) is zero upto five decimal places (for large n).

Patefield (1982) considered r x ¢ contingency tables and tests of hypotheses
Hy : 8 = 1, Vi,j versus Hy : f;; > 1, ¥i,j. The likelihood ratio statistic was
calculated using numerical routines (for small values of r and ¢). The restricted
estimates as derived in this paper would prove to be useful for this purpose.

4. Discussion

The iterative proportional fitting procedures, starting with Deming and
Stephan (1940), are used widely in many facets of statistical applications. We have
used the Fenchel duality theorem to show that Dykstra’s iterative proportional fit-
ting procedure amounts to a sequential coordinatewise minimization procedure in
the dual space. This algorithm is simple and helps to explain why Dykstra’s
algorithm should work in the primal (I-projection) problem.
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