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Abstract. Categorical data of high (but finite) dimensionality generate
sparsely populated J-way contingency tables because of finite sample sizes.
A model representing such data by a “smocth” low dimensional parametric
structure using a “natural” metric would be useful. We discuss a model using
a metric determined by convex sets to represent moments of a discrete distri-
bution to order JJ. The model is shown, from theorems on convex polvtopes,
to depend only on the linear space spanned by the convex set--it is otherwise
measure invariant. We provide an empirical example to illustrate the maxi-
mum likelihood estimation of parameters of a particular statistical application
(Grade of Membership analysis) of such a model.

Key words and phroses:  Probability mixtures, convex sets, polytopes, convex
duality, Grades of Membership.

1. Introduction

Often data on individual sampling units is gathered through closed ended
questions. Each of the answers to these questions provides a response in one of a
finite number of catcgorica. When many questions are asked about each individual
the data represent a sample from a high dimensional space. In this casc though
cach individual can be uniquely classified into response categories, tabulations of
these data often yield a sparsely filled table. In applications, the dimensionality
is often reduced by aggregating data across questions and assuming that response
variation within retained cells is due to heterogeneity.

Within cell heterogeneity can be modeled by specifying a distribution for indi-
vidual response probabilities (e.g., Kleinman (1973)) using, for example, paramet-
ric empirical Bayes stratcgies (e.g., Laird (1978); Tsutakawa et al. (1985); Manton
et al. (1989)) where the hyperparameters of the mixing distribution for individual
parameters implicitly describe individual heterogeneity. We present here a model
which explicitly represents this hetcrogeneity using convex subsets of a space of
probability density functions to describe high, but finite, dimensional categorical
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data without such restrictions. The particular statistical application ol this Lype
of model illustrated here will be referred to as the Grade of Membership {GoM)
model. In “GoM” convex scores are estimated for each sampled person indicating
the degree, or “grade” of membership the individual has in each state defined by
the analysis. Thus, the individual can be a partial (or fuzzy) member of several
states. Grade of membership parameters implicitly exist in other models but are
usually assumed a.) known, and b.) that each person is a member of only one dis-
crete state, so they provide little additional information. When the membership
in discrete states is not known, but a probabilistic assignment is made of each case
into one of a set of discrete states the resulting model is often referred to as a latent
class model (LCM; e.g., Lazarsfeld and Henry (1968)). In a model based on convex
scts, such as GoM, parameters are uniguely identified with the extreme paints of
a convex polytope gencrated by restricting the space of probability distributions.
This parameterization is not dependent on other measure theoretic assumptions
and can Le used to reduce the dimensionality of the paramecter space needed to
describe a given categorical data set.

In this paper, we illustrate the GoM model with data gathered on 4,525 nurs-
ing home residents. Fach resident was assessed on 111 health and functional status
measurements. If all questions are used to classify individuals, and cach question
had only two responses, the implied contingency table would have 2L cells. Al-
though a sample of 4,525 is practically large, the table for this example would have
many empty cells. Reducing the number of cells requires assumptions about the
classification variables. For example, one could vednece the number of classifica-
tion variables by assuming that the cross classifications for the deleted variables
were uninformative. Alternatively, one might assume that differences in responses
across deleted classifications can be modeled by a less complex distribution with a
relatively small number of parameters. Here we use a third method. We assumed
that individuals have different response probabilities and show that the distribu-
tion of these probabilities can be naturally parameterized using convex sets. This
represents within category heterogeneity by assuming an individual’s probability
of response is randomly sampled from a linear subspace of a discrete measurement
space. The specification of that linear space uniquely determines the structural
parameters because they are defined by the intersection of the linear measurement
and convex space of probabilities.

Since the likelihood contains both global and latent random variables (lo-
cal parameters) for each individual, increasing the number of individuals in the
semple increases the number of parameters. This raises two issues; are global pa-
rameter estimates approximately normally distributed and are they consistently
estimated. To demonstrate consistency, the conditions of Kiefer and Wolfowitz
(1956) are generalized [or the convex set conditions (Tolley and Manton (1092)).
We show that constraints on the distribution of individual parameter estimates
imposed in the likelihood by the structural parameters assures consistency of es-
timates of the moments of the distribution of the loeal parameters for individuals
under suitable regularity conditions. Below, we define the general structure of a
convex set model and show the identifiability of its parameters using theorems on
convex polytopes. Next, we show sufficient conditions for identitying and estimat-
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ing canonical model parameters. Third, we discuss estimator consisteney. Finally,
we provide an example using the GoM implementation of a convex set model.

2. A convex set model for categorical data: definitions

Define ¥* as a vector of binary random variables representing outcomes of
J multinomial variables observed for person ¢ = 1,2,...,1. Y* has realizations,
v = {1 =1,2,...,L;),j = 1,2,...,J), where yj, has the value of 0 or 1, with
only one non-zero entry over { for each value of j. Assume L; > 1 and finite for
all 7. The data can be viewed as an N x M table described by,

Y = (¥},

I=1,2,...,Ly),j = 1,2,...,,4i=1,2,...,N),

where M = Ly+Ly+---+L;. E(Y},)is the expected probability, p!, of the i-th in-
dividual giving response { to question j. The row vector of probabilities (the proba-
bility “profile”) for individual i is p* = E(Y") = ({pj;, 1 =1,..., L), i =1,..., ).
The distribution of ¥Y* given p*, is a joint multinomial distribution denoted
h(y* | p*). Standard multinomial models specify p* as a parametric function
of exogenous variables. Models representing individual heterogeneity allow p* to
vary over individuals, within classes defined by exogenous variables, Models with
heterogeneity allow richer representations of p*. Models representing too little
heterogeneity may be substantively invalid. We examine a model representing the
heterogeneity consistent with a convex set parameterization.

Specifically, for each j (j = 1,2,...,J) a simplex, M;, can be defined with ;
extreme points and facets which contains the p; = (pj;l,l =1,2,...,L;) for all 1,
where p}l > 0and 3, p;j = 1.0. The sel of all possible multinomial probabilities
for variable j defines M;. Defining the independent vertices for M, is the set of L;
unit vectors u;; = (1,0,0,...,0),u;» = (0,1,0,...,0),..., 45z, = {0,0,0,...,1).
‘T'hus, the unique, barycentric coordinates ot p; € M, with respect to the defining
vertices are the values of p; itself, ic.,

(2.1) Py =Pty + pyatige + o0 T Din, Wi,

The space of all possible multinomial probabilitie for J variables is the Cartesian
product of the M;. This is denoted by a direct sum, i.e.,

(2.2) M=M, oMo @My,

with,
M=1ILi+Ly+ - +Ly

coordinates.

Define a probability space (M, I, Pr), where F is a o-field of measurable
subsets of M and Pr is a g-complete probability measure defined for each set in
F. Let 8§ be the set of measurable functions mapping M to R! such as w(p)
below. Define Ly as the linear space spanned by p ¢ WM. Specifically, one can
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choose elements (profiles} from M), say, p', p=,..., p’* and weights, w, to generate
an element of Ly,
v = wlpl + wgp2 + - +prR

which can be extended to
Vi = f pu(p) vol(ah)
e

where dM is the differential volume element. To get Las we need a basis for M,
{pl,p?, ..., p"} and the w. Using the expression for v, we can substitute the
probability (Pr) for the volume in (M) to get,

(2.3) Lg = {,, P /Mpw(p)mdw}.

Lp is the reduction of Ly by F' and Pr to the minimum dimension necessary
to contain probability mass. Thus, Lp is the intersection of all {closed) linear
subspaces containing all probability mass. Deline the convex sct,

(2.4) B = Lg N M.

B is of most interest since it is a subset of M containing all probability mass
and often with reduced dimension. The objective is to analyze data subject to
the constrainl that the multinoial probabilities are realizations from B, An
acceptable model of heterogeneity will have a parametric structure within B. In
Section 3, we examine B.

3. Results on convex sets and polytopes necessary to construct a model
LEMMA 3.1. M is a polytope containing p.

Proor. Since each M is a polytope with L; extreme points, M has, at most,
L=T] ; L; extreme points. Let P be the polytope defined by the intersection of
supporting half spaces of the subsets of extreme points of M which define its facets.
Then, M C P {see Karlin and Shapley (1953)). For any p € P, define p; as the
vector made by taking elements numbered Efl;ll L, + 1 through Ef} 1 Llnofpin
order. Since P is a polytope, p € P may be represented,

L
p=> mp
k=1

where A* arc 1 x M vectors of extreme points of M and {az} is a set of barycentric

coordinates. The vector p; may he represented as p; = Ei"’:l aéj)yg) where
agj’) = p,x and ,ugg), k =1,...,L; arc basis vectors (as in (1)) &k = {1,...,K)

where the k-th element of uy is unity. Thus Zi’z 1o, =1and agcj ) >0 forall k
and j implying p; € M;, peM and conscquently, £ C M. This proves Lemma 3.1.
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CoroLLAarY 3.1. B is a polytope.

Proor. Since M is a polytope, and Lg a linear space, the result follows
because the intersection of a linear space with a polytope is a polytope (Weyl
(1949)).

COROLLARY 3.2. B is the convex hull of a finite number of unique extreme
vectors A, .. A, where (A = (M50 = 1,...Ly), 5 = 1,...,J0), for k =
1,2,...,K).

PrROOF. The proof follows from Lemma 3.1 (see Weyl (1949)}.

Corollary 3.2 suggests any element of B can be represented as a convex com-
bination of A* vectors. Explicitly, for any p in B there exists at least one vector
g="{g k=1,2,...,K)anch that g, = 0 for all k£ and >_, g = 1. The j,1 entry
of p is,

K
(3.1) Pt =Y oAy
k=1

The )\fz is the 4,1 entry of the vector A® given in Corollary 3.2 and are deter-
mined by Lg—not by the distribution of cases in the polytope. Specifically, the
distributions of outcomes with the sawe supporl have the same [B.

The set of all A;“l define M with L = Ly % Ly x -++ x L; extreme points and
M facets. By construction, if (3.1} holds, all outcomes are in B with probability
one. Heterogeneity in the data is determined by the distribution of multinomial
probabilities in B—in this case by Pr and F'. Different measures of Pr on F define
different models.

Discrete measures with all probability mass at known points )\fl, described by
cross-classification variables, are contingency tables that may be analyzed using
log linear regression {e.g., Bishop et al. {1975)). When all mass is at /\;-“, (i.e., gy for
all persons are forced to be 0 or 1 for one class), but the points are not described
by cross-classifying or exogenous regression variables, the unknown )\;-“l may be
estimated using LOM as mentioned in the intraduction (e.g., Lazarsfeld and Henry
(1968)). A more general model also has latent /\;-“l but, instead of requiring all
probability mass to be concentrated at K points, allows individual heterogeneity
by allowing the individual multinomial probabilitics to be distributed within the
convex set spanned by /\3?1. This model is described below and underlies the GoM
statistical model.

The random sample of N probability vectors, P, asympiotically defines B
as N increases. Let each realization p;, i = 1,..., N define rows of the vector Py.
For fixed N, Py is a random set. However, the sample convex hull of columns
in Pp, because it is random, and highly multifaceted, is not useful. Whether
the probability in M is contained in a few points, as in LCM, or is distributed
over a continuum (as in GoM), Py is rank Ky, where Ky is asymptotically the
dimension of L.
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Each point in B (or the asymptotic convex hull of Py) is a convex combination
of the unique extreme points )\fz. The matrix Py of vectors p in B may be
represented,

(3.2) Py = GnA,

where rows of A are vectors of extreme points of B. () represent coefficients, g,
guaranteed by Corollary 3.2 to represent each sample point as a convex combina-
tion ol extreme points in A.

Although the )\;-“l in (3.2) are unique, extreme points of the finite polytope, B,
the same may not be true for gi. Under certain conditions, (e.g., B is a simplex)
g, are unique barycentric coordinates with respect to extreme points /\}“l. N
is not a simplex, constraints may be required to identify the gt. One solution is
presented in Theorem 3.1.

THEOREM 3.1. There exists a triangulation of polytope B into simplicies
By, Bs,...,Bg each of which is the conver closure of o subset of extreme points of
B such that there exists a unique set of baryceniric coordinates with respect to the
Irisnguletion.

Proor. From the definition of convex sets there exists a set of sitnple cuts
of the polytope dividing the polytope into simplicies such that each p* € B either
lies in the interior of exactly one simplex or lies on the shared face of the two or
more simplices of the triangulation. Barycentric coordinates for points interior to
a simplex defined using only extreme points of the simplex are unique. A point
not in the interior is in the convex closure of two or more simplicies. For a fixed
triangulation the intersection of all simplicies containing p* (assuming two or more
such simplicies) is a face, Fp*. Fp*, is a simplex dcfined by the convex hull of
extreme points common to all simplices in the triangulation which contain p*.
Thus, p* is & convex combination of extreme points of Fp* and there 1s a unique
vector of baryeentric coordinates g(p) such that p* = 3", g.(p*)A*. This proves
the theorem.

Table 1 contains the )\fl estimates for several models applied to the example
in Section 6. In this example there were K = 11 corners to the polytope. The
different A%, estimates reflect different sets of model constraints. In one (ie.,
LCM), all g;x are constrained to be either zero or unity. In the sccond (basic
GoM} the g} vary between zero and unity and are constrained to sum to unity
for each person. In the third, a generalization of GoM, individual heterogeneity
may differ in responses to the j-th question. This heterogeneity determines how
informative a question was in defining a dimension of the solution.

4. Construction of a likelihood for a specific convex set (GoM) model
Let n = (n11,. .. 771, be the random vector consisting of M = }" L; nonneg-

ative random variables. Assume }:f’j 1m0 = 1forall 3. Let f(p) be the density of
7, such that the domain of f{p) is a subset of B. 1 we assume p* are independent
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realizations of 7 then the likelihood for ‘gi, i=1,2,..., has a set of parameters for

cach individual 4. This is the basic GoM parameterization. There is no constraint
on the terms of f{P) since its domain is necessarily a subset of B. The realization

P* of 7 are represented as P° = 3. gj A%, where the M%) parameters are fixed over
¢. In cssence f(P) induces a distribution on g;, & = 1,..., K, say H(g). Fol-

lowing Little and Rubin (1986) or Orchard and Woodbury (1971), the likelthood
in this case is formed by cvaluating the cxpectation by intcgrating out dH(g), of

ILTILG . q}c/\j“l)y;! The likelihood may not be identifiable if the random vari-
ables do not uniquely characterize a distribution. The issue of identifiability is

addressed in Theorem 4.1 (Woodbury ef al. (1994}).

THEOREM 4.1. The likelihood for the GoM form of a convex set model is,

) C= T/ (D) e
i il &

wheeh 45 wdentificble wn thot the A are unigue ond moments of § are unigue to order
J.

The proof of Theorem 4.1 is based on results for finite convex polytopes
(Brondsted (1983)). Before applying his results, we first need to demonstrate
Lemma 4.1 and Caorallary 4.1, Ag digsenssed in Theorem 3.1, any finite convex
polytope can be divided into simplicies such that each point in a simplex can be
represented as a convex combination of the extreme points of the simplex. The
coefficients of this convex combination arc unique barycentric coordinates with re
spect to extreme points of the simplex. There may be multiple such triangulations
which can be indexed as £ = 1,...,7. For any point p; in B define 4;; as the
vector of barycentric coordinates with respect to Lriaugulaiion L.

LEMMA 4.1, Let>, g}ckk be a conver representation of point p; where g?c are
scalars and Ay are row vectors. For triangulation t with barycentric coordinates
gtven by the row vector Bi, Bun can be uniquely represented as,

(4.2) B = GA,
where the i-th row of G, Gy, is the row vector of gk.

Proor. Let p; = Zg};)\k be represented by p; = 3 BitiAx with respect
to £. Assume p; is interior to one simplex of the triangulation. Gy will be zero
for k corresponding to extreme points not in the closure of the simplex. Let 5}
denote the row vector of nonzero 3y, Let G, be a row vector of g}.c arranged in
the same order. Define the matrix A with vectors A} as rows with the first rows
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of A corresponding to entries in J%. Assuwme the width of A (the length of the My
vectors) is 5. Let the length of 37, be u < s. Partition A as

)

where A Is 4 x s and is made up of u extreme points (A) of the simplex containing p;
for ¢. From results on polytopes if there is a simplex with barycentric coordinates
{3} for interior point p; then there is a permutation of columns of A such that,

(AL A
(5 5)

where A; is an # x u — 1 matrix such that the v — 1 x ¥ — 1 matrix A7 formed
by subtracting the last row of A; from every row of 4;, and then deleting the last
row, is nonsingular (see Brondsted {1983)).

For any i, define 3;; as the concatenation of 85 and a s — u row vector of
zeroes. Then,

(43) )8“ - [ ;E,O]A* — GIA*

. A
q'tAl = Gq‘. (Bi)

Define b;; as 3}, with the last column deleted. Define G as G; with the last
column deleted. The matrix B} ig formed by subtracting the last row of 4; from
each row of B,. From the constraint,

w 8
Zﬁz‘tk =1= Zgika
=1 k=1

Also,

we have,

A*
bitAT = G: (Bi)‘
1.

* A* *—
bu = Gs (B%)“AH 1-

For points p; on a face of a simplex, the proof is altered by considering each face
to be in exactly one simplex. The final fi;; in G}, is detormined by the convex
constraint. The row vector 3;; is as defined above. This completes the proof of
Lemma 4.1,

Since AF is nonsingular,

COROLLARY 4.1.  Given raw moments of any conver representation of points
in B, of order R or less, the moments of order R or less of F(-) are uniquely
determined with respect te a fized t.



CONVEX MODELS OF DISCRETE DATA 379

Proor. This follows from Lemma 4.1 by noting that each vector G; maps
uniquely onto the barycentric coordinates of the relevant simplex of the point.
Now we can prove Theorem 4.1.

Proor oF THEOREM 4.1. Since B is a finite polytope, there exists a tri-
angulation of B into simplicies which have no interior pnints in common whose
extreme points are a subset of the A. Define moments of f{-) with respect to a
fixed coordinate system, e.g., a specific triangulation of the polytope (see Theo-
rem 3.1). From Corollary 4.1, moments of f(-} arc uniquely specificd from the
moments of any convex representation of points in the polytope. By corollaries to
Lemma 3.1, extreme points of the polytope are also unique. Theorem 4.1 is shown
by taking expectations noting that the y;; are indicator variables (see Woodbury
et al. (1994)).

The importance of Theorem 4.1 is that although the representation of the p;
using a polytope is not necessarily unique, the polytope, as constructed above,
is unique. Additionally, moments of points p; relative to extreme points can be
uniquely defined relative to a fixed triangulation of the polytope.

Tolley and Manton (1992) show that if (4.1} is identifiable in A and moments
to order J, then maximum likelihood estimates of )\;ﬁ,, and moments to order
J of _gfc, are consistent. Hence, nnder Theorem 4.1, maximization of {4.1) gives
cansistent estimates of )\?l and moments of f up to order J.

5. A low dimensional geometric illustration

We have shown that if outcome probabilities were constrained to the measur-
able subspace resulting from the intersection of the polytope M with linear space
Lg, then all outcome probabilities are naturally represented as a convex sum of
the unique extreme points of the resulting polytope B. Coeflicients of the convex
sum may not be unique (depending on the relation of K to J) although moments
up to order J of f(g) are unique. The maximization of this likelihood produces
consistent estimates of both the )\;-“l and moments of f(p). Conseguently the model
can be used to fit p by say, p. We now examine the geometry of the constraints
on p in a low dimensional example. Suppose there are J = 3 multinomials, each
with two outcomes, e.g., sucecess and failure. Possible prohabilities for anteomes
of the three multinomials are represented by an unit cube (see Fig. 1).

The axes are labeled M1, M2, and M3 for the three multinomials. An individ-
ual with probabilities (py, ps, p3) for outcomes on M1, M2, and M3, respoctively,
represents one realization of £ and can be plotted as a point in the cube in Fig. 1.

To construct B we need L. The dimension of Lg, is implicitly dictated by
the probability distribution of ¢. Hence, only dimensions where f(g) Is nonzero
are included. If Ly is assumed to be a plane, Fig. 2 illustrates its intersection
with the cube. By assumption all multinomial probabilities are within the plane
segment in the cube. These are not outcomes of the three questions but are the
probabilities of response. This means that f(g) is such that all probabilities p;,
i = 1,2,3, calculated with realizations of £ using (4.1) lie in the plane. Although
each individual may have different probabilities of response, those probabilities



380 MAX A, WOODBURY ET AL.

.

Fig. 1. Depiction of the range nf probahilities for the three binomial sutcomes.

k‘k 3\

M3

Fig. 2. Picture of plan intersecting the unit cube. Corners of the pentagon, labelled
A1,..., A5, are the extreme points of the five sided polytope.

must lie in the plane. In Fig. 2, B is a pentagon oriented with a negative slope
toward M1 and M3. The X are the five corners of the pentagon as K = 5.

A convex polytope can be represented as the intersection of its defining half
spaces. For M in Fig. 2, (the cube)} there arc six half spaces (M1 > 0, M1 < 1,
M2 >0, M2 <1, M3 > 0, and M3 < 1). The pentagon, however, requires
only five constraints in the lower dimensional space Lg. The constraining half
spaces replace some of the defining hall spaces. For example, the M2 dimension
is bounded away from zero (so the My > {} constraint is not needed) whereas M1
and M3 are not. In general, the linear space Lg, imposes constraints on the P;.
Experience with a wide range of data indicates that, unlike Fig. 2, Ly is usually
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of much loser dimension than M.

6. Empirical application of the likelihood: estimation for a given observational plan

To estimate parameters, pi, must be related to ohservations y}; assumed to
be generated by a specific observation plan. Assume responses are conditionally
independent given g}, sincc it is possible to construct a model for which this is true
(see Suppes and Zanotti (1981)). To identify the space for pfﬂ, note M contains
images of the Radon-Nicodym measures in (M, |, Pr) producing a map,

Priw— ({pagw),l=12,...,L;},i=12,...,J).

For convex sets, the image on M can contain singular components. In a
simplex, singularities are eliminated. The expectation is (see (2.4)),

6.1 Bl = [ [iPro()
Using (6.1) the average profile p° is,
1 &L

The expected cross products define II, an M x M Gramian matrix, as

(6.3) - [ pparrlpl,
M
and, as can be shown (Woodbury et al. (1994)),
THEOREM 6.1, The rank of I1 is the dimension of B.

If B is dimension d, there are basis vectors V!, V2 ..., V¢ where, for every
p € B, there exists an unique set of coefficients 3,.(p) such that

an:l Bm(p) V™ = p. For coordinates V = (VL V2 ... VY, p o (Bulp), k=
1.2,....d), with Vi, an element in B € M. Thus,

| X 1
64 A 2k =5 = i 2
i=1 i=1
is consistently estimated, and defines a unique point in B. The elements of TT,

N
1 .
(6.5) Jim =S b, =TT,
i=1
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exist and have rank d if p;eB for all 4, (i =1,2,...,...). Since 'le are unobserved,
for § # r, assuming conditional independence,

N
. 1 . .
(6.6) Jim >yt =105,
1=1
and fOr J — r’
1SN,
(67) f\ll—zngo —ﬁ Z y;lly:‘s = p?,;ﬁ,gs 7’: H;g
i=1

Hence, the matrix of empirical second moments will not provide an estimate of II.
However, II can be partitioned,

mr e ... H].J

H21 HQQ . HQ.]
(6.8) Il = ; D : i

H:]l H.I2 e H:JJ

where IL;, = (TT) (0 = 1,2,..., L;8 = 1,2,..., Ly). 1115 is replaced by a matrix
with p%; on the diagonal (i.e., H;f,"" = &1p3,) then,

N
i . 1 o
(6.9) ;" = I\}Enm N Zyﬁ?}is-
i=1

Given V and 3, = B..(p*) for all 7, m, replace {6.4) by,
. a .
(6.10) Pa= DBV
k=1

and (6.5) can be written,

1 N K ) 1 a
(6:11) 5O Bt = Vi Y VIS 2 Bl
t=1 k=1 m=1 i=1

Since the limit for P exists as N — oo so does the limit on the right, ie., Il =
VBV" where B is symmetric and non-negative definite. Consequently, Il is
symmetric, non-negative definite and is of rank at most  since V is rank 4. II*
is not equal to II in the diagonal blocks because yj .!?J;'z' =0 for I #I'. The data,
however, can be used to estimate IT*, i.c.:

THEOREM 6.2. To estimate 11 from 11* it is sufficient that K < J/2 and

a non-singular submatriz of 11 of size K x K exists containing no elements in
diagonal blocks.
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IITMxM):M=5(n=2)

® . .
I, I, (O [e—y
r N .
I, I, (I
I,
I, |1, M,
. . )
I, (1, I
/' ] L] ]

Fig. 3. Schematic of IL

To prove Theorem 6.2, Woodbury et al. (1994) showed there exists a non-
singular K x K submatrix of Il, and II*, A and mappings ¥, and 1, such that 1/,
uniquely maps rows of A into rows of I, and . maps columns of A into columns
of TI. Rows of A have no elements in common with rows of A7 (otherwise an
element of A is in a diagonal block where II* # II}. No two rows of A are in the
same block of rows of IT and no two columns of A are in the same block of columns
of II. We can order variables so row blocks of I containing rows of A come first
and column blocks of II containing columns of A come last if K < J/2.

In Fig. 3, A and AT, indicated by dots, are non-singular, rank d. We wish
{I1i;}i # j to define I1;; uniquely, with rank d. Select an element in IT,; containing
no rows of A and no columns of A”. Enlarge A to A" where elements in IL;
defines additional rows and columns of AT. A™ contains only one element in IT;;,
and is a rank d, singular submatrix of IT of size (F 4+ 1) » {f + 1). All elements of
A7 are known except, /", Thus, A7 satisfies,

+ +
det [a?}A*] =0 but det [ iﬂrA+] = det Adet(a;f —af A7'a])

[
T TC T

and det A # 0. Consequently,
att =afA el

This defines Il;; except for d rows, onc in cach Il;; corresponding to rows of A4

and d columns in II;;, which are columns of A in II. But II;; = H;-{,;- so at most 2d

elements in II;; are not evaluated. If other d x d matrices satisfy conditions for A,

the number of vuidentified elements is reduced. These are in Il;. The principal
minor of I is 2d x 2d with diagonal matrices C, and C.,

. C, A4

bl

A" is rank K and size 2d x 2d with . and C. unknown. A non-negative, definite

M x M matrix can be transformed to a matrix with rank [2=1] or less with unique
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diagonal values (Albert (1944); Woodbury et al. (1994)). But M = 2d, so diagonal
values can be found to make the rank of A* at most [23-1]. But A" is of rank at
least d by containing the non-singular submatrix A of rank d.

7. Properties of the likelihood function
Suppes and Zanotti (1981) show, for discrete variables, latent variables can

be generated so that the .J responses are conditionally independent. Let g% denote
such latent variablea. Then,

L

(7.1) PriXi=al,j=1,2,...,J| gl = H rlXi =i | gi,

where the datd are parameterized by g} and A and Kois Lhe number of gis

i
needed for z* % to be independent. The conditional likelihood is,

r J K
(72) L;I’-:l_IlHZ ka .1' j
i=1ji=1k,;=1

The unconditional likelihood is derived from {7.2), using the law of total probabil-
ity, and integrating {gi} with respect to H, their distribution function. Tolley and
Manton (1992) replace g& by variables of integration ¢! (where &, > 0, >, & = 1)
producing,

SRR 1 9D ot o) | CB) SR )

ki—1hy—-1 bhy—17=1

and €8 = (€},...,€x)T. From Theorem 4.1, the £' are assumed to fall in B. The gi
are determined from a map of realizations ol £, For a lixed wap w € W from B o
{7 we determine a g for each realization of £. H denotes the induced distribution
function of g from w and F{p). If S; is the regular simplex defined by constraints
on &, the moments of order k, ug, of H, are,

(7.4 we= [ 1 st d7(s

131

where k = (ki ka2, ..., ky). The = (pg, (k1 =1,2,.. ., K), (ko =1,2,...,K),...,
(ky = 1,2,...,K)) are moments of H(g) and invariant over permutations of k.
Hence, (7.4) may be written,

N
(7.5) L= maka!
k

i=1
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where A¥(z?) = AF (z]) ® A2 (28) @ - - - @ AR (2%) is the Kroneker product )\f(:r;),
(j =1,2,...,J). Ais dimension K’ by L = Ly x Ly x -+ x Lj. The rank of
A is the product of the ranks of A; = ()\;.cl(l =1,2,.. L) (k=12 . K)}).
Denoting the rank of A; as R;, where R; < K and R < L;., the rank of A is the
product B x Re x --- x Rj.

Because }‘3‘.! are unique, moments of f(p), pg, can be unbiasedly estimatod
by estimating sample moments of g}, and transforming (Woodbury et al. (1994)).
Let p, be the vector of moments of g given a unique map of £ to the g;. De-
line a decomposition of A; (A% {l = 1,2,...,L;),(k = 1,2,...,K)) to eliminate
singularitics, i.e.,

A=Y PV e ® (U(J)IGT},
which can be written,
A=UPUP g UV eV e V])=UVT,

where U/ and V7 have maximum rank B; x Ry x -+ ¥ R; = R. The vector pg
is 1 x K7 but has at most R* = (J + K — 1)/ JI(K — 1)! distinct values due to
symmetries (Tolley and Manton {1992}). A is an R* x K” matrix with a one in
each column, with rank R" relating uj and p,. A is full rank and multiple row
entries correspond to identical rows of UU. Woodbury et al. (1904), show,

THEOREM 7.1. The unconditional likelihood with AX = (UVT), and A form-
ing pg and pg, 18;

(7.6) Ly = AUV ) (y)-

One could evaluate the multinomial likelihood in o more general form, i.e.,

, iy
Zk Qi)\?i a
>k T

(7.7) L= (

Which differs by the term >, (gL >, )\?1)3 ie., we drop the constraint,
> )\fl = 1. In this model }, /\fl is the weight of the variable on f,he K-th pro-
file. Ag thie approaches 0.0 the variable no longer contributes to Py through the
K-th profile. Thus, the model can fit the data with fewer dimensions by allowing

extreme points to have zero weight on irrelevant variables. This is one extension
of basic GoM.
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8. Example

To illustrate the GoM implementation of the convex set model we applied it
to a data set on nursing home residents in six U.S. states. For 4,525 residents over
age 65 in those nursing homes, 111 measurements were made to describe in detail
their health and finetional characteristics. The purpose of the data collection
was to assess the levels of different services delivered to specific types of nursing
home residents. One issue assessed was whether specific resident groups with
vory complex health problem received adequato levels and mixes of services. A
continuation of the study will examine differences in outcomes for nursing home
residents (Manton et al. (1995)).

To evaluate the 4,525 patients on Lhe 111 measures we used three models
which differ in how their membership functions represent heterogeneity. One model
not investigated was the log linear model for categorical data (e.g., Bishop et al.
(1975)). 1t was not possible to exploit such a large number of variables, or their
interactions, with those procedures.

The three models applied were a.) latent class model (LCM) given by
Lazarsfeld and Henry (1968), b.) simple GoM model given by {4.1), and c.) a
GoM model with heterogeneity allowed between variables given by (7.7). In LCM
the fundamental characteristic is that only one gt for each person is allowed to
be 1.0—all others are 0. Thus, in LCM the K groups are exclusively defined with
no within group heterogeneity. In the simple GoM model the gt is allowed to
vary over individuals so that an individual’s characteristics may he described as a
convexly weighted function of the As for more than one dimension. If, for a given
value of K, there is no significant within group variation, then the gis in simple
GoM will be 0 or 1 within the level of statistical precision. In that case LCM and
simple GoM describe the data equally well. The third model was an extension of
GoM where additional heterogeneity was represented by the differential weighting
of a variable by the term (gj 2=, A,) in (7.7).

In the analysis 111 variables were used. The difference in fit between LCM
and gimple GoM for K = 11 was highly significant (Wilson-Hilferty ¢ = 34.8)
so that the hypothesis that all g = 0 or 1 could be rejected, i.e., within class
heterogeneity was significant. The difference between simple and extended GoM
(Wilson-Hilferty ¢ = 135.7) was also highly significant, i.e., the hypothesis that
there were no differences in the weight of the contribution of individual variables
to the K dimensions was rejected.

Tn Table 1 we present A estimates for 22 of the 111 variables. These medical
conditions reflect typical differences in )\?I estimates for the three models. In
Table 1 we also present a column containing the proportion {%) of the sample with
an attribute. The solution for all three models used K — 11. The 11 dimensions or
profiles in Table 1 are, for convenience, labelied by identifying the variables with
the most salient )\fls for each. The Afs estimated for each of the three models
are referred to by LCM (latent class model), GoM I (simple GoM), and GoM II
{extended GoM). The values in parentheses are the weight (g} 3, A% = w;) of
each variable in defining a profile for extended GoM.

In lable 1, tor LCM, most ,\;‘l for all Ll dimensions were nonzero, i.e., all
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variables had effects on all 11 dimensions. Thus, the )\;‘I estimaled using LCM
did not highly discriminate the profiles. For example, arthritis (variable 1) was
reported by 30% of the sample. The )\;“l for LCM only varied between 20.2%
(profile 6) and 39.2% (profile 9). For seven of Ll profiles the contribution of
arthritis varied by only +20% of the sample proportion {(i.e., 30% + 6%). The
simple GoM, Aks range from 0.0% (profile 5} to 100.0% (profile 9). Thus, A%, for
simple GoM varied more across profiles—and better discriminated their substance.
For extended GoM arthritis contributed 100% to profile 8. For eight other profiles
)\f, = 0.0—but with a w;, # 0. The largest w; (6.94) was for profile 8 meaning
arthritis contributed most heavily to the definition of that profile. For two profiles
(7 and 10) w; = 0.0, i.e., arthritis did not provide any information to determine
those two profiles.

The patterns of the /\;‘-‘Js for each model for the variables in Table 1 were sim-
ilar. In LCM, because no within group hetercgeneity is represented, the Afzs tend
1o be less discriminating {i.e., closcr to the proportion of the sample reporting the
condition). The )\;‘Fl for GoM I are more discriminating, but there is still consid-
crable diffusiveness—especially for conditions where the proportion reporting the
condition in the sample is relatively large, i.e., the most frequent conditions. This
is apparently duc to the differential contribution of each variable to each profile,
Henece, in GoM II, where variables are differentially weighted, the )\?l profiles are
more distinct and we see which variables contribute most to specific profiles. In
some cascs (e.g., anemia; variable 2} the wy are all near 1.0—though the )\;-“l pat-
terns are distinct. In other cases (e.g., stroke; variable 9) the variable dominated
one profile (i.e., wyq is 3.81 on profile 1).

The GoM II results were used in two ways (Manton et al. {1995)). First, the
/\ffzs were examined by physician panels to identify categories of patients requiring
specialized health scrvices. Second, the 11 profiles were used to predict the actual
consumption of services by nursing home residents. In the first application the
analygis permitted more thorough examination of the inter-relation of the 111
variables than could be done by hand. In the second case there was considerable
variation in the types and amounts of services predicted used by persons in different,
groups.

9. Summary

A convex set model representing high (but finite) dimensional categorical
data is defined with an invariant metric. The intersection of the linear parameter
space Lg, and M, is unique if Lg is unique (Weyl (1049)). Ly is uniquely defined
by II estimates (for K <« J/2) derived from binary variables using a Nicodym-
Radon integral for expected values. The intersection of Lg and M is a convex
set, dually ropresented by extreme points and bounding half spaces (Weyl (1049)).
Model parameters identify the extreme and bounding half spaces of the convex set
B = Lg N M if valies of )\fz are nonnegative and bounded by 1.0 (i.e., they are
in M). This represents calegorical data by unique individual scores and exlreme
points.

The model is useful when a large number of discrete measures on heteroge-
neous populations are made, e.g., describing the health and functioning of elderly
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populations where individuals may have multiple medical conditions and physi-
cal, mental and sensory impairments. This was illustrated in an analyses of 4,525
nursing home residents characterized by complex health and functional states.
Extended GoM did better in deseribing the individual heterogeneity of health
characteristics than did two alternate models.

In such cases, the identification of latent homogeneous classes, because of the
high dimensionality of the data, suffers if large numbers of classes must be defined
with memberships too small to be stable. In extended GoM, convex weights are
used to represent individual parameters as combinations of a small number of
extreme profiles. Thus, the smoothing conditions implied by the Neyman-Pearson
lemma (see Keifer and Wolfowitz {1956} or discussion in Neyman and Scott (1948))
are derived, not by assuming homogeneous clagses, but by estimating weights in a
low dimensional sample space, i.e., by locating persons relative to extreme points
in the convex sets.
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