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Abstract. The asymptotic error probability of Linhart’s model selection test
is evaluated, and compared with the nominal significance level. We examine the
case where the expected discrepancies of the candidate models from the true
model are asymptotically equal. The local alternatives method is employed in
the limiting operation of the asymptotic evaluation. Although the error proba-
bility under the null hypothesis is actually shown to be equal to or less than the
level for maost situations, intnlarahle violations of the arrar control are ohserved
for nested models: It is often erroneously concluded that the smaller model is
significantly better than the larger model. To prevent this viclation, a modifi-
cation of Linhart’s test statistic is proposed. The effectiveness of the proposed
test is confirmed through theoretical analysis and numerical simulations.
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1. Intreduction

Akaike’s information criterion (AIC) is an estimator of the Kullback-Leibler
(K-L) discrepancy between the true density and its estimate. The best model
among given candidates is defined to be the minimizer of the expected discrepancy.
The minimizer of ATC over the candidates is regarded as an estimate of the best
model.

Linhart (1988) considered a test of whether two AIC’s differ significantly
for a pair of madels among the candidates. The test statistic is a standardized
difference of AIC between the two models. It converges to N{0,1), the standard
normal distribution, as the sample size n goes to infinity under the null hypothesis
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that the two expected discrepancies are equal. Linhart’s model seleclion test is
based on this asymptotic normality of the test stafistic.

In practice, the null hypothesis does not hold, and the difference between
the two expected discrepancies is of order O(1). In this case the test statistic
goes to infinity, or minus infinity, as n — oc. To evaluate the error probability, a
“moderate” sample size may be assumed: The sample size is large enough to ensure
that the usual expansions of maximum-likelihood theory are good approximations,
but not so large that the test is performed with negligible probability of error (Cox
(1962)).

Rather than the moderate sample size under fized alternatives mentioned
above, a mathematically strict way to handle this difficulty is the asymptotic
theory under local alternatives. We consider a sequence of densities converging to
a point in the intersection of the two models. The rate of convergence is of order
O(1//n) so that the test statistic will be bounded in probability even if n — oo.
The aim of this article is to discuss the error probability of the modecl sclection
test under this setup.

Steiger et al. (1985) derived the joint distribution of AIC’s for nested models
under local alternatives. We give the general results including nonnested cases in
Section 2. Under local alternatives, the discrepancy reduces to just the Euclidean
squared distance. Then the maximum likelihood estimator (MLE) of the true
density will be the projection of a standard normal vector onto a linear space.
Using this standard normal vector and the projection operators for the two models,
we can asymptotically express both the AIC difference and an estimate of its
variance. Consequently the test statistic reduces to its canonicel form, which is
given by the canonical correlation coefficients (Hotelling (1936)) between the two
MLE’s. The canonical form is the basis for the error probability assessment in
Section 3.

Theoretical analysis of the canonical form suggests that the model selection
test is rather conservative for monst situations. Numerical simulations, however,
indicate that the error probability of the test can be larger than the nominal
significance level for nested models. Ideally, the error probability under the null
hypothesis should be equal to the level; while a conservative test is not ideal, it
is much better than violation of the error control. To prevent such violation, a
modification of Linhart’s test statistic is considered in Shimodaira {1996). The
second order term is added to the variance estimator of the difference between
the two AIC’s, whereas only the first order term is used in Linhart’s test statistic.
This modification remedies the violation to a considerable extent.

‘I'he construction of this article is as follows. In Subsection 2.1, the MLE is
discussed under local alternatives; results are summarized in Proposition 2.1. In
Subsection 2.2, the asymptotic distribution of the test statistic is discussed, and
its canonical form is given in Proposition 2.2, The error probability assessments
through theoretical analysis and numerical simulations are given in Subsection 3.1
and Subsection 3.2, respectively. Concluding remarks are made in Section 4. All
proofs are deferred to Appendix A.
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2. Asymptotic distribution

2.1 Models and mazimum likelihood estimator
Consider a parametric family of densities of random variable =, p(-} — {p(z |

&) | £ € E}, where © C R™ is the parameter space. Let [L'g oozl be iid.

observations of sample size n from the unknown true density p(z | £™), where
£ ¢ Z is the true parameter value. We consider £ depends on n, and it
converges to &%, an interior point of =. The rate of the convergence is of order
O(1//n), that is, limp_ o VR(EM) — £*) = £€° € R™ exists. Let =* denote a
generic neighborhood of £* in E. In the following, we will see that the space of
distributions in Z*, whose scale is magnified by /7 times, reduces asymptotically
to a linear space as n — .

Assume regularity conditions that &£ {]0,0; logp(z | £)|} < 00, &{|8; log p(x |
&)*} < oo, and E:{|logp(x | £)|2} < oo for £ € =%, where £:{-} denotes the expec-
tation with respect to p(z | £), and 8; = /8¢ denotes the partial differentiation
with respect to the i-th element of £&. Let G(£) be Fisher’s information matrix,
whose elements are G;(§) = £:{0; logp(z | £)logp(z | €)} = —E:{8:9; logp(x |
£}, Assume G(¢) is of full rank, and all the elements are of C'1, once continuously
differentiable for £ € Z*. Define L{£1,£2) = &, {logp(x | &2}} for £1,€2 € E. Then
the K-L discrepancy is D{£1, &) = L(£1,&1) — L(£1, &), and Jeffery’s discrepancy
is J(&1,&) = D(£1,&) + D(&,&1). Assume D(&1,&) is of C? for &;,& € B*.

LeMMa 2.1, Let 5((;1) £ Z, o= 1,2, be sequences converging to £ such that
limy, g0 VA(ESY =€) = €2, o = 1,2, exist. Then we have

(2.1) lim nD(E™, &) = (€ - )G (€ - 6)/2,
where G* = G(£*). This immediately implies lim,HwnD({l”),g;)) =

lim,, o nD(ES™, £4) = Tim,, oo nJ (™, £57) /2.

Let o index models, and A be the set of a’s for the candidate models.
Consider a parametric family of densities pa(:) = {palz | 84) | 84 € Oul,
O, C R™= for each o € M. We assume that p,(-) is a subset of p(-), and
that p(x | £*) is interior to p,(-). Thus, using a function &, : ®, — Z, we can
write po(z | 6) = p(x | £4(8.)) for 8, € O, and £* = £,(8) for some 07 € O,
where &, is interior to O,.

In a neighborhood of 87, we assume £,(f,) is of C? and m x m, matrix
B ;(8.) = 9¢./38), is of rank m,. Let al™) — argsupy e L{(€(™,£,(8,)), and

assume lim, o0 \/75(9((1") -~ G%) = 85 exists. In pa(.), palz | o™ ) is regarded as
the “closest point” to the true density in the sense that it minimizes the K-L
discrepancy. Write B% = B, (67), £57 = £,(85"), and €5 = lim,, o0 /(6L — %)
for brevity.

LEMMA 2.2, The asymptotic limit £ of the point closest to the true density

n model-a satisfies

(2.2) €8 — BLOS DYG*(es —¢°) — 0,

oo
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and thus we have
(2.3) 6° = (BYG*B) 'BYG*¢°.
Note that £ is the projection of £° onto Im B, the linear space spanned by the

column vectors of B}, using G* as the metric.

Let LM (&) = n7tY 7 logp(mgn) | €) denote the log-likelihood function
(divided by n), and &0 = argsupecs L (€} denote the MLE of £¢™ for the
model p(-). We assume the MLE is asymptotically bounded in probability, that
is, plim,,_, \/ﬁ(é ) _g*) = £ = O,(1), where plim denotes the convergence in
probability.

LemMA 2.3, The asymptotic distribution of the MLE is normal;
(2.1) £ i N{g°, 71,

Let 65 = argsupy ce, L) {(£,(8,)) denote the MLE for p,(-). Assume
plim,,_,_ VA ~ 65) = 85 = 0,(1). Write £ = £,(85) and €5 =
plim, . \/5(5((,”) — &) for brevity. We will see £ is the projection of £° onto the
model, exactly the same manner as in Lemma 2.2,

LEMMA 2.4. The asymptotic limit €2 of the MLE for model-a satisfies

(2.5) €& =Byf;, BIC(E-£€)=0,

and thus we have

(2.6) §° = (BYG*B:) 'BYGE°.

Consider the square root decomposition G* = (G*/2YG*1/2, TLet ¢ =
G*l/?go, é" - G*l/?éO1 £8 = G*I/Qgg, ég = G*lﬂéa, and BS = (1*1/25’;. These
variable transformations will lead to the orthogonalization of the metrie.

ProOPOSITION 2.1. Define PS = BS(BYR2)"1RY, the projection operator
of Im BS. Letting £5 = G*Y/2£3 in Lemma 2.1, {2.1) will be

@.7) Tim nn(E™ £V) = &7 - £311%/2.

Similarly, Lemma 2.2 and Lemma 2.4 will be rewritten as

(2.8) bo=Do€% &g =Pes.
Also, Lemma 2.3 wnll be
(29) éo NN(éoaImL

where I, denotes the identity matrin of size m.
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2.2  Statistics for modcl aclection
Let LY = L ( &”}) denote the maximum log-likelihood for p,(-). Then,
AIC {(divided by 2n) for p,(-) is

(2.10) cM = L ¢ mg/n.

Let (" = £{D(£™,£{")} denote the expected discrepancy, or equivalently the
exzpected prediction error. The best model with respect to the population is defined
to be the minimizer of ¥ . Sinece O is regarded as an estimate of 'r&n), the
minimizer of C&") is regarded as an estimate of the best model. Note that only

the differences of ﬁ&"’, or C&n), between models are needed for model selection;
the asymptotic distributions of them are given here.

LEMMA 2.5, Fora& M,

(2.11) plim n(L{Y —~ LU (€7)) = 16317 /2.

n— 00

Thus, for o, 8 € M, we have

(2.12) plim n(L{M — L§V) = €/(PS — P3)E°/2,  and
(213)  plimn(C{™ — CYV) = —€(PS - P§)E° /2 + (P2 — P5).

Let a m x 1 random vector X be distributed as N(b,I,,). Then, for any
symmetric m x m matrix A, we have E{X'AX} =0'Ab+ tr A and var{X'AX} =
4b'A%b + 2tr A2, Applying these facts to (2.13), we obtain
(2.14) LE{CEY —nC{M}y = —€”(P2 — P§)§° /2 + tr(PS — P§)/2,  and
(215) Lvar{nC{) - nCf"} = €7(P2 - PEY*E° + ux(PS - F3)*/2,

where LE{-} and L var{-} denote the asymptotic expectation and variance, respec-

tively. The following lemma tells us that ci is asymptotically unbiased for the
estimation of ri™ , lgnoring a term common to all the models.

LEMMA 2.6. Forae M,

(2.16) LEnDE™, EM)} = 11€° - £ /2 + ma/2.

Thus, for &, 8 € M, it is easy to verify that LE{nD(E™, £&77)—nD(™, £5V)}
equals (2.14). Only CSV, or its equivalent up to the O(1/n) term in (2.10),
has this asymptotic unbiasedness. Note that lim,_, 'm'g,") is not necessarily
LE{nD (xf(”),éc(xn))}, but we assume these are equivalent throughout.
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As has been seen, ol is unbiased, but it still has the variance (2.15). Ilere
we consider an estimator of this variance and its asymptotic distribution. We will
investigate
n) .2
(2.17) Vég)/n+ nviﬁ)/n
as an estimator of var{Cq" — C’g”)}, where VCEE) and vg:g) are described below, and

x > 0 is a constant, set to zero in Linhart’s test statistic, or set to unity in our
modified test statistic. The first term in (2.17) is

(218) a”—HIZIng (4" 1 €5) = logp(a{™ | €57 — (L - LEVY?,

and the second term is

(2.19) ol = (ma +mp) /2 — tr(GU G T GRIGT Y,
where
n B alogp(a: ") | o ( )) 310%19( \ ép ( )
2.20 iy =nt t .
(2200 (G Z { - 7
LEMMA 2.7. The two terms in (2.17) are asymptotically
(2.21) plim nV) = £(P2 - P)*°,  and
(2.22) plim (Y = ex(P2  P)2/2.

Nole Lhat the sum of (2.21) and (2.22), if é“ is replaced with £°, gives (2.13).
This implies that (2.17) is a reasonable estimate of (2.15} when x = 1.
Using the results obtained above, we will investigate a statistic

(n) {n)
Oy’ — Cﬁ
\/Vén) /n+ mvgg /2

(2.23) T =

for testing of H; (). pn) < rﬁ ") against H; (”) ri™ g" or Hy (”} against E’ n)
The model selectlon test is derived under the aSSleptIOn that (2 23) is normally
distributed with unit variance. To see the deviation from the normality, we will

introduce a canonical form of the test statistic. Let T,; = plim T which

n—oo “af
can be written explicitly using £° and £ — P5. Applying the following lemma to
it, we will obtain the canonical form.

LEMMA 2.8. Assume m, > mg withoul losing generality. Then, the eigen
values of Py — Pg are A, 0 < A, < 1,1 =1,...,mg, and unity of my — mg
multiplicity.
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Note that @, = sin™! A; represents Lhie angle between I Py and Lin Py con-
fined to the corresponding eigen space. Note also that v, = cosp;, i =1,...,mg,
are the canonical correlation coefficients of Hotelling (1936) between 83 and ég

Let r = mg and I = m, — mg > 0. Let vy, be the unit eigen vector cor-
responding to +A; for i = 1,...,r, and v,, i = r + 1,...,r + [, be those of
unity. Let pe; = v/;8%, 2= 1,...,r,and p; = vl°, it =7+ 1,...,r + 1. De-
fine ' = (fiyy ooy 13 BTy ooy fpr Hord 1 - - o fer) and A = diag(— A, ..., —As;
A],...,A,«;l,...,l).

ProprosITION 2.2. The canonical form ongﬂ 18

o _ {p 1 2)Alp 1 2)/21 trA
. . Vip+ 2V A2(p+z)+ str A2/2’

where 2 ~ N{0, Inp41). Using pp and A, (2.14) wsll be rewritien as

(2.25) limn(r{® ~ ré")) = —u'Au/2 +trA/2,

which is the expectation of the numerator of (2.24). Also,

(226) T a(DEW.E) - DEW, &) = —p'An/2 and
(2.27) lim nJ (g, €M) — W A%u

will be easily verified.

If \; = 0 for some %, then this element can he removed from the canonical
form. Thus, we can assume 0 < X; < 1 without losing generality. Let m, denote
the dimension of Im B} NIm B}. Then, A, = 0 for m, elements, and r = mg — m,.
Note that r = 0 for the nested case pg(-) C pa(:), since m, = mg.

3. Assessing the error probability

3.1 Theoretical results

Let ¢ = ® (1 —level} > 0 denote a critical constant for the one-sided normal
test, where ®(z) is the standard normal distribution function, and level denotes
the nominal significance level of the test. Linhart (1988) considered a test auch

that H gg is rejected if Té};) > ¢, and similarly H ;(32) is rejected if T&;) < —c¢, where
% = 0in (2.23). Our modification of these tests is to add the second term in (2.17),
or to set K = 1. In the following, we will investigate their probabllities of lalse
rejection, which are supposed to be less than the level. Note that Hi%) and Hg;)
are tested separately above. When these are tested simultaneously, the two-sided
constant ¢ = &' (1 — level/2) is used.

Let FiM(t) = PI{T{S;) < t}. The actual error probability of testing of Hg;)

Is egg =1— F™)(c) under II(%), and that of Héz) is eg':j — F){(—¢). Taking the
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Fig. 1. Curves of 5(b) drawn for k = 0 and 1.

asymptotic limit of Section 2, we have lim,_,o F{™(t) = F°(t), where F°(t) =

Pr{T5; < t}. Let H;; denote the hypothesis lim,_co n(r&n) — rén)) < 0, and
define Hy, similarly. 'L'hen, the corresponding asymptotic error probabilities are
eos = 1 — F°(c) and €3, = F°(—c), respectively. In the theoretical results below,
we will take the limit of F°(t), such as [{u]| = oo or tr A> — 20, to obtain rough

estimates of the error probabilities.

LEMMA 3.1. Consider the limit {ull — oo such that limj—n —
p AR AW AR = a exists. Then, imy,y o F°(t) = ©(t — a).

Note that Hj; implies @ < 0 and Hj, implies @ > 0 when ||u|| — oo. Then
we find €5 = 1 — F°(c) <1~ &(c) = level under H;; and ej, = F°(-c) <
®{—c) = level under Hj,, where these inequalities become equalities if a = 0.
This corresponds to the result of Linhart (1988), in which F{™() — @(z) is
derived under r{" = rf;") and J(¢{, é”)) fixed. Note that the fixed J(£{", _é"))
leads to ||| — oc, because of (2.27).

LEmMMA 3.2. Consider the limit I + 2r — oo such that trA2 — oo, Let
al®) = (pAp 4 tr A)(dp' A% + 2er ATV BN = A2/ tr A%, Assume both
of limy a2 oo @Y = a and lime, g2 00 D' = b exist. Then, limgy, o> oo FO{E) =
®(t/s — a), where s = s(b) = (1 + (1 + &) /{1 + 2b))"1/2.

Suppose tr A2 — oo. Then, the error probabilities are again controlled by
the level, since 0 < s(b) < 1 for & > 0 as shown in Fig. 1. For small b > 0,
s(b) is much smaller than unity, which implics the test will be too conservative.
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As b — oo, s(b) — 1, which is consistenl with the result of Lenuna 3.1. Noule
that b tr A2 = /'A%u =~ nJ( &")7 gn)) is approximately regarded as a squared
“distance” between the projections of the truc density onto the two models; the
standard normal approximation is valid if the distance is large, while it will be
conservative if the distance is small and tr A? is sufficiently large.

3.2  Empirical results

It follows from Lemma 3.1 and Lemma 3.2 that the error probabilities are
less than the level regardless of the value of «, if either ||| or tr A? is sufficiently
large. Here we examine some numerical simulations in which ||| and tr A? are
small enough to observe violations of the error control. The value of p will be
chosen so that the null hypothesis H_ ﬂHEa holds.

We will confine the discussion to a particular case: All the diagonal elements of
A are unity or zero. The linear spaces of the two models are mutually orthogonal,
slice nonzero w; = sin™! A is 7 /2. The canonical form reduces to

(3.1) o —W - Wy)2+1
' « \/WH) + Wiy Jr1'~§(’l"4rnf/2)5

where Wiy ~ x*(I + r,64) and Wy ~ x2{r,6_), which are independent x*
random variables with the noncentrality parameters 67, , = >°{_; p%; + ST ul
and 6‘(2_) = Y_7_. p?,, respectively. The null hypothesis implies 6'(2 v~ 5(2_) =1,
since (2.23) reduces Lo —(6‘()'4_} - 6&))/2 + /2. Note that r — 0 and 6?_) —0in
the nested case.

Table 1. Parameter sets for the simulations.

Canonical form Regression*”
Sim. # I r 6(_) 6(4_) Ka Ka 'rn‘<1> ﬂg T?g
1 10 0 1 {0,1} {0} 1 0
2 20 0 V2 {0,1,2} {0} 1 0
3 3 0 0 V3 {0,1,2,8} {0} 1 1 1
4 0 1 0-4* 8_y {0,1}  {0,2} &, 8-y 0
5 11 o4+ /1 + 67, {0,2,3} {01} by J1+8_, O
M-y =10,1,2,3,4  **)See Appendix B.

Five simulations are carried out with the parameter sets given in Table 1.
Figure 2 shows the results of the first simulation, in which the nested case with
one degree of freedom is treated. Curves of e}y = 1 — F°(¢) estimated from
10,000 samples of T, are drawn with solid lines for £ = 0 and 1. Those of

egg =1— F"(¢) are drawn with dashed lines, which are estimated from 10,000
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Fig. 2. Error probability curves plotted against level = 1 — &{¢}. Drawn for & = 0
and 1. The solid lines are e}, = 1 — F*(c) of (I,7) = (1,0). The dashed lines are

ef}a) =1-— Fm (¢} for n = 10, 20, 50, 100, which are almost indistinguishable from €
for n > 20.

artificial regression data sets; see Appendix B for details. We ohserve that €os

gives a good approximation of egg, and so we may confine our attention to €aa

rather than 6279) of finite n. The error probability €qop for £ = 0 is larger than

the nominal level by approximately 0.2. For example, eng = (.25 when the level
is 0.05. By lctting £ = 1, the situation is remedied to a considerable extent;
en 57 0.1 at level 0.1, and it will be conservative for smaller levels.

The results of the second and third simulations, together with those of the
first, are summarized in Fig. 3. The nested cases with degrees of freedom from one
to three, that is, ({,7) = {1,0), (2,0), and (3,0), are treated. For each choice of I,
the error probabilities are plotted for levels 0.05, 0.1, and 0.2. Solid lines denote
€ OF €3, and dashed lines egg or e[(;;); see the legend of Fig. 2. Figure 3(a) shows
that ef 5 for £ = 0 is larger than the level in the nested cases, but it decreases as
[ increases, By letting = 1, e, ; becomes closer to the level. On the other hand,
Fig. 3{b) shows that e, is considerably smaller than the level even if k = 0. This
means the test is very conservative. Letting £ = 1 makes the situation even worse.

Figure 4 shows the result of the fourth simulation where (I,7) = (0,1). This
case is symmetrical because e, , = e}, holds. Error probabilities are calculated
for &y =0,1,2,3,4; they approach the level as b¢_y increases, which is suggested
by Lemma 3.1. For small 8._y, however, the error probability is very small, which
is similar to the behaviour of €3, for nested cases. The difference between x = 0
and 1 is small,

In the fifth simulation, a situation iu between the nested and the symmetric
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Fig. 3. Error probability in the nested cases: (I,r} = {1,0),(2,0),(3,0), and k = 0, 1.
Drawn for (a) Hag, and (b} Hgs. The ¢} 4 are labeled 1, 2, 3 and the e3, 4, 5, 6 for

levels 0.05,0.1, and 0.2 respectively.
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Fig. 4. Error probability in the symmetric case: (I,7) = (0,1). Plotted for Sy =
0,1,2,3,4.
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are approximate curves derived from Lemma 3.2,
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case is treated. Not surprisingly, the results are also 1n between those of the nested
and symmetric case, and the figures are omitted here. Both e ; and e3, are very
similar to those of the symmetric case on the whole, and they are close to those
of the nested case for small §_;.

Given (I,7), the largest deviation of the error probability from the nominal
level is obtained when &y = 0, especially the case (I.7) = (1,0) which gives the
largest e, 5, while €3, is much smaller than the level. If either | or r is sufficiently
large, €55 as well as ez, will be smaller than the level, as suggested by Lemma
3.2. This tendency is shown in Fig. 3 and Fig. 5.

4. Concluding remarks

We have examined the error probability of the model selection test under local
alternatives. Linhart’s test works well if ||| or tr A? is sufficiently large: The error
probability under the null hypothesis agrees well with the nominal level if ||u]| is
large enough, and it is smaller than the level if tr A? is sufficiently large. However,
els for £ = 0 can be larger than the level, particularly in the nested case with
small [ = m, —mg > 0. This violation of the error control can be satisfactorily
remedied by letting & = 1. On the other hand, e3, is considerably smaller than
the level for small {|||, even if kK = 0. When ! = 0, eg 5 as well as e}, is very small.

The large e],; may be explained as follows. The test statistic T, for £ =
0, ! > 0 can take an extremely large value if ||p + z|| is nearly zero, since the
denominator of Tgﬁ i3 nearly zerco while the numcrator is positive. This can make
the distribution of T, ; heavy tailed unless ||| is large enough.

The model selection test shows a general tendency to be conservative; this is
partly explained by the bias of the variance estitnator. The asymplotic expeclalion
of {2.17) multiplied by n? is £/(PS — P§)2£° + (2 + k) tr(P2 — P§)2/2, which
overestimates the true value if & > —~1. An ad hoc modification of the variance
estimator, such as max(Vcﬁg) /n—- Ufﬁa) /n®, vg’g /m®), might improve the test, but is
not considered in this article.

Although the empirical results are confined to a particular case of A, there is
an implication for general A. In Shimodaira (1995), it is numerically confirmed
that the maximum value of €}, (= ej,) for { = 0, p = 0 and a fixed r > 0 is
attained when all A; have the same valie. This suggests the error probability for
general A is still controlled by the level if I =0, 4 = 0.

Even if the apparent structure of the pair of models is nonnested, its canonical
form may happen to correspond the nested case. Consider the following example.
Assume £{X X5} = p, while X; ~ N(0,1} and £{X; X3} = £{X2X3} = 0 in
the fifth set of regression parameters of Table 1. Then, it is easy to see A =
diag(—sin ¢, sin, 1), where cos ¢ — p. This example will be the nonnested case
with (I,r) = (1,1) if p = 0. But if p = 1, it reduces to the nested case with
(I,7) = (1,0), since sing — 0 as p — 1. Note that a degenerate nested case like
this example cannot happen if I — 0.

As demonstrated, Linhart’s model selection test works poorly for the nested
case, in which the difference between the two AIC’s is asymptotically x? with
unknown noncentrality parameter. Although a better test of the noncentrality
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can be devised, we considered the modification & — 1 to remedy the defect in the
model selection test. This is important to the confidence set of models derived
in Shimodaira (1996), in which the modified statistics for all pairs of models are
simultaneously tested using the normal approximation. The results of the present
article suggest that the error probability of the confidence set of models is fairly
well controlled by the level. Future work might derive a better model selection test
or a confidence set of models as a test on y, utilizing (estimates of) the canonical
correlation coefficients.
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Appendix A

Proofs

PrROOF OF LEMMA 2.1. Consider 9;L(£1,£) le=¢,= &, {0;logp(x | £1)} =0
for £& € =*. Then expand D(&;, &) with respect to & around &; to find D(&;,£3) =
(&1 —EYG(E) (€ —€)/2+ 0l &1 = Eal12) for &1, €2 € E*. Noting lim,_, . /7l —
M) = €8 — €8 and lim,_, G(&{™) = G*, we obtain (2.1). O

Proor Or LeMMa 2.2, Consider &,(657) = £,(67) + BLOS — o) +
o([|65” — 8%|). Then we obtain £ = limy e vABL(0S — 8) = B3, which
is the first equation in {2.2). By definition, 83 = limy_,s arginf, cgm. nD(EM™,
£a (82 +u/y/n)). Because of the smoothness of the K-L discrepancy and [|#3|| < oo,
the limit and arginf can be exchanged, and then it follows from Lemma 2.1 that
65 = arginf,, . m, (£° — BXu)'G*(£° — BXu). This implies the second equation in
(2.2).0

Proor or LEMMA 2.3, Note that 8,L{") (é(n)) — 0 for sufficiently large n.
Expand it around ¢M™ to obtain n Y2Y" Gilogp@™ | &) +
TSI, 80y logp(s™ | € yREM — €M) 4 0,(1) = 0. Considering
plim,,_,, n~1/? S0 logp(:vgn) | £} ~ N(0,G*) from the central limit the-
orem, and plim,_,,n ! 1.7, -6, logp(z\™ | £™) = G* from the law of large
numbers, then we have X + G*(£€° — £°) = 0, where X ~ N(0,G"). L

ProoF OF LEMMA 2.4. The first equation in (2.5) is easily seen as the
same manner as that of (2.2). We will show the second equation in (2.5). Con-

sider (9/80,)L (€(87)) = X, BL(0X)n™ i, 05 logp(ai” | &) = 0
for sufficiently large n. Expand it with respect to f&n) around f(") to obtain
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%, Bl (Vo L () + S, Xy 050k log p(ay™ | EM)vm(E —
6(”)) + 0p(1)) = 0. Noting 8; L™ (€M) = 0 and taking the limit, then we obtain
the desired result. O

PROOF OF LEMMA 2.5. Expand L™)( A((,n)) with respect to é&“) around £(™)
to obtain LM(EM) = r(n (Y 4+ 32, A LMl n))(é M Y g (1/2n) -
S 50 55 8:0; logp(a™ | EM)(ELY — EMyERY — EmY + o,,( ). Noting
& LM(EM) = 0 and plim,,_, ., 7" S —8:0; log plx, () | £y = G?;, we have

(A1) plim (L (£) — LMYy = €3 — €212 /2.

n—oc
Replacing éf(,n} above with £*, we also have

(A.2) plim n{L07(£09) — LUV (€7)} = |€7)1% /2.

-+ 00
Noting [[£2 — €212 = (P2 Im)E°|2 = £ (I Po)ée, and taking the difference
between (A.1) and (A.2), we obtain (2.11). Noting P2* = P and tr P = myq, we
immediately obtain {2.12} and (2.13). O

Proor oF LEMMA 2.6. Considering (2.7) and (£° — £2)/(£2 —~ :f;) = (£° —
€5)' B3(85 — 83) = 0, we have plim,, ., nD(¢™,€5) = [l&° — &3)/2 = |l¢° -
E312/2 + 1|€5 — £311%/2. Noting ||€5 — £2]1* ~ x*(ma), we obtain (2.16). O

PROOF OF T.EMMA 2.7. (‘nnmdpr Jr(logp(zi™ | €M) —log p(z™ | 5(”))) =
¥ logp(xtn) | Emyym(Es (")) + 0,{1) from expansion with respect to
£ and {fﬂ around €™, Noting n(L((,} — L{”)) = 0p(1) and plim,_,n~!-
pvy: logp(zi™ | €8, logp(zi™ | £y = G};, we have plim,, ., nVCEE) =

(€2 — E;)’G*(ég — EE), which implies (2.21). Considering plim, , GSE =
B G™By = By Bj, it is easy to verify (2.22). D

Proor oF LEMMA 2.8. Consider the singular value decomposition PjFP5 =
U, I‘QﬁUﬁ, where [ys = diag(yi,...,%ms) I8 Ma X mg matrix, Ug = (U1, .,
Ug-m, ) 18 M X Mg matrix such that U,U, = L, and U U], = P;. Define A; =
Un.iU, ;— Uity fori =1,...,mgand A = ua.,;u’a‘i fori =mg+1,...,Mq. Then,
we have Py — P = U,U, — UgU 4 =315 Ai. Note that Im A;’s are orthogonal
to each other, because ul, ;ug.; = ul ;PaPsus; = u, UaTapUsus; = (Fag)ij-
Thus, the eigen values and vectors of P2 — PJ are those of A:’s put together. It
is easy to verify that the eigen values of A; are +sing; for i = 1,...,mga, where
@i = cos™1 ;. Note that we can have 0 < ¢; < /2, because u,.; can be replaced

with —wg.; if necessary. (1

Proor ofF LEMMA 3.1. Divide both of the numerator and the dencmi-
nator of (2.24) by +/p'Au, and take the limit of the fraction. Then we have
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plity oo Tap = Pl oofe — WAz A2 (L + 20 A2z /! A2 )12, be-
cause z'Az, trA, 2’A%z, and trA? are bounded in probability.  Since
AL/ (AR )? < 1/ A%p — 0, we have p'A?z/p'A%u — 0, and thus find T3,
converges to N{a, 1) in distribution. O

PROOF OF LEMMA 3.2. Let Uy = st{(p+2)'A*(u+2)), where st{X) = (X -
E{X})//var{X}, and let ¢N) = (4p/Atp+ 2tr AN)V2 /(1 A% + (1 4 1/2) tr A%).
Then, it is easy to verify Tgs = s(b™)(~Uy + a™)(1 + ML) 12, Noting
A1+ 2u2) < 202(1 4 p?), we obtain (eM)2 < 4/ 37221+ p2) < 4/tr A% 5 0.
Considering A;’s are bounded, it follows from the central limit theorem that U
converges to N(0,1) in distribution, which completes the proof. O

Appendix B

Regression data for simulations

Consider the regression that Y = 3, ex MiXi+Z, where Y is the response, X;’s
are the predictors, and Z ~ N(0,0?) is the sampling error. Let K = {0,1,2,3},
Xo = 1, and £ = (0% ,n0,m,%2,n3). Each model &« € M contains a subset
of the predictors, and is denoted by K., where 0 € K, C K. In the simula-
tions, X;'s are i.i.d. N(0,1) and ¢% = 1, and thus G* = diag(1/2,1,1,1,1). Let
g('n) = (1301 nf/\/ﬁang/\/ﬁa 773?/\/7_1)’ and £* = (1:0:070’0)" Then, £° = £° =
(0,0,7%,n3,13), and £5 = (0,0,84.107, 6a.2n5, 6.3 ), where 6,.; = 1 for i € Ky,
and zero otherwise. See Appendix of Shimodaira (1996) for details.
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