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Abstract. The differentiability properties of statistical functionals have sev-
eral interesting applications. We are concerned with two of them. First, we
prove a resull un asywnptotic validity for the so-called smoothed bootstrap (where
the artificial semples are drawn from a density estimator instead of being re-
sampled from the original data). Our result can be considered as a smoothed
analog of that obtained by Parr (1085, Stat. Probab. Lett., 8, 87-100} for the
standard, unsmoothed bootstrap. Second, we establish a result on asymptotic
normality for estimators of type T, = T{f?n) generated by a density functional
T =1}, fn being a density estimator. As an application, a yuick and easy
proof of the asymptotic normality of j ff, (the plug-in estimator of the inte-
grated squared density [ £?) is given.

Key words and phrases;: Smoothed bootstrap, differentiable statistical func-
tionals, bootstrap validity, smoothed empirical process, integraled squared den-
sities.

1. Intreduction

The idea of using the differentiability properties of functionals in statistics
goes back to von Mises (1947). It has become an clegant and unified methodology
which has proved to be partieularly fruitful in robust statistics (see, e.g., Huber
(1981), Hampel et al. (1986)). A major application arises in the study of asymp-
totic normality: assume that the estimators T,, = T (X1, ..., Xy) are genecrated
by a distribution functional T in the sense that T, — 7'(173,), where I4, is the
empirical distribution and 7 is a functional defined on a large enough space of
distribution functions (which includes the empiricals). Typically the parameter of
interest is T(F), & being the underlying distribution. Then, if T i8 differentiable,
one can establish the asymptotic normality

(1.1) Va(T(F,) = T(F)) — N(0,07), weakly,
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by performing a Taylor expansion of type
(1.2) V(T (F,) — T(F)) = linear term + remainder term,

where the linear term is asymptotically normal (from the central limit theorem)
and the remainder term is shown to converge to zero in probability.

Different concepts of differentiability have been used in this setting, although
all of them rely on the same basic idea indicated in (1.2). Some references are:
Boos and Serfling (1980), Fernholz {1983), Parr (1985), Clarke (1986), Shao (1989).

In Section 3 we will prove {(using Shao’s {1989) notion of differentiability) a
result (Theorem 3.1) of type (1.1) for plug-in estimators T}, = T'( fa) of a target
parameter T'(f) defined as the value of a density functional 7" at. the nnderlying
density f; here f, stands for a nonparametric density estimator of f (see, e.g.,
Devroye and Gyorfi (1985} or Silverman (1986) for background). Some examples
of interest could be the integral of the squared probability density, T(f) = [ £2,
the entropy B(f) = [ flog f and the curvature C(f) = [(f”)*. A quick and easy
proof of the asymptotic normality of [ f2 is obtained from our result (see Section 4
below).

Our second application of differentiability techniques has to do with bootstrap
theory; it is developed in Section 2. For the sake of clarity and completeness we
summarize below some relevant ideas on this subject.

1.1 Differentiobility and bootstrap: some background

In spite of the great success of Efron’s bootstrap (see, e.g., Efron and
Tibshirani (1993) and Hall {1992} for general overviews), the basic ideas behind
this methodology are not always well understood. Although the popular clichés
tend to insist on the resampling aspects, the essential feature of the method is
maybe better described as a plug-in idea: replacc everywhere the underlying dis-
tribution & by an estimate o

More precisely, if Xi,..., X, denotes a random sample from the distribution
F, the sampling distribution £(R) under F, of a statistic R = R(Xy,..., X3 F)

can be approximated by the bootstrap law L£*, which is the law under F, of

~

(1.3) R* = R(X?,... X F),

where X7,..., X* denotes an artificial (bootstrap) sample drawn from F.

Different types of bootstrap are obtained depending on the estimator I used
in (1.3). The most usual choice (standard bootstrap) is P = F, (the cmpirical
distribution). When F' is absolutely continuous with density f, there is another
natural alternative, called smoothed bootstrap, in which Fis a smoothed empirical,
Fy, associated with a density estimator of f, usually of kernel type,

ir2

Fultsh) = 3 Rt = X,

i=1

where h = h,, is the sequence of smoothing parameters or bandwidths, K is a
density function {called kernel) and K,(z) = b~ K (z/h).
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The notation fh will be generally used instead of fn(-;h). The bootstrap
samples drawn from the smoothed empirical Fj, are denoted by X?,..., X2. We
reserve the more usual notation X7, ..., X for standard resamples (obtained from
the empirical £, ). Observe that, in fact, the bootstrap samples, smoothed or not,
are a triangular array since the underlying distribution depends on n. This fact
will be made explicit in the notation, with a double subindex, when convenient.

Usually, the bootstrap law cannot be explicitly evaluated as a function of
X1,...,Xn, 50 it has to be in turn approximated by resampling from F. Some-
times, however, the exact bootstrap moments can be obtained: see, e.g., Marron
(1992), De Angelis and Young (1992). In any case, the use of bootstrap methods
requires the theoretical support of validity results showing that, at least asymp-
totically, the methad works. Results of this type have heen estahlished (always for
the case of standard bootstrap), among others, by Bickel and Freedman (1981),
Singh (1981) and, in the more general context of empirical processes, by Giné and
Zinn (1990). Their general form is

(1.4} d(L(R), L (R")) — 0 (a.s. or in probability}),

where d denotes a metric between probability measures whose associated conver-
genee coincides with (or is stronger than) the weak convergence. From now on, our
convergence statements of type “weakly, a.s. (or in prob.)” should be understood
in the sense of (1.4). Unless otherwise stated, the arrow — will denote convergence
as n tends to infinity.

'T'he idea of the smoothed bootstrap is not new: in fact, it is already mentioned
in Efron’s (1979) pioneering paper. However, the literature on this subject is not
very large. It concerns mostly to applications and comparisons with the standard
bootstrap. Some relevant references are Silverman (1981), Silverman and Young
(1987}, Hall et al. (1989), Wang (1989), Young (1990) and De Angelis and Young
(1992). In particular, Hall et al. (1989) show that the smoothed bootstrap greatly
improves the convergence rate of the standard bootstrap in the estimation of the
median variance.

We are not aware of general validity results of type (1.4) for the smonthed
bootstrap. This paper provides one of these results by using the differential
methodology for statistical functionals as outlined in (1.2). In fact, such a method-
ology applics to the case (very common in parametric inferenee) where the statistic

H to be bootstrapped is of the form
(1.5) R(X1,..., Xu; F) = /a(T(Fy) - T(F)),

where T is a statistical functional defined on an appropriate subset of the distri-
bution functions. Then, provided that the asymprotic normality (1.1) holds, a
validity result as (1.4) would be equivalent to

(1.6) V(T(F) = T(F,)) — N(0,0%), weakly, a.s. (orin prob.).

Some refercnces on this approach, applied to the standard bootstrap, are
Parr (1985), Shao (1989) and Arcones and Giné (1992}, In Section 2 below we
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obtain a result {Theorem 2.1) of type {1.6) for the smoothed bootstrap, that is,
F? is replaced by FY in (1.6). The proof is based on the use of the differential
methodology (along similar lines to those of Parr (1985)) together with a result
by van der Vaart (1994) about the distance between the empirical F,, and the
smoothed empirical Fj,. Lemma 2.1 in Section 2 can be considered as an auxiliary
result having some independent interest. It establishes the validity of smoothed
bootstrap for statistics defined as an average of the form >~ W(X;)/n. The result
for the ordinary sample mean {¥(x) = x) is trivial, but the general case requires
some conditions on U and f,,. Some applieations are briefly discussed in Section 4.

2. Smoothed bootstrap validity

Let us first establish some assumptions to be used below.
(KO) The kernel K is a density with fo uK (u)du = 0 and fj, [u>K (u)du < oc.
(K1) K is a bounded and symmetric density with f K*{u)du < oo,
(HO) The bandwidth h = h,, satisfies b — o{n=/4).
(¥0) ¥ is a bounded function with three derivatives ¥, 1 < § < 3, with T
bounded. Moreover,

{2.1) DyW(X)] — /I; ¥ (x) f{z)dzs = 0,
(2.2) 7 = BVX)] = Vi[¥(X0)] = | W) (a)ds < oc,
(2.3 B [82(X)]) < cc.

The following lemma will be used to handle the linear term in an expansion
of type (1.2) which allows to establish (see Theorem 2.1 below) the validity of
smoothed bootstrap. Moreover, this lemma has some independent interest since
it could be considered as a (smoothed) bootstrap central limit theorem.

LeMMA 2.1. Let fu := fo(t;h) be a hernel density cstimator bascd on i.s.d.
observations {X;} from a density f. Suppose (KO), (HO) and (¥0) hold. Then

i OGN T W)

(2.4) ﬁ(z ) — N{0,0%),  weakly, a.s.,

n n
and
LLU(xY . .
(M)W%ZﬂgLﬁwamnmﬂ)ﬂNmﬁL wealy, a.s.
R
where X{, ..., X2 denotes a bootstrap sample drawn from fr.

Proor. Denute by E°, D° the smoothed bootstrap mean and standard
deviation, respectively (thus, for instance, E*{¥(X?}] = [ ¥(z) fr(z)dz), and

Zin = B(X]) = B°U(X]) = U(X7) - T(X) - B (U(X]) - ¥(X)),
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(recall that the observations X are, in fact, a triangular array since X2 ~ f,).
We use Lyapounov’s theorem for triangular arrays (sec, e.g., Billingsley (1986,
p. 371)): denote S, = 30| Zin; if

2y FOllZin |**]

(2.6) mIi_)n}m RS ={, as. for some 6> 0,
then

Sn
(2.7) —— — N(0,1), weakly, as.

DO(S,)
We will check condition (2.6) for an arbitrary 6 > 0: since the Z;, are identi-
cally distributed for 1 <4i < n, we have
(2.8) > B\ Zin ] = nE |20 7)
i=1
Since ¥ is bounded, the sequence FEY[|Z1,]?T%] is also bounded and (2.8) entails
(2.9) N EYZi|PT) = O(n)  as.
i=1
On the other hand, the denominator in {2.6) is
(210) DD(Sn)Q—HS — VO(Sn)(2+5)/2 _ (nvﬂ(zln))(2+6)/2 — (nED(an))(2+5)/2‘

Since, from the law of large numbers, (1/n) 30 | ¥{(X;) — E;[I(X})] =0 as., in
addition to the fact that ¥ (and hence ¥?) are continuous and bounded and the
distribution given by f converges weakly a.s. to the one given by f, we have

lim E%(Z2) = lim [ (¥(z) - (X)) fulz)dz

n—o0 nooe Jp
— lim [ fR (U(z) W}fuz)dﬂ 2
- /R;xp?(x)f(x)dm - (/ﬂ_\;w(o:)f(x)da:)g —o? as.

Thus, (2.10} implies
DO(STL)Q-HS = O(n(2+6)/2)5 a.8.

S0, (2.6) holds and (2.7) follows. Moreover, since

Do
lim (5n) = lin EYZ2)'? =0 as.,
n—o0 \/ﬁ n—ow
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we have in fact proved that

(2.11) \/H(Z?—I‘D(X?)~ZT:13(X")) VREC(U(XY) - (X)) — N(0,07),

n

weakly, a.s.

Let us study the bias term; we perform a standard change of variable (z =
hu + X;) in each integral, together with a second order Taylor expansion (denote
by ¢; a point between X; and x):

212)  Jim VREC(XD) - WO0) = lim Vi ( [ @i - T00))
hm (fop(aa )= Kpl(z — 1)@;;:—@()())

T

_ nli—I»I;o\/ﬁ(i %\II(XZ-) + (/I; uzK(u)du) gg Z T2 (X;)
N % i]ﬂq;@)(gd@}{(u)du —WX))
i v ([ aeoa) 525 0cx

=1
+ lim vro(h?) =0 a.s.
L=+ 00

\ |

We have used the boundedness of 3 and the fact that [ |ul3K (u)du < oo to
ensure that the remainder terms, for every X;, in the Taylor expansions are uni-
formly bounded by a expression of type o(h2). So, their average is also o(h2).
Then, (2.12) follows by using nh* —» 0 (assumption (H0)) and

! i PO (X,) B U(X)] as.

Finally, (2.12) and (2.11) lead (by Slutsky’s theorem) to the desired conclusion
{2.4).

Remark 1. This lemma is conceptually related with the approach of
Silverman and Young {1987) and De Angelis and Young (1992). These authors
consider the bootstrap estimation (in the plug-in sense we commented ahove) of
linear functionals of type A(F) = [ ¥(z)}dF(z). In other words, they study the

properties of A(Fy) as an estimator of A{F), whereas our Lemma 2.1 provides
conditions under which the approximations

(2.13) LVR(A(F,) — A(F)) ~ L2(Vr(A(FY) — A(FL)))

and
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(2.14) LVA(A(F,) — A(F) = LO(VR(A(F,)) — A(F3))

hold. Thus, our conclusion (2.14) can be seen as a further result in the approach of
Silverman and Young (1987) and Dec Angelis and Young (1692). Note also that in
(2.13} the smoothed empirical F}, is used only for generating the artificial sample
whose corresponding empirical, FY, is plugged-in into A().

Remark 2. The validity of the smoothed bootstrap for the sample mean di-
rectly follows from the convolution structure of the smoothed observations: indeed,
X0 _ X7 + &, where the 2; ~ K, is independent of X}, and K = h_lK(}'l), K
being a density with mean zero and finite variance. Thus,

V(X0 — X) = n(X* — X) + ne.

The first term converges weakly a.s. {Bickel and Freedman (1981), Singh (1981))
to N (0,02} and /nZ — 0 in probability, whenever h — 0 (as n — 00): this follows
from Chebichev’s inequality since h — 0 if and only if the variance of Kj converges
to zero (recall that K is the density of AU where U is a random variable with
density K). Note that in this particular case the condition nh* — 0 is not needed.

Remark 3. Hypothesis (H0) in Lemma 2.1 imposes a bandwidth order of
type o(n=4/4), which is slightly smaller than the typical optimum (n™!/%) in den-
sity estimation {see, e.g., Silverman (1986}, p. 40). This comparison, however, is
not completely adequate since this optimum corresponds to a different problem:
the global {Ls) estimation of the underlying density. This is in the the same spirit
of De Angelis and Young's ({1992}, p. 48) remark: “..even if smoothing is con-
sidered worthwhile in the bootstrap estimation, the optimal amount of smoothing
will generally he amall compared to that appropriate for estimating the nnderly-
ing density”. In fact, the optimal bandwidths obtained by these authors for the
estimation of a wide class of linear functionals are of type O(n~*/?); they also
found, however, that the classical order O(n /%) turns out to be the optimum for
the bootstrap estimation of quantiles. The optimal smoaothing orders obtained by
Silverman and Young (1987) for some particular functionals of linear type, also
ralpe [ruin ”71/9 Lo ”71”5.

Let us finally mention that Hall et al. (1989) use a bandwidth of type O(n—1/5)
for the bootstrap estimation of the variance of the sample quantile.

Remark 4. As stated in Lemma 2.1, h, = o{n~/*) is just a sufficient con-
dition for the validity of the smoothed bootstrap, but one could intuitively expect
that some smallness requirement would also be necessary. The reason is that if the
bandwidth is very large, the kernel estimator is too far away from the sample as
to provide relevant information by resampling. The sample mean case considered
in Remark 2 would be an exception because, when using a zero mean kernel, the
estimator mean ([ zf,(z)dz) coincides with the sample mean, so that no bias is
introduced by smoothing.

Remark 5. Conclusions {2.4) and (2.5} can be seen as two different state-
ments of validity for smoothed bootstrap, where the centering values are the sample
mean and the smoothed sample mean, respectively. Only (2.4} will be used below.
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We next present the notion of Fréchet differentiability required for Theorem
2.1.

DEFINITION 2.1. Denofe by || - || the supremum norm defined on o space F
of distribution functions (which is assumed to include the empirical distributions).
A functional T defined on F s said to be differentiable at F € F if there ezists a
Junction ¥ : R — R {depending on F) such that

(@) — T(F) + fR W@)d(C@) — F@) 1+ o(lC FI), as |G F| 0.

Observe that the function ¥ (usually called the influence function of T at F)
is defined up to an additive constant. Thus, we may (and will) assume throughout
that {WdF = 0. The following result provides the asymptotic validity of the
smoothed bootstrap for distribution functionals.

THEOREM 2.1.  Assume that the distribution functional T is differentiable
(according to Definition 2.1) at an absolutely continuous distribution F whose
density f is continuously differentiable with bounded derivative. Assume further
that conclusion (2.4) in Lemma 2.1 is fulfilled, ¥ being the influence function
of T at F and 0 = [WdF. Let X?,...,X° be a sample drawn from a kernel
density estimator f;, = fn (t; h) (based on a sample X1, ..., X, of f) such that the
bandwidth h and the kernel K satisfy (HO) and (K0), respectively.

Then, the “bootstrap law” (under f,) of /A(T{F?) — T(F,)) converges (in
the supremum norm) to N(0,¢%), in probability, where F2 and F, denote the
empirical distribulions corresponding to the samples XP, ... VX2 and Xp,..., X5,

Proor. By using the differentiability condition of Definition 2.1 we obtain

(2.15) T(F,) = T(F) + jR U(@)dE(z) + o(|[Fy — FI)
and

(2.16) T(FY) = T(F) + /R U(@)dFO () + o | — F|).
So,

(2.17) VA(T(FY) = T(F,)) = Vi /R W(a)d(FO(z) ~ Fa(z)

+vno(||FY — FIl) + Vno(||E, — FI|).

Denote by Uy, and V;, the remainder terms in (2.15) and (2.16), respectively. By
Donsker’s theorem, we have

(2.18) Vnl[F, = Fll = Op(1).

Thus, \/nl, — 0, in probability.
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On the other hand, if we denote by F, the distribution function corresponding

to fh:
\/ﬁVn = O(An + B, + Cn):

where A, = Va|F2 — |, By = a|E, — F,|| and C,, = /n||F,, ~ F|. But
(2.19) A, is stochastically bounded.

This follows from Dvoretzky et al. (1956) inequality which implies /2| F9 — F|| =
Op(1), where Op(1) refers here to the conditional probabilities generated by the
bootstrap randomization (observe that F? is the empirical corresponding to F},).
Also,

(2.20) B, — 0, in probability.

This follows as a direct consequence of a result recently proved by van der Vaart
(1994). This author establishes (under conditions (2.22) and (2.23) indicated be-
low) that

(2.21) V| Ey — E,|| = op(1).

In fact, van der Vaart’s result is much more gencral since it holds (even for the
case of random h) in the broader sense of empirical processes when the supremum
is taken over a Donsker class: in our case it suffices to consider the Donsker class
of half-lines. Thus, the associated supremum leads to the norm || - ||, and van der
Vaart’s conclusion is exactly (2.21); the required hypotheses in this case arc (see
conditions {1.1) and (1.2) in van der Vaart (1994), keeping in mind that we assume
a deterministic h}):

2
(2.22) sup E (]R(I(—oc.a](X +4) = I o (_X})Kh(fu)dy) — 0,

acR

and

@28 spyalD f@ Uiy (X +1) —I(oo,auX))fmy)d-y’ o,
a&

Let us check that these conditions hold in our case (we denote by g, the probability
measure associated with K}, ):

2
sup £ (] ({(—o0,a] (X ty)— I(oo,a](X'J)Kn(dey)
acR 24

2
= gup [R (/I%(I[_m!a](m | %) I(_oo]a](x))dpn(y)> dI{(x)

aER.
aelR

. 2
= SUD/R (/R I —oora—a (W)dun (y) — I oo,a](fl’»‘)) adF(x)

aclh

= sup (f{ N }(,un(foo,a —2])*dF(x)
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— pp (00,0 — 2))2dF (z
+ f{m}“ i D)2dr( ))

a€R

~sup (/{m} (n(—00, 0 — 2] 2dF(z)

Since F' is absolutely continuous, for all € > 0, there exists & > 0 such that
it —s| < 6 implies P{[s,t]} < € (where P is the probability measurc associated
with F'). Also, from the weak convergence of u, to 0, it follows that there is
no € N such that for n > ng, pn,({—o0, —6] U [6,+00)) < e. Now the cxpression
above can be written as

=10} -0, a4 — 2 x
([ e = aE

—00. 0 — I 2
T /{ g (B0 2P

+ ] (pn(a -z, +OO))2dF(33)
{a—a>6}

= /{ PR CAEERED) dF(w))

<2 +sup{P{z: d<a—2<0}+P{e:0<a—u <)
a€R

= 2¢? + sup{P(a,a+ 6) + Pla — §,0)} < 26> + 2¢,
nEm

for n > ng.

With regard to condition (2.23}, van der Vaort {1094) shows that it is ful-
filled, under (K0) and the assumption imposed on f, when the bandwidth is
h = o{n=%/*). The reason is that the expression in (2.23) can be bounded by
O\/nh?E(U?), where C is a constant and U is a random variable with density K.
‘Thus the theorem in van der Vaart (1994) implies (2.20). Then, we conclude the
convergence (in probability) to zero of the remainder term /nV;, since C, is also
stochastically bounded by (2.18).

Recall, finally, that we have assumed the conclusion (2.4) of Lemma, 2.1, that
is, the linear term in {2.17) satisfies

n ¥

24 VA [ WaiFe) - By ) - vi (e e T
— N(0,0%), weakly, a.s.

Now the result directly follows from (2.17)-(2.24).
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Remark 6. It i3 worth noting that Theorem 2.1 could be adapted to the case
of random h. The method of proof would be essentially the same since van der
Vaart's (1994) result v/n| £, — Fy|| = 0p(1) also holds for the case of random h.
This extension is very important from a practical point of view since the bandwidth
h is empirically chosen (and, hence, it is random) in most cases. We have preferred,
however, to present Theorem 2.1 in the current simpler form.

Remark 7. An alternative way of proving the convergence to zero of term B,,
is by using Theorem 2.3 in Fernholz (1991). This result establishes «/n||Fn—Fn| —
0 a.s. by assuming that F is uniformly Lipschitz (i.e., |F{z} - F(y)| < C|z —y| for

some constant C) and [, Kn(u)du = o(n~%?), for some positive sequence
{Un} such that by, = o(n=/2). However, Ulis condition implies that i, = o(n=%/?)

which is much more restrictive than assumption (HO).
3. Asymptotic normality of density functionals

We now adapt Shao's (1989) definition of locally Lipschitz differentiability
to density functionals. This property will allow us to establish an asymptotic
normality result for these functionals.

DerFINITION 3.1. A real functional T, defined on o subspace D of the space
of squarc-integrable densities, is said to be locally Lipschitz differentioble at f € D
with respect to the La-norm (|| - |2) if

6D T=TH+ [ Vel - fa)ds+Ollg - 113)
os llg = fla =0, for geD.

In the sequel we will agsume that every density functional T is defined on a
large encugh subspace D {which includes all the required kernel density estimates
as well as the underlying density f).

THEOREM 3.1. Let T be a density functional locally Lipschitz differentiable
at a square-integrable density f, such that the function ¥ of (3.1) fulfils condition
(W0). Assume that

(D1) f has two continuous derivatives and f2) ¢ L;(R) {i.e., the second
derivative of f is square inlegrable on R).

Let fh = fn(t; h) be a sequence of kernel density estimators of f {as defined
in (1)), where ihe kernel K salisfies (KO) and (K1) and the banduwidil fulfils

(H1) h;' = o(n'/?) and h,, = o{n"1/%).

Then,

(3.2) VA(T(fa) ~ T(f) — N(0,0%)  weakly,

where 0? = I [W? (X)) = V;[P{X)].
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Proor. Since Ey[¥(X)] = 0, differentiability condition (3.1) implies that

(33)  AT(F) - T = v /R W () fr () = VRO( Fr — FI2).

We first study the main term

JREEr Z [ 3@ - X

In a similar way to that of expression (2.12) in the proof of Lemma 2.1, we use
the change of variable = hu + X; in the i-th integral as well as a sccond order
Taylor expansion to get

(3.4) /R @) fu(x)d Zf (wh | XK (u)du
= ; ()

+ 22 ([R uQK(u)du) (:;s i ‘I'(z)(Xi)) + o(h?).

=1

Again, the first-order term vanishes because [ wK (u)du = 0; the boundedness of
T3 entails that the remainder terms are uniformly bounded by a term o{h?) so
that their average is also o{h?).

On the other hand, the standard central limit theorem and the strong law of
large numbers yield, respectively,

1 O ,
(3.5) T Z U(X;) — N(0,6%) weakly,
and
nopx,
(3.6) \/ﬁfﬂw — 0, as.,

since /nh* — 0. Now, (3.4)-(3.6) imply
{3.7) e (] \Il(:g)fh(u:)dw) — N(0,0%),  weakly.
R

As for the remainder term in (3.3), hypothesis (D1) and the assumptions made on
K establish precise conditions under which the mean integrated square error

MISE(h) = Ey|ifn — fI3
has the usual structure

(3.8) MISE(h) = Oh*) + O(n~"h™),
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where O(h*) and O(n~'h™") correspond, respectively, to the bias and variance
term. This well-known result can be proved by a standard argument based on
Taylor expansions (see, e.g., Silverman ((1986), pp. 39-40}, Cao ((1990), pp. 32—
36)). A much more detailed analysis of the structure of MISFE(h) is carried out,
under supplementary assumptions, by Cao ((1993), Lemma 1).

By assumption (H1), the bias and variance terms in (3.8) are of type o{n™")
and o(n~1/?), respectively. Thus MISE(h) is also o(n"%?) and, by Markov's
inequality,

(3.9) Vallfu = F13 = op(1).
Finally, from (3.3), (3.7) and (3.9) we get (3.2).

Remark 8. Condition (H1) is fulfilled, e.g., by bandwidths of type h, =
Cn P, with % <p< %, which also fulfil condition (HOQ) in Lemma 2.1 and Theorem
2.1.

4.  Examples and final comments

In this section we present several applications of the previous results both
for distribution and density functionals. Finally, we provide some remarks on the
results contained in the paper.

4.1 Bootstrap velidity for M- and L-estimators

Shao (1989) provides conditions ensuring differentiability (as required in The-
orem 2.1} of the distribution functionals which generate the well-known M- and
L-estimators.

Let p(x,t) be a real function on R*. The M-functional 7' = T'(F) is defined
as a solution of

(4.1) '/Rp(:r;,T(F))dF(m) =mtin/[%p(m,t)dF(_m).

T{F,) is the M-estimator of T(F). Suppose that T(F} is the unique minimum of
(4.1) and for each t,

¢lw,t) = Op(z, 1)/

exists a.e. and ¢ is increasing in t. Assume that

9 ]R o )G ) /0t — fR Sl DdGL)

and that the function Ap(t) = [ ¢(z,t)dF(z) has positive derivative at T(F).
Assume further that either p is bounded or ¢ is bounded and continucus and Ap{f}
has a unique root. Denote by || - ||y the total variation norm (see, e.g., Natanson
(1961)). If there exists a neighborhood N of T(F) such that ||¢(-,#)||v < oo
for t € A and ||¢(-,8) — ¢(-, T(F))|ly — 0 as t — T(F) then T is differentiable
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according to Definition 2.1 as needed in Theorem 2.1; moreover, the influence
function is given by ¢(x) = —¢(x, T(F))/ N (T(F)).

The corresponding result for L-cstimators can be also seen in Shao (19893, Let
T be an L-functional defined by T(G) = [ 2J(G(2)}dG(z), G € F, where J is a
function defined on [0, 1]. See, e.g., Serfling (1980) and Lehmann (1983) for exam-
ples. I =0fort <aort>3,0<a< 3 <1 and.Jis bounded and continu-
ous a.e. (Lebesgue) and a.e. (F1), then T is differentiable as required in Theorem
2.1 and the influence function is given by ¥(x) = — [(Irz<yy — F (1)) J(F{y))dy.

Sa, the classes of M- and L-ostimators provide examples where Theorem 2.1
could be applied. Thus, this result would support the validity of asymptotic confi-
dence intervals or, in general, asymptotic inference based on smoothed bootstrap
resampling, under the appropriate conditions.

4.2 Asymptotic normality offfg

An important example of density functional is the integral of the squared
probability density, 7(f} = [ f2. It appcars in a number of interesting statistical
problems as, for instance, in rank-based nonparametric statistics. Some references
are Aubuchon and Hettmansperger (1984), Birgé and Massart (1995), Hall and
Marron (1987}, Prakasa Rao (1983), Sheather et al. (1994}, Wu (1995).

The locally Lipschitz differentiability of T at f follows easily from the identity
J{f—ag)2= {1+ 4% - [2fg, because this gives that

AQQ—AfQ——AZfQ+42fg+Jgflf%—./%Zf(gf)+0(llgf||§)

and so, the influence function is U(a) — 2f(z) —2 [ f2 (recall that W(z) is defined
up to additive constants and we take ¥ = 0). Thus, our Theorem 3.1 applies to
this functional, establishing its asymptotic normality.

4.3 Other norms

Note that Definition 3.1 of locally Lipschitz differentiability is given for the Lo-
norm but other choices as the L;- or the sup norms could be also considered; this
would allow to establish the corresponding differentiability and the asymptotic
normality for new density functionals. In particular, the L;-norm scems to be
specially suitable for this purpose because universal bounds for the Li-error are
available for this metric: see Datta (1992) and references therein, The entropy
plug-in estimator is a possible candidate to be considered in this framework.
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