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Abstract, Aliasing effects are investigated for spherical random fields sam-
pled on a finite grid. Using the spherical harmonics expansion, it is shown
that for a band-limited spherical random field its trend and spectrum can be
uniguely reconstructed from the sampled field if the sampling points are judi-
ciously designed. Analytical expressions are also obtained for aliasing errors in
the trend and the spectrum when the field is not band-limited.
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1. Introduction

Spherical random fields arise naturally in applications such as meteorology
when the surface air temperature is of interest (e.g. Bourke (1988); North et al.
(1992)). A spherical random field, denoted by T'(6,¢), is a stochastic process
defined on the unit sphere, with 6 € [0, 7) and ¢ € [0, 27) specifying the direction
ol a puint on the sphere (Jones (1963); Roy (1973, 1976)). It may be assumed
that T(8, ¢) has finite second-order moments and can be decomposed as trend plus
noise, so that

(1.1) T(#,¢) = ulb,¢) +€(0,9),

where p(f,¢) = E{T{8,$)} represents the deterministic trend and €(f,¢) the
random fluctuation with E{e(f,¢)} = 0. Under suitable conditions (Section 4),
Ti#, ) can he expressed in mean-aquare as a Laplace series

o)

(1.2) T0,0)=)_ Y Tan¥*(0,9),

n=0m=~n
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where the Y. (#, ¢) arc the spherical harmanics detined by

(1.3) Yo (0, @) = (—1)“*\/2”;1: 1(n—m)

: .
(n+m)! P (cos 8)e?,

with the P {z) being the associnted Legendre functions (Arfken (1970), Chap
ter 12). The Laplace coefficients T, in (1.2) can be obtained (in mean-square)
from the integral

T oplr
(1.4) Ton ::/ / T8, )Y, (8, ¢)d¢ sin 6d8,
o Jo

where the asterisk * stands for complex conjugate.

Through the transformation that consists of (1.2) and (1.4), various aspects
of the field T'(8, ¢), such as the global average, can be investigated on the basis of
the Laplace coefficients T),,,, (e.g. Bourke (1988); North et ol. (1992)). In practice,
however, measurements of 7(¢, ¢) can only be obtained from a finite number of
locations, so that the integral {1.4) has to be replaced with a finite sum that
depends only on the discrete measurements (e.g. Bourke (1988)). This gives rise
to the aliasing errors as they may occur in the Fourler analysis of univariate
processes (Hannan {1970}; Papoulis (1977)). In this article, we are concerned with
the analytical expressions of the aliasing errors for some sampling schemes as well
as the conditions under which the field 7(@, @) can be uniquely determined from its
samples (Section 2). We arc also interested in the aliasing errors associated with
spectral approximations when the spectral analysis of T'(f, ¢} is restricted to the
finite aamples {Sectinm 3). Tt is shown in particular that hand-limited spherical
random fields can be uniquely reconstructed from their discrete samples if the
sampling points are judiciously designed.

2. Aliasing in Laplace coefficients

To study how the aliasing problem oceurs in the Laplace coeflicients when the
field T{4, ¢) is sampled at a finite number of locations, let T{8y, dp), k=1,..., K,
be the samples from T{6,¢) and T, be the approximated Laplace coeflicients
obtained by replacing (1.4) with the finite sum

K
(2.1) Trnn — Z wkT(Ok, {ﬁk)}/?:n*(g;c, {ﬁk) sin Ogc,
k=1

where w, > 0 is a weight function.

Assurmning the Laplace series (1.2} converges at (O, ¢x) to T(#i, ¢x) in mean
square (see Section 4), one can substitute T'(0y, ¢ ) in (2.1) with the series in (1.2)
so that Ty, can bo cxpressed (in mean squarc) as

22) T =30 D7 dim.ns w0}

=0 u=—uv
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where

(2.3) d(m,n; u, v) Zka“(Bk,qﬁk)Ym*(Hk,gbk)sinHk.
k=1

Clearly, in order for the identity T = Tin to hold for all (m,n) and for any
T{4,$), 1t is necessary and sufficlent that d(m,n;u,v) be a Kronecker delta,
namely, d(m,n;u,v) = b wbn_n, where & = 1 and &, = 0 for v # 0. Since
d(m, n;u,v) is not a Kronecker delta in general, it is possible that the series {2.2)
involve not only 4;,, but alse some other /., and thus the aliasing errors occur,
with those Ty, being aliases of T)y,,,. Note that the relationship between Tyun and
T depends on the sampling points (6, ¢x). In the following, a special sampling
scheme is discussed with great detail.

2.1 Sampling on finite grids

To be more specific, consider sampling the field T(8, ¢) on a finite grid of the
form (6,,¢,) for p=10,1,...,N—1and ¢=0,1,...,2M — 1. In this case, we can
rewrite (2.1) as

=

-12M-1

(24) Tmﬂ = Z Z "UgwﬁT(Qm Cf’q}Yﬁn* (9}}7 ¢q) Si‘[l@rw

p=0 q=

c

where wg > 0 and w} > 0 are suitable weights. Similarly, we can rewrite (2.3) as

N-—

(2.5) d(m,n;u,v) Z Z 'w Y (Op, pg) Y, (8, ) sin 8y,
p=0 g¢=

= CrnnCuuw I (1, 0) T (),

where

Conn 1= (~1)m¢2”Jr 1{n-m)!

dr  (n+m)l’

IN (u,v) = wBP“(cosﬂ i (cos fy) sin b,
p

2M -1

) — Z wéﬁei(u—m)gbq_

g—0
In particular, let the sampling be uniform with respect to ¢ so that
(2.6) Pq = gn/M  and wg’ =T/ M.

Since JM(u) = 27 if u = m + 2rM for some integer r and JM {4} = 0 otherwisc,
it follows from (2.4) and {2.5) that

(2.7) = Z Y 20CnCrsarat oI (m + 20 M, 0) T v,
u=0 [RJVI( )
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where, for fixed v 2 0, Ry (v) := {r : —(v + m)/(2M) < 7 < (v — m)/(2M)} is
the set of integers r for which |m + 2r M| < v. Further, since the parity relation
Pl(—~z) = (-1)**"P¥(z) holds for any v and v (Arfken (1970}, p. 561}, the
function G(#) := P¥(cos 0) P*{cos §) sin § is symmetric about 7 /2 in the sense that
G(m —0) = (-1)*++™+2G(0), Therefore, if the sampling in £ is also symmetric
about 7/2 so that

(28) Qp:ﬂ—_Hprfl (p:(]ﬁla""[N/2D3

it is easy to see that I¥, (u,v) = 0 whenever v+ v + m + n is odd; this implies,
in particular, that IN (m + 2rM,v) = 0 for any v = n + 25 + 1 with s being an
integer. (The results are not altered by including # = 0, the north pole, into the
sampling points.) Combining this with (2.7) gives rise to the following theorem.

THEOREM 2.1.  Suppose the sampling points {8,,¢,) are given by (2.6) and
{2.8). If the Laplace series (1.2) converges in mean square to T(Bp, pg) at By, dy),
then the approzimated Laplace coefficients Ty, defined by {2.4) can be written in
Mear square as

(2.9) Tmn = Z 27 Cm Cm+9TM,ﬂ+Q,J£Xn (m+2rM,n+ 28) Ty 22s,msas

(""53) ED%n

where DM — {(r,s) 1 —n/2 < 5 < oo, —(n +m+2s)/(2M) < v < (1 —m+

28)/(2M)}.

As we can see from (2.9), with the sampling points satisfying (2.6) and (2.8),
the aliases of Tiny, in the expression of T}, consist of all Laplace coefficients of the
form Tprornrnyes With (r,5) € fon \ {0,0). Figure 1 depicts a subset of possible
aliages in the case of M = 3, where identical symbols represent the locations of Ty,
in the (m,n)-plane that are possible aliases of each other. For example, all Ty
located at “0" are possible aliases of each other in general and of Tpo (the global
average) in particular. Note that without further restrictions on 8, the period of
aliasing in coordinate n always equals 2 regardless of the sampling rate N in 6.
For example, all Laplace coefficients Ta,as,0. with s = 1,2,... and |r| < [¢/M]
(represented by 1) may have contributions to the aliasing errors in Thy no matter
how large N is. This is true in particular when the sampling in 8 is uniform with
B, —m{p+1)/(N+1)for p=0,1,...,N 1.

2.2 Gaussian sampling theorem

To further reduce the aliasing effects, consider the following Gaussian sam-
pling approach {e.g. Bourke (1988)). The Gaussian sampling approach in this
article should not be confused with the sampling approach using random sam-
pling points that obey a Gaussian distribution. T'he word “Gaussian” refers to the
Gaussian quadrature for numerical integration (e.g. Stoer and Bulirsch (1980)).
Let zp, for p = 0,1,...,N — 1, be the roots of the N-th Legendre polynomial
Pn(zx) := Pg{z). Due to the parity relation Py{-x) = (~1)" Py (), the roots
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Fig. 1. Aliasing effects in Tan when M = 3 (N arbitrary): Coordinates of possible

mutual aliases are represented with identical symbols.

can be arranged in symmetry so that z, = —zy_, 1. Let T'(0, ¢) be sampled with
respect to 8 using the sampling points

(2.10) Oy :— arccos(ap) (p—0,1,...,N —1).
The weights wg in Gaussian sampling are taken to be
(2.11) wg =Wy/sinéy, (p=0,1,...,N -1},

where the W), solve the (non-singular) system of linear equations
(2.12) > Pelap)W, =26 (k=0,1,...,N—1).

Note that the Gaussian sampling points #, in (2.10) satisfy the symmetry require-
ment (2.8). Table 1 gives some values for zp, #,, and wa (Stoer and Bulirsch
(1980)); for further values see Abramowitz and Stegun (1964)
With the choice of (2.10)-(2.12), a theorem due to Gauss (Stoer and Bulirsch
(1980), Theorem 3.6.12) states that
{a} the weights W, and hence wg1
(b) the identity

1
E w P(costy,)sinb, —g WoP(x,) = / P(z)dx
-1

p_

are strictly positive;

holds for any polynomlal P{z} of degree strictly less than 2N.

This theorem plays a crucial role in the evaluation of 12, (m+2rM,n+2s). In
fact, since P(x) := P”fr)%TM {x)P™(x) is a polynomial of degree 2{n + s), therefore,
with —n/2<s<N-nand0<n<2(N - 1), the Gauss theorem leads to

(2.13) Ign(m +2rM,n 4 25) = f PT’LT;ETM (z) P {x)dx
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Tahle 1. (Gaussian sampling points and weights.

N wg T By

1 wy =2 o =10 B =7/2

2 wy = wy = 1.2247449 xo = —x1 = 0.5773503 Oy = 0.9553166, 61 — 2,1862760

3 wg = wa = 0 K/T7RATNOR mg = —mg == 0 .774RA67 Ao = 0.6847192, 84 = 2.4568735
wy = 8/9 x =0 £, =m/2

4 wop = wy = 0.6842497 1= —z3 = 0.8611363 I = 0.5332957, #; = 2.6082970
w) = wgz == 0,6034525 xr) = w2 = 0.3300810 8 = 1.22389G6, 0; = 1.0176931

5 wo = wq = 0.5602532 g = —x4 = 0.9061798 6y = 0.4366349, 04 = 2.7049577
wy = w3z = 0.5680074 o1 = —x3 = 0.5384693  6) = 1.0021768, 83 = 2.1394158
wy = 1287225 Tz =0 9 = w/2

The orthogonality of P™(xz) further implies that

1
(2.14) IN (m,n+28) = o 0 (—n/2<s <N —n).

mn

Therefore, for ¢ < n < N, the Gaussian sampling scheme annihilates all aliases
of Trnr in (2.9) that correspond to r = 0 and —n/2 < s < N —n (s # (); the
remaining aliases Ty orn ni2s, With (1, 8) 7 (0,0), are separated from Ty by a
distance of D = 24/r2M?2 4 s2. For r # 0, we have D > 2M; for r = 0, we have
D > max{2,2{N — n)}, because possible aliases T}, p42, occur only if s > N —n
and s # 0.

As an example, consider the case where m =n =0and N = M. It is readily
shown from (2.9) and (2.14) that

s/M]

!
Too = Too + Z Z QWCOOC2TM.2::I[%(2TM= ZS)TQTM,Qs-
s=M r=—[s/M]

Clearly, if Ton. = @ for any (m.n) with n > 2M, then the Gaussian sampling
scheme leads to Tpy = Tpg. In this case, the global average Tpg can be obtained
without aliasing error from the discrete (Gaussian) samples T'(6,, ¢,). However, if
the T,,,, do not vanish for large wave numbers, then, in general, nme nanmot abfain
aliasing-free Tyo with the Gaussian sampling, regardless of the sampling rate N.

For a given pair of integers Ny > My > 0, a random field T(8, ¢) is said to
be band-limited with bandwidth (Mg, Ny) if T(6, ¢) can be written as {1.2) with
Trn = 0 almost surely for any (m,n) such that [m| > My and/or n > Ny. In
practice, band-limited fields can be regarded as approximations to the fields whose
Laplace coefficients T, decay sufficiently fast as the wave number n grows (e.g.
North et al. (1992)). The following theorem states that a band-limited field is
alias-free in Ty, and can be perfectly reconstructed from its Gaussian samples if
the sampling rate is sutliciently high.
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THEOREM 2.2. Suppose a random field T(0,¢) is band-bmited with band-
width (Mo, Ny) and the Tonn in (2.4) are obtained from T{(y. ¢4) by Gaussion
sampling with M > My and N > max{Ng, M — 1}.  Then, (i) the identily
Ty = Tmn holds almost surely for all (m,n) € Quwn = {{myn) 1 0 < n <
N,|m| < min(M,n)}; (ii) for any (M',N') satisfying M > M' > Mg and N >
N’ > max(Ny, M"), the random field T(0,¢) can be reconstructed almost surely
from the samples T(0,, ¢q) according to

N—-12M~1
(2.15) T(0,0) = > > whwdl' (O, dg)Kar v {8, ¢50p, ¢q) sinop,

p=0 g=0

where Kypne (8, 0,8, ¢") is the reconstruction kernel defined by

(2.16) Ky (0,6:0, 0y = > Y(0,8)Y," (0, 4").

{mn)eQyp ap

In the special case of M’ = N', the kernel can also be expressed as

Al 2n+1
(2.17) Ky (0,6:0',6") := 3 =~ Pulcosn),
n=0

where v € [0,7] is the angle that separates the directions (6,¢) and (¢#',¢") in
the spherical coordinate system and can be obtained from cosy = cosfcosf’ +
sin @ sin & cos{¢ — ¢').

PrOOF. Since T, = 0 for any |u| > M > My, it follows that T 1o nrni2s =
(0 for any r # 0 whenever |m| < M; further, since T,,, = 0 for any v > N > Nj,
one obtains T, 2, = 0 for any & > N — n whenevar n < N. Combining these
results with (2.9) and (2.14) leads to Ton = Tynp for any {m,n) € Qurn. To prove
(2.15), it suffices to note that (1.2) can be rewritten as

TEo) = Y TV 0.9)

(S8 g g

With Ty in this expression replaced by (2.4), one obtains (2.15). Finally, accord-
ing to the addition theorem of spherical harmonics (Arfken (1970), p. 581),

(2.18) P, (cosry) = Z Y8, )Y (0, )

2n+1
n

AT . m s
IR AN () S TIN5 )

T ont1

=17

This, combined with the fact that Qn/y = {{m,n) : 0 < n < N',im| < n},
implics that Ky:n (8, ¢; 8, ¢) reduces to Ky (0, ¢; 8, ¢") as defined by (2.17). 0
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With the Gaussian sampling scheme, it is easy to show that

N—-120M—-1
(2.19) 3D WY (O da) Ve () bg) = bu by m

p=0 ¢g=0

for any (m,n),(w,v) € Quny because the sum can be written as
Crin Con I {2, v)JM (1) which in turn equals §y—pndyp, for (m,n), (u,v) € Qun.

TR

3. Aliasing in spectra of homogeneous fields

Since the field T'{#, #} has finite second-order moments, the correlation struc-
ture of T(#, ¢) can be described by its covariance function defined as

R(0,¢:0',¢) i BT (0, ¢) — u(0,6)) (T, ¢") — (0", 1)}
= E{e(6,¢)c(¢', ¢}

When the covariance function depends only on the angle v € [0, 7] that separates
the directions (8, ¢) and (¢, ¢') in the spherical coordinate system, the field 7(8, ¢)
is said to be homogeneous {isotropic) in covariance, or simply homogeneous; in
other words, for a homogeneous ficld T(8, ¢}, the covariance function R(6, ¢; 8’ ¢')
becomes

R(8,$;6',¢") — o p(cos ),

where 02 := R(, ¢; 0, ¢) is the variance of T(#, ¢) and p(z) is called the correlation
function of T(#, ¢). (Note that [p(z)| < p(1} = 1.) For a homogeneous field, its
correlation structure is invariant under any rotations of the sphere (Hannan (1970),
p. 99).

3.1  Spectral representotions
Since |p(z)] < 1 for all z € [~1,1], one can always define the power (or
variance) spectrum of the field T(0, ¢} as

1
(3.1) poi= [ p@iPue)ds =01,

-1

upon assuming that p(x) is Lebesgue measurable (see Section 4). It is not difficuls
to show, by appropriate variable substitutions (Hobson (1955), p. 342), that

P = / P08 ) Pa(cos ) sinydy
0

T 2w ks 2
= % / ] {/ / pleos v P, (cos~y)dg sin 9(1’9} dgy’ sin 6'd#
T Jy Jo 0 Jo

This, combined with (1.4) and (2.18), yields p, = Var{T,..}/(2rc?) > 0 for any
(m,n), where Var{-} represents the variance of a random variable,
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Assuming the sequence {np,} is summable {Roy (1076)), one can also expand
o{z) for x € [-1,1] as a Legendre series

o

(3.2) ple) = 3 o Pala),

n=0

whose uniform convergence is ensured by the fact that [P(z)] < 1 for all z €
[-1,1). According to the addition theorem (2.18), one can further write

oC n

(3.3) plcos) Z 27, Y™ (6, §)Y (0, )

-3 z 2 p Y7 (0,00, 4.

=0m—=—n

Both (3.2) and (3.3) may be called spectral representation of p(cos~).

Let pmpn be the Laplace coefficients of 1(4, ¢), as defined by (1.4) with u(6, ¢)
in place of T'(8, ¢). 1t is cvident that piymy, = E{T;.n}; further, using (3.3} and the
orthogonality of the spherical harmonics (Arfken {1970), p. 572}, it can be shown
that

(3.4) COV{Tmn, Tu'v} = E{ mn /"‘mn)(iju - .u':w)}
— QTHT pnﬁn v&vnfu-

Therefore, for a homogeneous field 7'(8,¢) with {np,} being summable, the
Laplace coefficients T, are uncorrelated with mean ji,, and variance 272 py,
(Jones (1963); Hannan (1970); Roy (1973, 1976)). In addition, if T8, ¢) is
Gaussian, then the T, are Gaussian and mutually independent (Roy (1973)).
The Laplace series (1.2), if converges in mean square, can be regarded as a decom-
position of T(8, ¢) into a sequence of uncorrelated random variables that retain
the spectral characteristics of T{#, ¢) in their variances by (3.4}; thus (1.2} can be
called a spectral representation of the random field T°{9, ¢).

3.2 Aliasing effects in spectral approzimaltion

Suppose the homogeneous random field T(8, ¢) is sampled at (85, 0,4), (P =
0,1,....N—1;g=0,1,...,2M -1}, and that the integral (1.4) is replaced by the
finite sum (2. 4) where the $q and w¢ are given by (2.6) and the 8, satisfy (2.8).
What we are concerned with in the followmg is how the aliasing errors occur when
the average

n

1 1
[ B = —
(8:5) P a1 Z_ 2ro?

m }

is employed to approximate the spectram py, = Var{Tmx.}/{270?).
To investigate the aliasing errors in jy, it suffices to quote Theorem 2.1. In
fact, according to Theorem 2.1, equation (2.9) holds in mean square wheu the
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lLaplace series (1.2) converges and when the sampling is on a finite grid defined by
(2.6) and (2.8). Since the random variables To,orarn12s are uncorrclated with
Var{Timtoritnt2s} = 2702 pptas, as shown in (3.4), it follows that

fo o]
(3.6) Var{Tyn} = 2ro” Z QMN{n +28)pny2e,
PP
where
(37) Qi‘ff (’U) = Z 47T203n71,07'2n+2r]\1’,u {Iﬂn(m + QTAJ: U)}z'

rERY (v)

The next theorem is a direct consequence of (3.6) concerning the aliasing errors in
ﬁn-

THEOREM 3.1. Let the random field T(6,¢) be homogeneous and the se-
quence {npn} be summable. If (1.2) holds in mean square, then, with the sampling

points (0, ¢q) satisfying (2.6) and (2.8), the approzimated spectrum pn w (3.9)
can be written as

(= ]

{38) ﬁn = Z AQJN(R + 25)pn+2sa
s=—[n/2]
where AMN (v) is defined by
/ 1 - ,
3.9 MN = MN
5.9 A = g 3 Q)

with QMN (v} given by (3.7).

As we can see from (3.8), the aliasing period in p, eguals 2 regardless of M
and N because the aliasing cocfficients AMY (n + 2s), (s # 0), do not vanish in
general without further restrictions on the sampling peints 8,,. For example, with
M — N and n — 0, equation (3.8) becomes

(3.10) o =pa+ > AN (28)pss
s=1
where A (25) := AN {2s) can be expressed as

ls/N]
Af(2s) = Y7 AnCH 05 N s (T (2r N, 26)}°.
r=—[s/N]

The second term in (3.10) defines the total aliasing error in . To investigate the
contribution of different wave numbers to the total aliasing error in (3.10), the
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Fig. 2. Aliasing coefficients A} {») in the approximated spectrum Jp nusing the
Grauseian sampling schemeo: (o) M = N = 3; (b) M = N = §,

aliasing coefficients A} (v) are plotted in Fig. 2 against the wave number v for the
Ganssian sampling scheme. Note that A} (0) = 1 and 4) (2s—1) = Oforalls > 1.
With Ganssian sampling, we also have A} (2¢) =0 for s — 1,..., N — 1. Figure 2
also reveals that the nonzero aliasing coefficients tend to increase in magnitude
as the wave number grows and decrease in magnitude as the sampling rate N
INCreanes,

3.3 Guaussian sampling theorem

A homogeneous random field 1'(¢, ¢) is said to have a band-limited spectrum
with bandwidth N if p, = 0 for any n > N,. For such a field, the next theorem
guarantees the elimination of aliasing errors in g, when the Gaussian sampling
scheme is employed.
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THEOREM 3.2.  Suppose the random field T(8, ¢) 15 homogeneous and has a
band-limited spectrum with bandwidth N,. Let the samples T'(6,, ¢,) be obtained
by Gaussion sampling with N > M > N,. If the Laplace series (1.2) converges
in mean square, then the identity Var{Tym,} = Var{Tim,} = 2na%p, holds for any
(m,n) € Qun 80 that pn = pp forn = 0,1,..., M. Further, if p, in (3.5) is

replaced by
Mnn

1

T

Pl = s )
(M A TL) +1 m=—{MAnR)

where M An := min{M,n), then the identity p¥ = p, holds forn =0,1,...,N.

In both cases, the correlation function p(x) can be perfectly reconstructed from py,

or pM using equation (3.2).

mn}:

Proor. First, the band-limited property of spectrum ensures that prn40, = 0
for s > (M — n)/2. Turther, with (m,n) € Qun and —n/2 < s < (M —n)/2,
it is easy to show that R (n + 2s) = {0}. This, combined with (2.14) and (3.7),
leads to QMN(n + 2s) = &, for —n/2 < s < (M — n)/2 and {(m,n) € Qun. The
assertions follow immediately from (3.6) and (3.8). LI

Note that Theorem 3.2 does not require (6, ¢) = E{T(f,¢)} to be band-
limmited since the spectrum is the only consideration there. Ilowever, if the field
T8, ¢) itsclf needs to be reconstructed, a band-limited u(#, ¢) is desirable. This
gives rise to the next theorem.

THEOREM 3.3. Suppose that T(0,¢) is a homaegeneous field of the form (1.1),
where u(6,¢) is band-limited with bandwidth (M,, N,) and €(0,¢) has a band-
lirited spectrumn with bandwidth N,. If the samples T(0p, ¢q) wie oblained from
Gaussian sampling with N > M > max(M,, N, N,), then, for any (M', N’} sut-
isfying M > M’ > max{M,, N,) and N > N' > max(N,, M'), the reconstruction
equation (2.13) holds with probability one.

PROOF. Let the right-hand side of (2.15) be denoted by T{(6, ¢) = ji(6, ) +
€(8, ¢), where 1(8, ¢) and (6, @) are the resulting fields when 7'(6,, @) is replaced
with p(8,, ¢,) and (8, ¢,), respectively, on the right-hand side of {2.15). Applying
Theorem 2.2 to (8, ¢) vields p(f,¢) = i(f,¢) and hence 1'(9, qﬁ) ~(15? @) =

c(0,¢) — €(0,4). Therefore, it suffices to show that E{(e(8,¢) — &(8,¢))*} = 0.
To this end, one can combine the expression of €(4, ¢) with (2.16), (3.3), and the
band-limited property of g, to obtain

E{e(0.0)e0,0)} = ) Y. Y00V, (0 0)
(mnYEQ yp pr (w,0)EQ pyr e
N-12M-1
XYY wpwd Y {0y, 64) Y, (O, dg) sin by,
p=0 g=0

This, according to (2.19) and {3.3), reduces to
S 2m0?p Y0, 6V (6,4) = a%p(1) = .

(m,n)EQMrN;
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Similarly, one obtaing F{&*{(8,¢)} = ¢2. The proof is complete upon noting that
E(X(8,8)} = Var{T(6,¢)} = 0.0

As a by-product of Theorem 3.3, the following corollary establishes the equiv-
alence between having a band-limited spectrum and being band-limited.

COROLLARY 3.1. A zero-mean homogeneous field €(8, @) has a band-limited
spectrum with bandwidth Ny if and only if the field is band-limited with bandusidih
(No, No).

Proor. The “if” is trivial since by definition €(@, ¢) has a Laplace expansion
of the form (1.2) with €4, = 0 and hence Var{enn = 2up, = 0 lur 1 > Np.
The “only if” can be shown by applying Theorem 3.3 to €6, ¢). In fact, with
M'" = N"= Ny and €(6, ¢) in place of T(8, ¢}, one can use (2.16) to rewrite (2.15)
as a series of the form (1.2), where the sum 1s limited to {m.,n) € {{m,n) : 0 <
n < Np,|m| < n} and the coefficients €,,,,, are defined by

N-12M-1

€mn = Z Z wﬁw?e(ﬁp,qbq)}’;”*(ﬁp,cbq)sin 0,

p=0 q=0

with €(f,,¢,) obtained by Gaussian sampling for some N > M > Ny. The
asscrtion follows from the definition of band-limited fields. O

4. Convergence of Laplace series

The mean-square convergence of Laplace series (1.2) plays an important role
in Theorems 2.1, 3.1, and 3.2. In order to cnsure the convergence, it is necessary
and sufficient that {1} the Laplace serics with cuellicients fimy converges Lo u(8, @)
and (ii) the Laplace series with coefficients €,,, 1= Tinpn — limn cOnVerges in mean
square to (8, ¢).

To satisfy condition (i), it is sufficient that p(f, ¢} be absolutely integrable
on the sphere, continuous at (8,4), and of bounded variation in a certain sense
(Hobson (1955}, pp. 342-345); in other words, condition (i) requires u(#, ¢) to be
“sufficiently smooth.” To study condition (ii), let

enifd) = D e V(A 4)

(m. ety

be the truncated Laplace serics, where Oy :=Qyny = {{m,n) : 0 < n < N,|m| =
n}; then, it is straightforward to show that

EIE(Ga ¢) - EN(Ga (;5) ‘2 = R(Ba ¢'1 81 ¢) -2 ] R(gu qf), 9,7 (:b’)KN(Qa (,b; 9’¢ ¢I)

| ]fR(@’,¢’;9”,¢>”)Km(0,<¢>;9',¢’)KN(9,¢;9",¢“>,
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where the integrals are defined on the unit sphere. Since Ky (8, ¢; ¢, ¢') tends to
a Dirac delta on the sphere as N — oo, it follows that Ele(f, ¢} — en(8,¢)|* — 0
provided R(8,¢;8",¢") is continuous in (#',¢) and (8", ¢”) at (#,¢; 8, ¢). This
is equivalent to requiring ¢(#, ¢) to be continuous in mean square at {0, ¢} (Loéve
{1978), Chapter XI).

Rased on these results, one can conclude that if (6, @) is “sufficiently smooth”
and e(f, ¢} is continuous in mean square the Laplace series (1.2) converges to
T(8,¢) = p(d,¢) + €(0,$) in mean square. Since the mean-square continuity of
(0, ¢) olso ensures (ordinary) continuity of p(z), the spectrum p,, exists as defined

by (3.1).
5. Coencluding remarks

In this paper, we investigate the aliasing errors in the spherical harmonic
analysis of spherical random fields when sampled on a finite grid. The Gaussian
sampling approach is employed to climinate the aliasing errors for band-limited
fields. Future research should extend these results to other orthonormal expansions
of spherical random fields with suitable sampling schemes.
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