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Abstract. Akaike (1973, 2nd International Symposium on Information The-
ory, 267-281, Akademiai Kiado, Budapest) proposed AIC as an estimate of the
expected log likelthood to evaluate the goodness of models fitted to a given set
of data. The introduction of AIC has greatly widened the range of application
of statistical methods. However, its limit lies in the point that it can be applied
only to the cases where the parameter estimation are performed by the maxi-
mum likelihood method. The derivation of AIC is based on the assessment of
the effect of data fluctuation through the asymptotic normality of MLE. In
this paper we propose a new information criterion EIC which is constructed by
employing the bootstrap method to simulate the data fluctuation. The new in-
formation criterion, EIC, is regarded as an extension of AIC. The performance
of EIC is demeonstrated by some numerical examples.

Key words and phrases: Log likelihood, AIC, bootstrap, MLE, information
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1. Introduction

This paper is addressed to an extension of the Akaike Information Criterion,
AIC. AIC was proposed as an estimate of {minus twice) the expected log likeli-
hood. When the parameters of a model are estimated by the maximum likelihood
method, the maximum value of the log likelihood has a positive bias as an es-
timator of the expected log likelihood. AIC is then obtained by approximately
correcting the bias (Akaike (1973), Sakamoto et al. (1986}).

Hence, the application of the AIC is restricted to the models with maximum
likelihood estimates, In principle, however, the basic idea is applicable to the eval-
uation of the models fitted by much wider class of estimation procedures, if the
bias can be evaluated. In the derivation of AIC, based on the Taylor expansion
of both the log likelihood and the expected log likelihood and the asymptotic nor-
mality of the maximum likelihood estimators, the estimate of the bias is obtained
analytically. Obviously, this type of analytic approach does not necessarily apply
to all the class of models and the estimation procedures.
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412 MAKIO ISHIGURC ET AL.

In this paper, we exploit the bootstrap method (Efron (1979)) for the evalu-
ation of the bias. Our method has several advantages such as:

1. It can be regarded as an extension of AIC.

2. 1t can be applied to the models estimated by non-MLE type procedures
including Bayesian procedures.

3. Analytic approximations or asymptotic theorems are not directly used in
the bootstrapping. Therefore, it can be expected that even for the MLE
case, it may provide a better bias estimate depending on a particular
case.

There are attempts to improve AIC {Takeuchi (1976), Sugiura (1978), Hurvich
and Tsai (1989)). Their works are to provide better estimates of the bias of the
maximum log likelihood as an estimator of the expected log likelihood. Their
criteria give better answers than AIC, in some situations for those problems where
parameters are estimated by the maximum likelihood method. In this sense, their
purposcs differ from oure to expand the range of applicability. Shibata (1980)
proposes RIC as an extension of AIC for the case where parameter estimation
is performed by maximum penalized likelihood method. His purpose is close to
ours. The difference is that his method still employs analytic method to agscss
the fluctuation of the parameter estimate, which is done by bootstrap method in
our case. AIC; by Hurvich ef al. (1990) extended the AIC criterion to non-MLE
estimnators for AR model order selection. The “modified likelibood” discussed by
Wong (1983} is, in a sense, most close to our approach. His criterion for the choice
of kernel width can be seen as a special case of our approach applied to a specific
problem of kernel estimation of density.

The construction of this paper is as follows. In Section 2, giving a brief review
of the derivation of AIC, a new information criterion EIC is defined. Numerical
examples are given in Section 3. Concluding remarks are given in Section 4.

2. AIC and EIC

2.1 Predictive distributions

In this paper, to handle a broader class of models and estimators, we use a
notion of a predictive distribution, h(y | ), which is the distribution of a future
observation y given the present observation x.

The predictive distribution can be constructed by various ways. Two typical
examples are shown below.

Example 1. If we have a Bayesian model consists of a parametric model
f(y | 6) and a prior distribution =(#) of the parameter, then h(y | x) can be
defined by

(2.1) mwxr:[mywww1mw,

where g(y | 8) is the model of the future observation y, and = (¢ | z) is the posterior
distribution of # given by

w@|m:fw1mﬂm(/ﬂmwwwua
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We Lemporarily use the term of Bayesian predictive distribution to refer to
this special type of predictive distribution. In many practical situations, g and f
are one and the same.

Ezample 2. Given a parametric model f(y | #) and a point estimator of 8,
a predictive distribution can be obtained by

(2.2) Ry | 2) = gly | 6())-

Here #(x) denotes an estimator of § based on the data z. f(z) can be MLE or
the posterior mode, Arg. maxw{# | z), or anything else. Note that h(z | ) can be

defined when g and f are the same, and it is the maximum likelihood when 6(x)
is MLE.

2.2 A brief remew of the derwation of AIC

From the point of view of the entropy maximization principle proposed by
Akaike (1973}, the goodness of the predictive distribution can be evaluated by the
expected log likelihood

(2.3) By logh(Y [ ) = [ log h(y | 2)dC(s).

where G{y) denotes the true distribution of . A natural estimate of the expected
log likelihood is provided by log h{x | x). Its bias is defined by

(2.4) C = Ex{log h(X | X) — Eylogh(Y | X)}.

This bias appears since the same data set X is used for both the estimation of the
parameter and the estimation of the expected log likelihood. In actual statistical
problems, the true distribution is seldom known and only a sample X drawn from
G(z) is given. If an estimate € of C is available, a bias corrected log likelihood of
the predictive distribution is obtained by

{(2.5) logh(X | X) - C.
In particular, in parametric modeling where a model has a parameter (vector)

#, the entropy maximization principle naturally leads to the maximization of the
log likelihood tunction

(2.6) £x(8) =log f(X | 0)

and to the maximum likelihood estimate, & = é(X }, and then the predictive distri-
bution f(¥ | #(X)). The unbiased estimate of the expected log likelihood is given
by

(2.7) log (X | 0(X)) — C.
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Akaike (1973) showed that  can be asymptotically approximated by the
dimension of the parameter vector 4, and defined AIC as

(2.8) AIC = —2£x ((X)) + 2(dimension of 8).

Here is a brief review of the derivation of AIC. Note that #(X) in the following
context does not necessarily represent MLE. If we are dealing with the special case
of MLE, we will explicitly say so.

Assume, for simplicity, that the log likelihood function of the parameter vector
# is given (or at least locally approximated within the range of variation of (X))}
by

(2.9) Ix(8) = tx ~ %(B—BX)TH(B—BX),

where £x and 8x fluctuate depending on the realization of data X, but the non-
negative definite Hessian matrix H does not (see Appendix A). H does depend on
the distribution of X, but not on its realization. Then the expected log likelihood
function of the parameter vector # is given by

(2.10) 2o(0) = £, — %(9 _00)TH (0 — 80) = Ex {{x ()},

where 8y and £y are given by

0y = Ex{0x}
and
€ = Ex{fx (o)},

respectively. In the following, Alx denotes the difference 8x — ;.
The bias term C can be decomposed into three terms:

(2.11) C = Ex{tx(6(X)) — £x(60)}
+ Ex{€x (o) — €o(fo)}
+ Ex{t:(60) — EO(Q(X))}
(2.12) =1 +Cy+Cs
= Ex{C1(X)} + Ex{Co{X)} + Ex{Ca(X)}.

By definition, Ex{C5{X)} = 0. For the calculation of (1, if the approxima-
tions (2.9) and (2.10) are good enough for # = #(X), we have

(213)  Ci(X) = £x(6(X)) — €x{0o)
= S0 - 9x)THE(X) - 0x)
1

3

+ (90 - 9‘\()TH(90 — 91()

b
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8(X)THO(X) + 6(X)THox + %agHeo — 9T Hox

NOTHHX) + (X)TH(A8x + 6,)

] R I

+ -8 H8y — 8T H(ABx + 6)

B(X)THOH(X) +8(X)THAGx +H(X)T Hb,

sl R ¥

593";190 —ofHAB

1 . R
- 5(0(X) - 00) " H(B(X) — o)
+ 8 X)THAGx — 6T HAG.

i

Since
(2.14) Ca(X) = &o(00) ~ bo(6(X))
- %(é(X) — 60)TH(8(X) — 60),
we have
(2.15) C1(X) + Cs(X) = 8(X)THAGx — 6T HAOx.

Hence, we have
(2.16) C = Ex{Ci{X)+C3(X)} = Ex{8(X)THAbx }.

Define ) ]
U= E‘X{ABxé?(X)r‘r }

then ' is given by
C =trHU.

If é(X) is MLE, assuming asymptotic normality, we approximately have
Alx ~ N(0,H1), which means U = H~! and €' cquals the dimension of 8.
This gives AIC.

2.3 Bootstrapping

A sample of size n, X = (X1,...,X,,) is drawn from the true distribution
(G(x). The empirical distribution G.(x) is then defined by

Gula) = = - 1(s,X0)

where I{xz,a) is the function defined by [{z,a) = 0 if z < a and I{z,a) = 1
otherwise. A random sample of size m (usually we put m — n) from the empirical



416 MAKIO ISHIGURO ET AL.

distribution G, is called a bootstrap sample (Efron (1979)) and is denoted by
X*=(X},...,X5).

In the bootstrapping, the true distribution G(z) is replaced by the empirical
distribution .(z). Therefore, we will apply the following replacement;

G— G,
(2.17) XY ~G = X5 Y~ G,
By log (Y | -) — Ey logh(Y™ | -).

Here Ey. denotes the expectation under the empirical distribution G, (x).

24 FEIC
The bootstrap estimate of the bias C is given by

(2.18) C*(X) = Ex-(logh(X* | X*) Ey-logh(Y* | X*}}.
Then the bootstrap bias correction for the log likelihood is
(2.19) logh{X | X) - C*(X),

and following the definition of AIC, we define the bootstrap version of the infor-
mation criterion as follows:

(2.20) EIC = —2logh(X | X) | 20%(X).

If Ex{C*(X)} = C holds, EIC defines an unbiased estimator of the (minus
twice) expected log likelihood. In the case of (Y | X) — f(Y | #(X)), the
unbiasedness of EIC is proved under a mild condition on the estimator 6(X) of 6.

Let an estimate of parameter § based on the bootstrap sample X* be denoted
by 8(X*) and assume that the log likelihood function based on the same sample
is approximated {at least locally) by

1
EX*(Q) = EX* — 5(9 - Bx*)TH(a — 9)(*)

Define
95 = Ex- {QX* }!
Abxs = Ox- — 65
and
(2.21) U*(X) = Ex-{A8x.6(X*)T1.
If
(2.22) Ex{U*(X)}=U

holds, C'* (X)) provides an unbissed cstimate of C,
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A wide range ol estimators including maximum penalized likelihood estima-

tors satisfy the condition (2.22).

Remark A. In the simple i.i.d. situation,
(2.22) By-logh(v* | ) = [loghy” | )4C.(s")

— EZ]ogh(mi | ) = logh(X 1 )

Therefore the bootstrap estimate of the bias becomes simply
(2.24) C* = Ex-{log h{X™ | X*) —logh({X | X")}.
EIC in this case is eguivalent to WIC proposed by Ishiguro and Sakamoto (1991).

2.4.1 Example 1: MPLE
Let a penalized log likelihood is approximately given by

(225)  £p(6) = £x(6) — 5 (6~ OpY W(0 — 07)

oy %(9 —0x)H(0 - 0x) — %(9 —0p)TW(0 - 0p),

with an arbitrarily fixed vector fp and a non-negative definite matrix W. The
maximum penalized log likelihood estimate, denoted by MPLE, is given by

(2.26) 6(X)=(H+W) 'Hbx + (H + W) 'Wép,

if the inversion is possible. Note that we can choose W so that (H + W) is
nonsingular. Using the well-known relation

Ex{AfxA0% =H™"
it is shown that U in this case is given by
U={(H+W)™h

Assume that the log likelihood function based on the bootstrap sample is given by
1 \
(2.27) £t} = Ux- — E(H—Hxx)TH%B*GXt)

and the approximation H* = H haoldg, the condition (2.22) is satisfied. Note that
the ordinary MLE is a special case of MPLE, and then the above argument proves,
when the conditions are met, that EIC is an extension of AIC.
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2.4.2 FEuample 2: MAICE

There are estimators which fail to meet the condition (2.22).

Let  be an n-vector (z,zs,...,2,) of independent samples from normal
distribution with mean py and variance 1 which is denoted by N(po,1). Let us
consider two models N{0,1} and N(y,1). The log likelihood of the model N{yu,1)
is given by

i3

(2.28) log /(5 | ) = = 3 log2r ~ 2> (i — )’

-1
(2.29) fix = Zmi
AIC’s for two models are given by

AICy = nlog 2w + Z;:Ef
i=1

and

il
AlIC) = nlog 27 + Z:ﬂf —np% + 2,

i=1
respectively. Then the minimum AIC estimator is defined by

px  (if np > 2)
0 (otherwise}.

(2:30) 0 - {

Let t = (/mjiy and

. 2
Apx = fix —po = ““\/—*T;*#O-
Since t ~ N{y/Tpg, 1),

(2.31) U = Ex{Apxp(X)T}
1

1 2
—_ £t — \/T_E,!JU _e—(t—\/ﬁﬂo) /zdt_
n /.t2>2 ( )\'27T

When pg = 0,

(2.32) U= lf t2p(t)dt,
22

n
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where ¢ is the probability density function of the standard normal distribution.
Comparing (2.9) and (2.28), we have H = n and

C = t2p(t)dt.
/t?>2 ¢()

Let px- denote the MLE based on the bootstrap sample X*. If n is large, s =
VTux~ is approximately normally distributed with mean ¢ and variance 1 (see
Appendix B). Then,

(2.33) UH(X) = Ex+{Apx- ()T}
When gy =0,
Bx (U0 =2 [ st - e e s
T 5232 \/2—71'_ \/ﬁ
1
- Ef82>1_q2¢(.q)d.e.

This means that the condition {2.22) is violated in this case. The expectation of
C*(z) is calculated to be

Ex(e ) = |

s2¢(s)ds.
32>1
It is clear that C*(X) is Diased as an estimator of ¢ for this example. And it
would be the case for all the minimum AIC estimates.

2.5 Reduction of the computational cost
As seen from the derivation of AIC, C*{X) can be estimated by

C**(X) = Ex-{C1(X*)} + Ex-{C5(X*)}
= Ex- {C(X™) + Ca(X")}.

Since it can be seen that, especially for large m, the omitted term Co(X™*)
has the largest variance, the variance of C**{X) is significantly less than that
of the original bias estimate C*{X) given in (2.18). Therefore, the number of
necessary bootstrap replication to attain a certain accuracy can be reduced with
this modification.
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3. Numerical examples

3.1 CATDAP model selection

To show that EIC can be applicable to those problems that are effectively
handled with AIC, we apply it to CATDAP model selection (Sakamoto et al.
(1986), Sakamoto (1991)). CATDAP (A Categorical Data Analysis Program) is a
FORTRAN program that searches for the best explanatory variable of a categorical
response variable. The basic model of this program is as follows:

We denote the response variable by 4, and any subset of explanatory variables
I'={,...,I4} by J, and denote respective realizations by g, 7 and j. Let 8{ig, 1)
be the probahility that the variable fy and the set of variables I take a set of values
(ip,1) and lot n(ip,7) be the corresponding cell frequency. Then, the probability
Pr({n(ig,1)} | {0(i0,%)}) of getting the cell frequencies {n{ip,i)} under a set of
probabilities {#(p,%)} is obtained from the multinomial distribution as

(31) PI‘({TL(i[},i)} | {9(2031)}) = Hg(iOyi)n(iU,i)?

where the constant term independent of the parameter #(ig, ) is ignored. The log
likelihood with respect to the parameter 8(ig,4) is given by

(3.2) > " nlig, i} log A(ip, ).

If we dencte by 6(ig | i) the conditional probability of iy given a value @ of I, then
(3.3) 8in,4) = 8(in | 1)0(i)

and (3.2) can be written as
(3.4) Xn(ig,i) log 0(ig | i) + Zn(i)log@(i),

where #(i) and n(i} denote the marginal probability and cell frequency with respect
to I, respectively. Since the term of interest is not (i) but 8(ip | ), we consider
the conditional log likelihood defined by

(3.5) Zn(ig,i)log Bio | ).

The evaluation of any subset of explanatory variables .J can be performed hy
evaluating the goodness of the model

(3.6) MODEL(Iy | J) : 9(3'0 [ i) =8ig | 7).

The AIC for this model can be wrillen as

3.7 AIC(Iy | J) = (-2 1n{ig, 7)o =L 4+ 2C5(Cy — 1},
(3.7) (fo | J) =( )Z(oﬂ)gnm 1(Co — 1)

i)
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where the notation is as follows:

n{ia, 7) : the cell frequency for the cell (i, j) that is a realization of
the variables Iy and J,
n(y) : the marginal frequency with respect to J,

Cy and € : the number of categories for Iy and J, respectively.

We assume here that n(®) = n (n is the sample size) and Cq = 1.
The EIC for this casc is given by

. n{io, j}
3.8 EIC{Iy | Y={-2 JJ) lop ———2=
(3.8) (Io | J) = ( );(Mn(%o Jj)log )

o n*(io, J)

=+ QEW'(%,J’) ;ﬂ’j:n (io, 5} log W

o n*(ig, 7)

72 n{ig, J)log ———| ,
e (OJ) ”*(J)

where n*(ip, 7} and n*(j} are the cell [requencies with respect to the relevant
variables for the bootstrap sample.
To evaluate the performance of EIC, we assumed that

MODEL(I{] | I]) : 9(&0 | il,iz,’ig) = 9(’5(} ‘ 21)

ia the truc model, and conducted the experiment of detecting this true model from
data that follow this model. We generated random samples of size 100, 200 and
1000, and repeated 100 times for each case. Table 1.1 sumimarizes the results
obtained frow the experiment for the case of n — 1000, In this table “E{—2n
E(LL}}” stands for —2n times the mean of the expected log likelihood of the
relevant model. The entry in the parentheses is the standard deviations of the
difference in —2n E(LL) between the relevant model and the true one. “Freq.
of min —2n E(LL)” is the frequency with which the quantity —2n E(LL) of the
relevant model took the minimum among eight madels. Therefore, it is seen that
MODEL{fy | f;) was judged to be the best model in terms of both measures.
The entry in the fourth column is the mean of AIC value of each model.
The fifth column under the header “Freq. of MAICE” shows the frequency with
which the corresponding models were chosen as the best model by the mini-
mum AIC procedure. The table shows that MODEL(Z, | I;), the true structure
model, was chosen 73 times out of a hundred tries by the minimum AIC estimate
(MAICE) procedure. The next frequently chosen model is MODEL(ly | Iy, I3),
and MODEL(I, | L, o) follows. The performance of the minimum EIC proce-
dure, which iz shown in the last two columns, is almost the same with that of
MAICE procedure. Tables 1.2 and 1.3 summarize experiments for smaller data
set of n = 200 and n = 100, respectively. From these tables it is observed that
EIC behaves slightly better than AIC, especially in the case of small sample.
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Table 1.1. CATDAP meodel selection {n = 1000).
Freq. of Freq. of Freq. of
MODEL E{-2n E(LL}} min-2n E(LL) AIC MAICE EIC minEIC
(fa) 1387.74 0 1386.85 0 1385.47 0
{1.44) (12.19) (12.19)
{Io | I1) 1348.70 100 1348.64 73 1347.32 T4
(0.00) (0.00) (0.00)
(Io | I2) 1388.87 0 1387.72 0 1386.37 0
(1.98) (12.30} (12.30)
(fo | I3) 1388.81 0 1387.79 0 1386.42 0
(1.88) (12.27) (12.27)
(In | I1,I2) 1350.88 0 1350.45 i1 1349.21 11
(2.02) {2.00) (2.00)
(fo | f1,1I3) 1351.10 0 1350.27 12 1348.98 11
(1.92) (1.90) (1.90)
(Jo | Iz, I3) 1280.50 0 1388.07 0 1386.73 0
(3.67) (12.49) (12.49)
(Io | I1, 12, I3) 1355.94 0 1353.57 4 1352.48 4
{3.68) (3.50) (3.50)
Table 1.2. CATDAP model selection (n = 200).
Freq. of Freq. of Freq. of
MODEL E{—2n E(LL)} min-2n E(LL) AIC MAICE EIC minEIC
(fo} 278.30 0 278.22 4 277.96 4
(1.37) (5.55) (5.55)
(In| It} 271.32 99 271.69 64 271.37 68
(0.00) (0.00) (0.00)
(Io | I2) 279.23 0 279.30 1 279.08 0
(1.88) (5.75) (5.7%)
(do | I3) 279.51 0 279.05 3 278.84 2
(1.89) (5.79) (5.79)
(Io | 11, I2) 273,41 0 273.62 1 273.60 10
(2.00} (1.90) (1.90}
(In | I, I3) 273.55 1 273.50 14 273.46 13
{2.05) (1.97) (1.97)
(In | I2, I3) 281.20 0 280.77 2 280.73 3
{2.96) (6.13) (6.13)
(To | I, 12, I3) 277.88 0 277.62 1 278.66 0
(4.02) (3.45) {3.41)
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Table 1.3. CATDAP model selection (n = 100).

Freq. of Freq. of Freq. of
MODEL E{-2n E(LL)} min—2n E{LL} AIC MAICE EIC minEIC
(o) 139.73 3 139.54 17 139.42 19
(L.78) (4.60) (4.58)
(fo | Iy) 136.64 95 136.36 49 136.33 53
(0.00) (0.00) (0.00)
(fo i I2) 140.76 0 140.57 0 140.54 0
(2.35) (4.87) (4.84})
(fo | I3) 140.70 0 140.62 4 140.60 5
(2.25) (4.84) (4.81}
{fo | I1,12) 138.97 1 138.21 16 138.71 11
{2.66) (2.31) (2.27)
(Io | 11, I3) 139.07 1 138.36 12 138.82 11
(2.20) {1.98) (1.94}
(Ip | I2. 1) 142.60 0 142.54 2 143.00 1
(3.28) {(5.38) (5.33)
(fo | f1, 12, 1) 144.31 0 142.40 0 143.39 0
(4.05) (3.66) (4.23)

3.2 AR model order selection

Next example is the AR model order selection. This example is to show that
EIC can be used in some aspect of time series analysis. AR model of time series
data is defined by

Kig3
(3.9) T; = Zajz,;_j +&;
=1
The least squares estimates of ay,as,. .., a4, are obtained by minimizing
X1
X2

HXﬁm(a)Hg, where X = . ,
X,
Bm(a) = (=1,a1,...,am,0,...,007  (m < M)
and

Xi = (TiyTio1s- o Timp)-
Then an estimate of o2, the variance of the innovation ¢; is defined by

2 1 ~y 112
2 = —7 X (@)

g
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The resampling in this casc is applied to the rows Xpryp, ..., Xy of the matrix X.
We define resampled matriz X* by

Nar+1ye
o
X,
where (M + 1)*,...,n* are (n — M) independent realizations of uniform integer

valued random numbers on the interval [M + 1,n].
Estimates of ay,as,...,an and o2, are defined by

(a},a%,...,a5) = Arg. min | X*8,{a)|?
and
1
~ %2 ~ %y |2
respectively.

EIC for the AR model of order m is given by

(3.10) EIC(m) = — 2 xlog f(X | a1,az,..,am,00)
+ 2 x Ex-{log f(X* | a},a3,...,4a%,62%)
—log f(X | a¥,a3,...,a%,,5%2)},
where

2 1 (i ! 2
f(X | ar,a2,. .. am,0°) = (W) exp{é?z-“Xﬁm(a)” }

For a numerical example, hundred series of data of length 100 were generated
assuming a second order AR model with coefficients a; = 1.5, az = —0.7 and o2 =
1.0, as the true structure and analyzed. M is fixed at 7. Results of the experiment
are summarized in Table 2. AIC; in this table stands for AIC; proposed by
Hurvich et al. (1990), which is eventually defined by

-1

AIC; =log detz +Eptry

where im is the theoretical covariance matrix of time series, {Zary1,...,Tn} gen-
erated by AR model (3.9} with estimated parameters. E; denotes the expectation
with respect to the distribution of white noise of unit variance. The entries in the
parentheses are the standard deviations of differences of ELL’s, AT(’s, KIC’s and
AIC/’s frem those of the true model. This table shows that at least for this exam-
ple, EIC and AIC; show similar performance and selected the true order slightly
more than AIC.
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Table 2. AR order selection. ELL, AIC, EIC and AIC;. The entries in the parentheses are the
standard deviations of differences of their value from those of the true model.

Freq. of Freq. of Freq. of
Order ELL AIC  MAICE EIC minEIC AIC; minAICy
0 465.81 466,24 0 466.04 0 559.78 0
(1R.85)  (21.68) (21.70) (210.68)
1 328.07 330.45 0 330.26 0 423.76 0
(9.46)  (17.04) (17.07) {17.04}
2 266.85 267.62 80 267.71 83 361.23 24
(0.0) (0.0} (0.0} (0.0)
3 267.60 268.93 4 269.28 3 362.64 5
(0.86)  (0.77) {0.85) (0.77)
4 269.04 269.67 10 270.30 9 363.99 7
(2.56)  (2.11) (2.27) (2.11)
5 270.10 270.72 5 271.74 5 365.69 3
(2.98)  (2.49) (2.73) (2.49)
6 271.08 271.87 1 273.42 0 366.92 1
(3.34)  (2.71) (2.92) (2.71)

Note. When {z;} is a stationary series, the expected log likelihood of the
AR model of order & salisfies

lim w1*IDgfﬂ‘L("I'.laQ:%'' -1 Lp | 9)
n—oo T

1 n
= lim —Zlogf(a:i (i 1,0 Ziok)
i=1

n—oa 11 4
= /logf($k+1 | Zg, -, 21) W&, Ber) di, o AR,
mt;:iel true st?rructure
where w{x1,...,7k41) denotes the stationary joint probability density function of
successive (k + 1) observations x1,...,Tk41.

This equation suggests that the bootstrap to repraduce the filnctuation of the
expected log likelihood should be of the form

T

FO)y = > log fwie

i=M+1

iEz""—l,---in*-—k;);

This is eguivalent to the matrix resampling. There are cases where the rank of
the resampled matrix X* is less than (M + 1). We discard those cases for the
evaluation of EIC. Our method might be called “controlled resampling”. Both
FIC and ATC; are hased on the idea that the bias term can be estimated using
Monte Carlo simulation. They are different in two aspects. The first difference is
in the choice of random data generator. The second is the procedure to calculate
the bias. AIC; utilizes the knowledge of specified structure of the AR model,
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3.3 MLF and non-MLE
In this subsection, we show that EIC can be applicable to non ML procedures.
In the presented example, the expected log likelihood can be evaluated analytically

and compared with EIC. Assume Lhat a sample of size n, X = (z1,...,Ln) Is
drawn from the standard normal distribution
1 z?
31 )= ——exp < ——— .
(3.11) 91(z) Nz p{ 5 }

The log likelihood and the expected log likelihood of the normal distribution model

)

1
(3.12) flz| )= Worre exp{ 252

with @ = (u, 0%) are given by

log f(X |8) = —glog%ﬂ'a2 — Z %,
(3.13) =1

1 2
Eylog f(Y | 6) = —g {log21rcr2 + %} ,

respectively. Here, we consider the following six estimators, O = (0,62, k =
0,....5, where j is the maximum likelihood estimator and 7 is defined by

(3.14) 62 = —— 3 (i u)

i=1

Obviously, 7 is the maximum likelihood estimator and &% is the unbiased estima-
tor of the variance o?. In this case, it can be easily seen that the exact values of
the biases are given by Cy = 2(n — k)/(n — 3). On the other hand, based on the
asymptotic theory, AIC evaluates that Cy = 2. Note that AIC can be applied to
only the maximum likelihood estimator &2.

Based on the empirical distribution function, the bootstrap sample of size n,
X* = (X}, ..., X*) was drawn for NB = 1000 times and the bootstrap estimates
of the biases C}, are computed. To reduce the effect of the sample, X was generated
for NS = 10000 times and the averages of these estimates were computed. In
Tahleg 3, these valnes as well ag the averages of —2 times the expected log likelihood

(ELL),
NS

2 .
ELLr = —m= > _ Ev log fY | (X))
=1
—2 times the log-likelihood (LL)

NS
9 .
Ll = ~%5 E log f(Xuy | 0:( X))
=1
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Table 3. Normal Distribution Maodel. Estimate of ', C*, —2 times Expected Log Likeli-
hood(ELL), —2 times Log Likelihood(LL) and EIC. N = 20, NB = 1000, NS = 100000.
The second row with parenthesis shows the standard deviations of the differences of ELL’s, LL’s
and EIC’s from those of ELL-best estimates, respectively. Note that the log likelihood ratio in
this case 1s constant and the variance 1s zero.

>

¢ ¢ ELL LL EIC

F& 239 232 5Y.38 5460 5BY.LS
(1.84) (0.00) (0.25)

% 227 221 5917 5463 59.04
(1.38) (0.00) (0.19)

&2 215 200 5901 5471 58.80
(0.92) (0.00) {0.13)

&% 2.03 197 5801 54.85 58.80
(0.46) {0.00) {0.06)

#% 191 1.86 5889 55.06 58.78
(0.00) {0.00} {(0.00)

&2 1.79 174 5884 5536 58.84
(N 4Ry (NONY (0 0OR)

and the EIC

1 NS 1 B .
S 5 Z;{log FOXE 08X )
J=

i=1

EIC, =LLi + 2 x —

—log f( X5y | 62(X5 ;)0

are shown for sample size n = 20. Here X ;) and X7, Gid) denote the i-th sample and
the j-th bootstrap sample drawn from X;), respecmvely The second row with
parenthesis shows the standard deviations of the differences of ELL’s, LL’s and
EIC’s from those of ELL-best estimates, respectively.

It can be seen that LL takes the minimum at &3 and is increasing with the
increase of k. Therefore, if we use the log likelihood as the criterion, 3 is consid-
ered as the best estimate. However, ELL takes its minimum at & = 4. In this case
C} is a decreasing function of & and by correcting this bias EIC takes its minimum

at k = 4.

3.4 Bayesian predictive distribution

Preceding three subsections are concerned with the evaluation of parameter
estimation. We show that EIC can he uged to evaluate Bayesian prediction distri-
bution. This example concerns with the regression analysis. We deal with a case
where the regression analysis is nothing but a fitting of a model of joint distribu-
tion of an cxplanatory variable Z and a rcal random variable X. The marginal
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distribution of Z is assumed to be uniform on the integers {1,2,....n} and the
model for the conditional distribution of X for given value i of Z is N{u;,c?).

A data set
(3.15) ¥ = (Y11, 12,913, - -, YnJ)

is generated by assuming

T

1 2 fo2
3.16 y §.0%) = ey —pi)" /20
(3.16) flul ) EE Tory
as the true density, where
(3.17) 0 = (p1,p2, - s fin)-
‘Lo generate the data, o2 and @ are fixed at o3 and 8y = (u3, ..., 15, respectively,
where
A
(3.18) W= ami™
m=0

Assuming the smoothness prior distribution

N

1 2 2
3.14 e Jwh) = e (i mo1)?/30T
(3.19) (0| po,w") 1-1;[1\/5?“’
Baycsian predictive distribution
(320) faroy |5,0) = [ £(y10,6%)7(0 | z,v)as
and Bayesian mode estimator
(3:21) Foraly | 5,0) = f(y | Arg. max#(8| 7,v),3%)

are obtained, where

(3.22) 70| z,v) = flz | 6,670 | v)//f(:t L8, 62)7(0 | v)db.
The above (8 | v) is defined by

(3.23) #(0 | v) = (8| fry, 5% Jv?)

where [ig and &2 are, following Akaike (1980), obtained by maximizing the likeli-
hood of the Bayesian modcl BAYES(v):

(3.24) f 1 8,02)m(8 | o, 0% [v2)db
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for fixed v. Minus twice the expected log likelihood and EIC of predictive distri-
butions are respectively defined by

(325) ELLn(2,0) = -2 [ 1(u | f0.08)log f(y | 2,0)dy,
and
(3.26) EIC,(x,v) = —2log fm(z | 2,v)
2By {10g fr(X™ | X*,0) — Ey-log f(Y* | X*,0)},

where m is either BPD or BME. The data shown in the upper panel of Fig. 1 is
generated assuming M = 2, the lower panel shows the mode estimate of 8. The
results are summarized in Table 4, which shows average of each quantity calculated
for 100 realizations of z. It is clear that BPD is better than BME in view of the
expected log likelihood and that this fact is detected by our EIC.

Data
1.0 *
e ) i
=z LI L .4 * * . . * H ‘/_:,/
0.0 [ J ' v - . .
H * T v N *
05 1 e L, .
1.0 4 . . . *
10 20 30 40

10 20 30 40

Fig. 1. Truth, data and a fitted curve.
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Tahle 4. Comparison of BME and BPD.

Frequency Frequency Frequency Frequency
v ELLBME of min. ELLgpp of min. EICBME of min. EICmpD of min,

ELLpmE ELLpps ElCEMF EICgpp

0.5  142.7 0 1202 0 146 2 0 120 0 0
(15.1) (8.1) (8.6) (6.0)

1.0 1286 0 121.7 0 126.2 0 119.0 9
(7.5 {5.9) (6.3) (7.2)

20 1184 0 115.7 0 116.4 0 113.5 17
(2.8) {1.5) (2.7 (3.9)

40 1142 17 113.1 sl 113.4 9 112.0 32
(0.0} (1.3) (0.0) (1.6)

8.0 1141 1 113.2 31 114.1 5 113.0 15
(1.2) {1.9) (1.9) (1.9)

16.0 1159 0 115.1 0 116.1 0 115.3 4
(1.7} (2.1) (3.6) (3.4)

32.0 1169 0 116.6 0 117.2 0 116.8 0
(1.9} (2.1) (4.4) (4.4)

64.0  117.3 0 117.2 0 117.6 0 117.5 1
(2.0) (2.0} (4.7) 4.7

1280 1174 0 117.4 0 1ur7 6 117.7 2
(2.0} {2.0) {4.8) {4.9)

Note. Regression analysis and density estimation.

Let f(x | z,8) denote a parametric model of a conditional probability density
function of X given a value of an explanatory variable {vector} z, whose probability
density function is supposed to be given by g{z). & denotes the parameter. When
a data set

§={(zs,z);i=1,2,...,n}
is given, the log likelihood is given by
1818) = {log flz: | 2:.8) + log g(2:)}.

=1

Let an estimator of the parameter ¢ be denoted by #(S), then using the
following notations for two independent bootstrap samples

§* = {5 ) |i=1,2,...,n}
and
st :{(J’::":) ‘ T — 1,2,...,??,},
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the correction term of EIC of the fitted model is given by

(3.27) Es-{1(8(5") | $*) — Est{I(B(5™) | $")}}
= Es- {Z{log Fx} | 27,8(5)) + logg(z?)}}
i=1

i=1

~ Es: {Z{log Flal | 2],6(57)) + log (2! )}}

- ES,{Zlogf(x;‘ | 27, 6(S*))

i=1

~ Bgy {Zlogf(m;f | 2] ,é(s*))}},

i=1

where
* * il

TP =T, Z] = Zpe, X, = Xt z;r =z
i* and i7 are independent integer valued random variables distributed uniformly
on the interval [1,n].
The equation (3.27) shows the correction term is independent of g. In the
derivation of this equation, the fact

Es. {Zlogg(z:)} = Egt {Zlogg(zf)}
i=1

i=1

was used.
Now it is clear, in this case, that EIC has the expression,

EIC = —2[(4(5) | $) + 2(correction term free of g).

Note that g does appear in the first term of the above equation, but it does not
matter as long as what we are interested in is the modeling of f{z | 2,8) and
estimator of 8.

4.  Concluding remarks

The range of application of EIC is very wide. It attracts our attention to
the role of estimation procedures. From our present point of view, some problems
which are regarded as model selection problems are rather estimator selection
problems. For example, the determination of AR order is a typical one. There are
many numerical examples omitted from this paper. They will be published in our
forthcoming papers.
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Appendix

A, Taylor expansion of the log likelihood function
When the log likelihood £x (8} has the form

0) =D log f(X; ] 0),

=1

it can be expressed by the Taylor series around 8g, a given reference point.:
(A1) £x(6 Zlogf X, |9R)+Z ECICICINGS
Or

(6 68) + O, (%)

[a—y

+Z— 0 —6p)7 [;392 log f{(X; ga)]

Or

If 8 is a random (vector) and

1= 0n = 0, (=),

defining €, g and H by

€ =Ex{{x{0r)},

a8
9=bx { [88“(0)] 33} 1
82
H=~FEx { [fo (B)J eR}

and
A= Ex(BR) —
8
Bo= |gexto)| ~o
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then it follows that
(A2} ix(@) =L+ A0+ {g+Ag)7 (6 0g)
1 1
~ (0 - 6p)TH(O - -
3080 HG ~ 82)+0, )
={+ Af

30 0n— H g+ Ag)TH(B ~ 6r ~ H g+ Ag)
+ %{g +A2g)"H g+ Ag) +Op (%)

n

1
zfxQ(aﬁx)TH—l(ﬂ—ex)-l-Op(l) ,

and the approximation (2.9) is obtained by ignoring the O,(1/n) term. Definitions
of £x and ¢x are

1
(A.3) x={+Al+S(g+ Ag)TH Yg+ Ag)
(A.4) Ox =8g -+ H (g + Ag).

B. Distribution of px-
The sample mean and the sample variance of a set X of n elements {z1,z2,...,
Zn } are defined by

1 n
p=sdom
i=1
and
1 T
g2 — = . — )2
" Z(-’E‘ P’) )
i=1
respectively. S? is a random variable which satisfies

. -1
E{Sz} = Ln a?

and
2(n+1)
2y _ 4
Var{S*} = 0
where ¢2 is the variance of X;(i = 1,2,...,n). Let pux- be the sample mean of

the bootstrap sample X* from X then
Vapx- ~ N(vai, )

and a realization of v/nux+ has an expression:

2 1
1),

n

; . n—1
\/ﬁyx*:\/ﬁﬁ+szv:\/ﬁp+v\/ " o2 +
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wherce

u~ N(0,1) and v~ N(0,1).

e = i+ n—1 4 V2n+ul

g
T n

1+/2 1 1
=vnito 1+§M v+op( )

T

v

=vnfi+ov+ 0y (\/Lﬁ)

and we have the approximation
VX, ~ N(\/Eﬂaalz)-
In our case ¢? = 1.
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