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Abstract. The problem of selecting one model from a family of linear mod-
els Lo describe a normally distributed observed data vector is considered. The
notion of the model of given dimension nearest to the observation vector is
introduced and methods of estimating the risk associated with such a nearest
model are discussed. This leads to new model selection criteria one ol whicly,
called the “partial bootstrap”, seems particularly promising. The methods are
illustrated by specializing to the problem of estimating the non-zero compo-
nente of o parameter vector on which noisy observations are available.
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1. Introduction

In the standard linear model we observe the n-dimensional random vector Y
having the form

Y=p+e

where e is assumed to be N,(0,02I,)-distributed with I,, the n x n identity ma-
trix and where the assumption that we are dealing with a linear model amounts to
assuming that g € M, a known linear subspace of R™. In the selection extended
form of the linear model we assume that M actually relates to the most com-
prehensive linear model entertained and that there is a number of smaller linear
models which may be more appropriate; to each such smaller linear model corre-
sponds a linear subspace L of M and if the smaller model is true then g € L. Thus
the sclection extended formulation of the linear model assumes that. in addition
to M and the knowledge that g € M, we are given a family £ of linear subspaces
of M and that it may actually be true that g4 € L for some unknown member
L. £, An example of this formulation is provided by the usual matrix form of
linear regression in which g = X8 where X is an n x m design matrix and # an
m-vector of regression coefficients. Here M is the column space of X, but some of
the components of 8 may bo zcro (the corresponding regressors being redundant)
so that actually g € L which is spanned by a subset of the columns of X. Venter
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and Steel (1992) supply further motivation aud illustration of this formulation. In
this paper our inference objective is to select a subspace L= L( Y) € £ to which
the data ¥ suggests that p belongs and to estimate p accordingly by an estimator
f = (YY) € L; the selected subspace then identifies the selected model whose
parameters follow from the estimator fi.

We need the following notation. Let =’ denote the transpose of = and &'y =
S™M_, 2;y; the usual inner product of &,y € R™ and let [z = (z'x)'/¢ be the
Euclidean norm of @. Further, let L+ denote the orthogonal complement of the
linear subspace I of R™ and if L is a subspace of the linear subspace K then let
K | L denote the orthogonal complement of L in K. Also, let Pra denote the
orthogonal projection of @ € R™ on the subspace L and write dim(L) for the
dimension of L.

Assume that m = dim{M) < n. The usual unbiased estimator of o

52 = || Faga Y2/ — m).

The traditional least squares estimator of g corresponding to any given L € £ is
PrY and ||P,o Y|* = || Y — PLY|? is the associated residual (or crror) sum of
squares. A number of criteria for selecting L have been suggested in the literature.
Among these are

e the final prediction error criterion which chooses L to minimize

(1.1 FPE.=|P.. Y|? + adim(L)5?

with o a positive number; see Venter and Steel (1992) for a motivation of this
criterion in the present contoxt;

e the generalized cross validation eriterion of Craven and Wahba (1979) which
chooses L to minimize

(1.2) GCV = [Py Y |*/(n — dim(L))*;

see Eubank (1988) or Venter and Snyman (1995) for further motivation of this
criterion;
e a proposal of Akaike (1970, 1973, 1974} which chooses L to minimize

n+ dlm(L)

(1.3) AKA = HPL,L Y2
n — dim

a motivation of this criterion in the present context is given in the appendix of
this paper.

A common feature of all such criteria is that if dim(L) is held fixed then L is
chosen to minimize [Py Y |2, Henceforth we assume that £ is a finite family. Let
L(Y,p) denote that member of £ nearest Lo ¥ among all members of £ of the
same dimension p, l.e.

{1.4) 1Py pyr Y|I? = mind || Ppo Y|?: L& L and dim(L) = p}.
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Then all the criteria listed above in effect restrict attention to selection among
only these nearest subspaces L(Y,p) with corresponding nearest subspace
{NS) estimators Friy p Y of g where p varies over the available dimensions of
subspaces in £. Thus, in the words of Breiman (1992}, the problem reduces to that
of selecting the dimension p only. For reference below note that since || Py Y ||2 =
[P Y2+ [Py Y2 and [P Y2 = | Y2 — [P, Y for L € £, we may
also characterize L(Y,p) as the minimizer of | Py Y'||* or as the maximizer of
| P Y||? among the choices of L indicated in (1.4). Also since L is a subspace of
M we have ||PL Y |I? = [|PL(Py Y)|? so that L(Y,p) is actually only a function
of Py Y, ie. L{(Y,p) = L(Py Y,p); similarly Priy )Y = Prp, v p){(PuY) is
also only a function of Py Y.

The derivations of the criteria listed above assumed that L was under con-
sideration regardless of Y. If we go one step further and suppose that the model
dimension p is under consideration regardless of Y and for given p L(Y,p) is to
be selected, then the derivations of such criteria are no longer valid since L( Y, p)
now depends on ¥ and reconsideration is necessary. Let

(1.5) Ry — E|Pyy ¥ —

be the risk of Py(y ;) Y with respect to squared error loss. Then one way to choose
p is to find an estimator R, of R, for each available dimension p and to choose
to minimize fip. The final subspace selected would then be L{Y,5) and the final
estimator of pis Pr(y ) Y. The problem then becomes that of estimating the risk
Rp. Usually Py ;)Y is a very complicated function of ¥'. The user may also
wish to estimate the risk E||Pr(y 5 ¥ —p||® of the final estimator Pry 3 Y which
is an even more complicated function of ¥. Therefore we need a general method
of estimating risks of the form E|6(Y) — pl|? in a way which makes minimal
assumptions on the estimator 8{Y) of u.

In Section 2 we study this issue in a canonical 1isk estimation case separately
from the selection problem. We introduce a family of estimators which was moti-
vated originally by the work of Breiman {1992) who introduced the so-called “little
bootstrap” risk estimators in the context of variable selection in multiple linear
regression. These risk estimators are generalized substantially here and their con-
nections with Stein unbiased as well as Bayes risk estimation are pointed out. In
Section 3 we return to the linear model selection problem and apply the results
of Section 2 obtaining a new family of selection criteria relevant to linear model
selection. To illustrate these criteria Section 4 specializes to the problem of simul-
taneously selecting and estimating the non-zero components of a parameter vector
on which a noisy observation vector is available, Numerical work enables us to
identify a member (referred to as the *partial bootstrap” ) of this family of criteria
which has corresponding estimators whose final risk behaviour is quite appealing.

The discussion above and the application of the results of Section 2 in Sec-
tions 3 and 4 restrict attention to least squares (projection) estimators of g. The
method of Section 2 can also be applied to non-least squares {(e.g. ridge-type)
estimators. Section b closes with remarks on such possibilities and other matters.
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2. A family of risk estimalors

In this section we study the following canonical risk estimation problem:
Given an observed m-dimensional vector 7' assumed to be Ny, (8, o2 L, )-distrib-
uted and given also an estimator A{T) of 8, we wish to estimate the risk R(#) =
E||R(T) — 8| using the observed data T.

How this applies in the selection context of the previous section will be pointed
out in Section 3. For now we assume that @ is an arbitrary unknown vector in R™
but until further notice we assume that o2 is known and therefore omit it as an
argument in the various risk function expressions. Regarding the estimator h(T)
of @ we assume that the various expectations below in which h({T') appears exist
and that it is homogeneous of degree 1, i e

h(az) =ah(x) forall a>0 andall z€R™.

Let g(z) = x — h(z) so that g(z) is also homogeneous of degree 1. Then the
estimation risk of h(T') is

(2.1) R(#) =E|T -8-g(T)|*
= E|T -8|? + Elg(T)|*> —2E(T — 6) g(T)
=mo® +v(8) — 2¢(8)
where
v@) = E|lg(T)|* and (6) = E(T -8)g(T).

If g satisfics tho almost differentiability condition of Stein (1981) then we have
R(8) = E{mo® + |g(T)|* — 20 r(G(T))}

where G(T) is the m xm matrix whose (4, j)-th element is dg;(T)/T; with g;(T)
the i-th component of g{T'). Hence, in this case

(2.2) Rg =mo? + ||g(T)|? - 262 tr(G(T))

is an unbiased estimator of R{#). However, the almost differentiability condition

will often not be satisfied in the selection applications so that (2.2) will then

not. be available. Even if it should be available in a particular case (2.2) may have

relatively poor mean squared error behavior as is illustrated by the study of Venter

and Steel (1990). These reasons prompt us to look for alternative risk estimators.
A family of estimators, indexed by real numbers ¢ > 0, is given hy

(2.3) R(T, 1) = mo® + g(T)? - 2 (iT).

Here ||g(T)|? estimates (@) in (2.1) unbiasedly and we shall motivate the use
of 1/;(% T) to estimate 1(#) and discuss possible choices of {. Following Breiman
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(1992), let U be N,(0,0%I,)-distributed independently of T' and define T' =
T+tU. Put

(2.4) B(T,t) =1 B[V g(T) | T)
(

where we used homogeneity in the second last line and the definition of ¢4 in the
last line. (2.4) yields various alternative expressions for DTt = (1 T) and
enables us to argue that it is approximately unbiased for 4{#) if ¢ is chosen small.
Notice that E[U | T| = ¢(T — 0)/(1 + ¢?) and that the marginal distribution of
T is N (8, (1 + t2)0?I,,). Hence

(2.8) B(T,t) =t BU'g(T)) = t ' E{E[U’ | T)g(T)}
(T o\ T
M\ Ve I\ e
0
mw(\/1+t2)'

Therefore, if ¢(#) is continuous as a function of # and ¢ is small, then E@( T,t) =
(). In general w(T,t) is not defined for £ = 0 but under suitable regularity
conditions on g (including differentiability) 1»( T, t) approaches the Stein unbiased
estimator of 1*(#) as t — 0. To see this, use Taylor expansions in the first line of

(2.4) to got

H’m
H(T,t) =t 'E | Ujg(T+tU) | T
i=1

. m m o m 6
=t'E\ > Uigi(T)+1) 3 UiUjgmg;(T)+o(t) | T

j=1i=1

nLH
HUQLaT_g@-(T)zcrztr(G(T)) as t— 0.
i=1 !

Thus in a sense (2.4) extends Stein unbiased risk estimators to approximately
unhiased risk estimators applicable when the differentiability requirement of Stein
does not necessarily hold. From the point of view of unbiasedness we will want to
take ¢t small, but this may be accompanied by a large variance and a bias-variance
tradeoff may require taking ¢ away from zero.

An intuitively appealing choice is ¢t = 1, for then we are estimating (8) by
ites “plug-in” or parametric bootstrap estimator iﬁ(T, 1) = ¥(T). The estimator
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7,@( T,t) also has a Bayes connection which suggests even larger choices of £. Sup-
pose @ is given the N,,(0,0%721,} prior where 72 > 0. Then it is easily seen that
the posterior distribution of 8 given T is Npp (AT, Aa?1,) where X = 72/(1 + 72).
Now we may express ¢(#) as

w(0) = E[Z'g(0+ Z)

where Z is Ny (0, 021, )-distributed independently of T' and 8. Consequently the
Bayes estimator of () becomes

E[@) | T/ =E[Z'gl0+2Z) | T|=E[(V ~8)g(V)| T
where V =84 Z. It is readily established that

1

E[(V —8)| VsT]:m(

V —AT)

so that we obtain

E[p6) | T) = E{E[ V-6 |V, Tlg(V)| T}
= BV - Ayg(v) | T)

:E{<\/11:)\ B \/ffJg (\/1_%) ( T}'

Also, since the conditional distribution of V/V/T+ XA given 7 s
Nm(AT/V1+ X, 0%1L,), it now follows from the definition of 1(8) that the Bayes
estimator of (@) is

1) - 1)

E0) | T = v (2 7) v (37) = oz
where t = /1 + A/X. Notice that as 72 varies from 0 to oo, A varies from 0 to 1
and ¢ from oo to V2. Thus, for + > /2 1@( T.t) is a Baves estimator, the smallest
allowed choice t = /2 corresponding to the vague prior choice 72 = co. At the
other extreme the choice 72 = 0 reflects certainty that 8 = 0 and thls corresponds
to t = oo and 1/)(T o0) = 9H(0) as the estimator of 4H(8) which is sensible if it is
indeed true that @ is close to 0.

Breiman (1992) introduced (T, ¢) as in the second line of (2.4) in the vari-
able selection context and also argued its approximate unbiascdness, The present,
treatment is more general and the systematic use of conditional expectations makes
it somewhat more transparent. That ¢(T,¢) = (1 T) as well as the Stein and
Bayes connections of tf)(T,I) seem not to have been noticed belore. Simulation
results lead Breiman to suggest using ¢ = 0.6 and he mentions that good results
were obtained with ¢ as large as 1 but felt that “its theoretical justification is
weak” (Breiman (1992), p. 745). The results here go some way towards justifying
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using larger values of t. Numerical evidence in Section 4 below also points in this
direction.

The function 1 can often not be expressed in a simple form due to the com-
plexity of g. We then need to compute ¢)( T, ¢} by simulation using the first lire
of (2.4). The use of antithetic variables often improves this calculation. Since —U
is distributed as U, we may also write

(.0 = o EU'{g(T +1U) - g(T — 1U)} | T,

Consequently, to compute (T, t) we generate a large number B of independent

copies U, ... UB) of U and approximate ¢(T,#) by
11 <
(2.6) EEZU“’)’{g(THU“’))—g(Tth(b))}.
b=1

Until now we assumed o2 known; we now turn to the case where ¢ is unknown
but an estimator &% is available, independent of T. Then se define U to be
N, (0,62 I,)-distributed in the definition of 7' and take (T, ) as in the first line
of (2.4). Also we replace 0% by 6% in (2.2} and (2.3). Further modification of (2.2}
would be required to make it exactly unbiased (see e.g. Stein (1981)) but since the
Stein estimators will not be applicable in the rest of this paper there is no need
to address this matter in more detail. Also expressions such as (2.5} are no longer
strictly valid. However, they serve only to establish approximate unbiasedness for
small ¢ and we may expect this still to be true especially if the degrees of freedom
on which 42 is based is large. Finally, since (2.3) (or its version with o2 estimated)
estimates a risk which is always non-negative, a further refinement is obtained by
truncating at 0; therefore, in practice we shall use max{O)ﬁ(T,t)} rather than

(2.3) as it stands.
3. Application to linear model selection

Returning to the setup of Section 1, let {ay, az,..., a,} be an orthonormal
basis for M and let 4 be the n x m matrix with columns a4, asz,..., d,. Then
A'’A=1, and AA" = Py. Define T'=A'Y and § = A’'yu. Then T is distributed
as in Section 2. We are interested in the estimator 8{¥) = Prey ) Y of p. The
corresponding estimator of 8 is APy ;3 ¥ and we now express this in terms of
T.

A’ yiclds a lincar transform from M onto R™ by sctting ¢ = A’y for any
y € M. For any t € R™, we have y = At € M so that A yields the inverse linear
transformation from R™ to M. Also, if y,z € M and t = A’y, 8 = A'z, then
t's = y'AA'z = y'Pyz = ¢z so thal iuver products (and norms) are preserved.
Further, any linear subspace L of M has a unique image linear subspace in R™
given by

L*=AL={tcR":t=A'y withyc L}
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which is such that L = AL", where
AL ={ye M :y= At with t € L™},

Then L and L* have the same dimension and it is readily seen that Pr. — A’Pr A
and P, = AP« A’. Define £ = {L* : L € L} and let L*(T,p) be the nearest
subspace of dimension p to T among all L™ € L7, i.e.

|Prerpy T|| = max{[|Pp- T|| : L™ € £* and dim(L*) = p}.

Then we have L*(T,p} = A'L(Y,p) and Pz T = APy AT =
A'Priy Y. Hence in terms of T the estimator A'Pry ) Y of # becomes
Py«(rp) T and this may be taken as the estimator h(T) of @ whose risk esti-
mation is studied in Section 2. Clearly, it is homogeneous of degree 1. The risk in
(1.5) may now be expressed as

(3.1) Ry =FEPuyynY —pl® = E|APL- (1) T — A8|* = E||Pr-(r.,n T - 8]

which is just R(#} of Section 2 with the present choice of h{T). We first consider
the case o2 known and apply the risk estimators (2.3). We now have

Q(T) =T - PL*(T,p)T = PL‘“(T,p)-L T
which may be expressed in terms of Y as
(32) g(TY=A"Y — APy Y =APyY - APy, Y = APy Y

s0 that
lg(D)? = 1A Priniy ) YIIP = | Pupny . YU

To express ¢( T, t) in terms of Y, let W be N, {0, 021, )-distributed independently
of Y and put U = A’W so that U is N,,(0, 0 I,,)-distributed independently of
T as in Section 2. Define

T=T+tU=AY +tAW =AY +1W)=AY
with ¥ = Y + ¢ W. Then using {2.4) and (3.2)
(33) (T, 1) =t 'E[U'g(T)| T
=t 'E[WAA'Py 4 Y | T
=t'E[W Py iy m Y | PuY]
=t E[W'Py iy ¥ | Y.

Here conditioning on T may be replaced by conditioning on Py ¥V since T and
P Y are 1-1 functions of each other. As noted in Section 1 PM| LY ) Y is actually

only a function of Pyy Y = Py Y +1Py W which is independent of Py Y; hence
we may replace conditioning on Py Y by conditioning on both Py Y and Py, Y
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or, equivalently, by conditioning on ¥ = Py Y + Py Y. We shall now denote
{3.3) by 1,(Y,t) so that the estimator of R, in (3.1} becomes

(3.4) Ry(Y,8) = mo® + | Puigy m Y I7 — 20 Y 1),
Notice that we may write

(3.5) Ry, =E|PLyp Y —pl’
= E|Pu(Y —p) - Pajrey ) Y12
=mo?® + E|Puisiy p YHQ — 200 ()

where

(3.6) o) = E{(Pu(Y — )Y Pryipiy i ¥ = E(Y — ) Pujiyr ) Y

Therefore each of the last two terms in (3.4) estimates the corresponding term in
(3.5). It is readily seen that we also have

(3.7) Gl Y1) = GPM Y)

as the parallel of (2.4). It is instructive to look at the case where L(Y,p) = L, is
independent of ¥ (e.g. in case there is only one subspace L, € £ of dimension p).
Tlhen (3.0) yiclds

() = E(Py(Y — ) P, Y
= B(FL (Y —p)+ Py, (Y — ) Parp, (Y — )
= E|\Par, (Y — p)|? = o2 dim(M | L) = o*(m — p)

and {3.7) shows that also ¢, ¥ ,t) = 0>(m — p). The criterion (3.4) then reduces
to ||[Pyp, YII? + 0*(2p — m) which is a version of the well-known Cj-criterion
{(equivalent to the o — 2 version of F'PE,; see Scetion 1 or c.g. Venter and Steel
(1992)). Use of the Cy-criterion on the nearest subspace L(Y,p) is tantamount
to estimating the risk of the NS estimator by

(3.8) 1Puiriy Y|P + 0% (2p— m)

which amounts to estimating ¥,{(g) by ¢?(m  p) but this may be quite erroneous
if L{Y,p) does depend on Y as will be illustrated in Section 4 below.
A case of special interest is the choice t = oo for which we get ¢,(Y,00) =

Uy (0). By (3.6)
¥p(0) = Eo(Pu Y) Pyiniy Y
= Eo||lPuriiy.p Y IIP
= 0?E|Pyiiz.m 2|
= o%(m — E| Pz » Z|*)
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where Ej indicates that expectation is to be calculated taking g = 0 in the ex-
pressions involving ¥ and where Z is Ny, (0, I, )-distributed. Hence 9,( Y, 00) =
o?(m — E||Priz 5 Z|?) is independent of ¥ and depends only on p. With ¢ = oo
the criterion (3.4) therefore has the form

(3.9) Bo(Y,00) = [[Painy . Y2 + 0*(2F|| Prizpm Z |2 — m)

which differs from version (3.8) of the C, criterion only in the replacement of the
term 2p by the more complicated expression 2F|| Priz . Z 1.

As in Section 2 {3.7) is typically not useful for calculation purposes and the
equivalent of (2.6) must be used. Further, when ¢ is not known but an estimator
&2 ig available (e.g. as given in Section 1) then we proceed as described af the end
of Section 2, i.e. we replace ¢ by 4% in (3.4) and in the calculation of 1,Bp(Y,t)
we take W to be N,{0,5%I,}-distributed. In practice we shall also truncate the
resulting criterion al 0.

Thus (3.4) (or its variant when o2 is unknown) is a new family of linear model
selection criteria. We select $ to minimize R,(Y ,t) over the available dimensions
p. Then the selected model is that corresponding to the linear subspace L(Y,p)
in £ and the final estimator of g is Py 3 Y. Some considerations regarding the
choice of t were given in Section 2. Those centered on the issue of risk estimation
but the results are now used as selection criteria so that those considerations may
no longer be relevant. The main concern must now be the effect that the choice
of ¢ has on the final estimator Priy 5 Y of g. We shall consider this issue in the
context of a special case in the next section.

4. Selecting and estimating non-zero means

In this section we specialize to the following canonical selection and esti-

mation problem:
We are given independent observations Y; assumed to be N{u;,s?)-distributed,
i =1,...,n; for some given integer m we know that y; = 0 for ¢ > m while for
© < m the w;’s may or may not be zero. OQur goal is to select (identify) the non-zero
pi's and to estimate them; a secondary goal is to estimate o2 as well.

It is easily seen that the variable selection problem of multiple linear regression
with an orthogonal design matrix can be transformed into this form {see Venter
and Steel {1992)). If we should happen to know the value of 6% we may disregard
Yyu4t,- .., Yy, since they only contribute information on o2, This special case
is discussed in Venter and Steel (1992, 1994) where several selection criteria are
derived and compared. If o is unknown but m < n we have the unbiased estimator

L L
4.1 52 = V7
(4.1) &= DY
j=m-+1
and, especially if n — m is large, this case can be treated much like the o2 known
case, although the issue of improving on (4.1} when we should conclude that many
of the p;’s are zero for i < m, is also pertinent. Another important special case
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is when ¢? is unknown but m = n, 1.e. we have no designated p;’s which are
defiriitely known to be zero a priori. Aspects of this problem have been discussed
fairly extensively in the literature under the title of “identifying active contrasts”.
This literature goes back to the half-normal plot of Daniel (1959) but more recent
references are Dong (1993), Box and Meyer (1986) and Venter and Steei (1996).
This case also plays a pivotal role in the recent work of Doncho and Johnstone
(1994) in whose work our Y;’s are the wavelet transforms of an initial series of
observations. Thus it is clear that this canonical problem is of substantial interest.

As hefore we start, with the case o2 known and we evaluate the criterion {3.4)
for the present problem. To put it in the form of Section 1, let a;, ay, ..., a, be
the standard orthonormal basis of R™ {(i.e. a; has i-th component equal to 1 and
all other components equal to 0). Then

(4.2) Y= Yia and p=) ma
=1 i=1

so that M and M1 are spanned by the orthonormal sets {a, as,..., @m} and
{@mt1, @my2,-- -, B} Tespectively. A typical subspace L of M consists of p’s of
the form (4.2) having some of its components 0. If y; =0 for i ¢ J € {1,...,m}
then 7. = span{a;,j € J}. We let £ be the family of 2™ such subspaces obtained
by varying J over all subsets of {1,...,m}. For J = @ we take L = {0}. In general
we have

(4-3) 1P YIP =Y = | P Y|P = | YE -3 v7
ied

For J such that it has a fixed number p of elements {4.3) is minimized by taking
J the set of indices of the p largest |Y;|'s among |¥1],|Y2|, ..., Y|, Le. if [V}, <
V,| < - < |V, | are the order statistice and J(¥,p) — {ln—pr1sbin—prar - ks
then L{Y,p) = span{a;,j € J(Y,p)}. Consequently the NS estimators are given
by

(44) PL(Y,p)Y — Z Y ﬂ.j *ZYI ‘Yi > 1/’:m p‘)

i=m—n+1
and its j-th component estimates u; by Y; if |Y;| is among the p largest |Y;|'s and
hy 0 otherwise. Here I{A) is the indicator function of the event A. Now
m
PuiniymY =PuY —PrypnY = ZY}'I(\YH < |V, Da;
j=1

so that from (3.3) we get

(4.5) D (Y, t) =t7IE i Y1 |
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where Y; = Y;+tW, and [; = I{|¥;] < Y7, Dforj=1,...,mwith|¥; | < |¥; | <
s |Y/l'm| the order statistics of |}7’1|, I?g[ e \f’m\ and where Wy, Wo, ..., W,, arc
independent. N (0, m%)-digtributed given ¥ Using the antithetic device mentioned
in Section 2, if V" = Y; — tW; and [ + is defined as I; bat in terms of the Yis,
then

(4.6) (Y, t) = (2t) B iwj(fgfj -V Y

i=1

Simulation evaluation of 1), using this expression is more efficient than using (4.5).
The selection criterion (3.4) now becomes

(4.7) Ry(Y #) =mo® + Y YR < Yo, )~ 24,(Y, 1)
j=1

m—p
= mo” + Z Yzf - pr(Y, t).
j=1

y (3.9}, for the choice t = oo, this criterion reduces to

(4.8) R, (Y, 00) = Z Y}Jz +a*(2h(m,p) — m)

j=1
where, using (4.4) with the Y;’s replaced by the Z;’s,
h(m,p) = E||Priz ) Z |

m
= EZZfI(szl > ‘Zi'm.—p‘)
=1

- i z

i=m=—p=+1

m g | 0 i—1 ‘
= Z @_—f)]gll—wfe 2 ¢(x) [(I’(m) - %} 1 —®(x)]™ ‘“dzx

i=m-p+1i

where ¢ and ¢ arc the N {0, 1)-density and distribution functions respectively, The
values of h(m,p) can be calculated by numerical integration. Table 1 compares
the values of h(m, p) with p and it is evident that h(m,p) rises much faster to m
than p does. Keeping in mind that (4.8) is especially appropriate if g is close to 0
we see that the C, criterion (3.8) viewed as a risk estimator gives values that may
be much too low at least when g is close to 0. Motivation for taking the choice
I = oo seriously will be given below.

In the case ¢® unknown but m < n we use the estimator {4.1) in the place of
o? in (4.7) or (4.8) and in the distribution of Wy,..., W,,. The case 02 unknown
but m = n falls outside of the scope of this paper.
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Tahle 1. Values of A{m,p) for m = 10.

n 0 1 2 3 4 5 6 7 8 9 10
him,p} 0 380 588 740 &37 9.03 947 974 9090 9.98 10.00

Suppose now that we have chosen p to minimize (4.7) or its version with o2
estimated, in either case truncated at 0. To simplify notation, let £ denote the
resulting final NS estimator given by {4.4) with p replaced by p. Then g still
depends on f and our next aim is to consider the effect of t. We shall use the
relative risk of f given by

(4.9) o/, t) = Eljp— pl2fma?

as a measure in terms of which to judge the effect of £. It is readily seen that this
depends only on u/o and so it involves no lose of generality to take o — 1 until
further notice. One way towards choosing t is provided by the minimax approach
which chooses ¢ to minimize

{(4.10) sup{p(p,t) : p € M}.

In a related context Venler and Steel (1994) conjectured that this maximum is
reached on the equi-angular line segment p; = d for i = 1,...,m for some d > 0.
We believe that this is also true here, .e. that (4.10} is equal to

(4.11) sup{p(p,t) s s =dfori=1,...,m with d > 0}.

In view of the complexity of g it hardly seems possible to prove this; of course
(4.11) is at most (4.10). Whether or not this conjecture is in fact true, a possible
strategy towards choosing ¢ is to minimize (4.11) and we now describe the results
of a numerical study to this effect.

We varied ¢ over the values 0.001 {which serves as a good proxy for 0),
0.1{0.133.0 as well as 4, 5, 6 and oc and we used B = 1000 in the internal sim-
ulation calculation of ’l/A)p(Y,t) by {(4.6). We further varied the “spacing” d of
the line segment in (4.11) over the values 0, 0.5(0.25)2.5 and 3, 4, 5. At ecach of
these d-values we estimated the relative risk {4.9) by the average of 1000 simu-
lation repetitions and then fitted a spline to estimate the functional dependence
of the relative risk on d; from this we then determined the position and value of
the maximum {4.11). Thesc steps werc repeated & times and the averages and
standard errors were calculated. Double precision IMSL routines were used for
these calculations. Figure 1 (Configuration 5) gives an illustration of typical re-
sults for the cases t = 1, \/5 and no when m = 10 and o? is known. In Table 2
the column headed “Maximal relative risk” provides an abstract of the results of
this calculation for a number of i-values for the same case. The “maximal relative
risk” decreases as ¢ increases up to about t = 1 after which it essentially remains
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Table 2. Maximal and minimal relative risks of ﬁp( Y,t) (m = 10, o2 known).

£ Maximal Standard Position d  Standard Minimal Standard

rel. risk CITOr of max. error rel. risk error

0.001 1.648 0.005 1.880 0.008 0.368 0.008
0.1 1.595 0.005 1.836 0.018 0.360 0.010
0.2 1.491 0.004 1.612 0.022 0.306 0.008
0.3 1.399 0.002 1.470 0.007 0.277 0.005
0.4 1.344 0.003 1.388 0.007 0.207 0.003
0.6 1.296 0.003 1.340 0.006 0.16% 0.006
0.8 1.275 0.006 1.309 0.006 0.145 0.004
1.0 1.259 3.006 1.259 0.005 0.122 0.004
V2 1.253 (.004 1.288 0.004 0.115 0.005
2.0 1.255 0.003 1.274 0.005 .104 0.008
3.0 1.257 0.006 1.279 0.003 .102 (r.oor
5.0 1.247 0.005 1.271 0.008 0.112 0.004
20 1.269 0.000 1.253 0.001 0.109 0.001

constant. This indicates that for any choice ¢ > 1 an cstimator close to minimax
on the confignration in (4.11) is obtained. This remains true for other choices of
m and also for the case where o2 is unknown as is evident from Table 3 which
covers some of these cases.

The behavior of the relative risk (4.9) in configurations other than the least
favorable used in the above calculation are also of interest. Of course g € L{y) =
span{a; : p; # 0,1 < j < m} and if we knew which components of g were actually
non-zero we would also know L{g) and then we would estimate g by Proy Y (ie.
a non-zero u; would be estimated by Y; and a zero u; would be estimated by 0).
'The relative risk of this “estimator” is

(4.12) E||PryyY — pll?/m = E|\Pryg(Y — )l[*/m = p(p)/m

where p{g) = dim{L(g)) is the number of non-zero components of g. Hopefully the
estimator jt will be adaptive in the scnse that its relative risk is only slightly larger
than p(g)/m. In the configuration of (4.11) we have L(g) = M and p(u)/m =1
and the aim of the above choice of ¢ was to limit as much as possible the amount
by which the relative risk of i exceeds 1 in this case. At the other extreme {4.12}
is minimal when g = 0 where p(u)/m — 0 and here the relative risk of /i should
be particularly small. We conjecture that this is the most favorable case where
ji achieves its minimal risk but again it scems uniikely that this could be proved
formally. All our numerical experience to date confirins this conjecture. Tables 2
and 3 alsc shows values of this “minimal” relative risk as a function of ¢ for varicus
cases. Again it decreases as t increases up to about 1 after which it essentially
remains constant. ‘L'hus choosing t > 1 is not only advantageous from a minimax
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Table 3. Maximal and minimal relative risks.

m n—m Criterion Maximal relative risk Minimal relative risk
10 w  Rp(¥,t—0.001) 1.65 0.3686
Rp(¥Y,t=1) 1.26 0.122
Rp(Y 8 = V2) 1.25 0.115
Rp{ Y, = 00) 127 0.109
Cp, GCV, AKA 1.65 0.572
20 oo R.{Y,t=0.001) 1.65 0.264
Rp(Y,t=1) 1.18 0.087
R(Y,i=V2) 1.18 0.037
By (¥, t = o0) 1.19 0.024
Cp, GOV, AKA 1.65 0.572
50 oo Ry(Y,t=0.001) 1.65 0.146
R (v,t=1) 1.11 0.011
Ry(Y t=+72) 1.11 0.008
Ro(Y,t = o0) 1.11 0.005
Cp, GOV, AKA 1.65 0.572
10 20 Ry(Y,t=10001) 1.65 0.381
Ip(Y,t=1) 1.28 0.194
Rp(Y,t=+72) 1.27 0.204
Rp(Y,t=00) 1.27 0.183
Cp 1.65 0.583
GOV 1.66 0,634
AKA 1.49 (.664
20 20 R,(Y,t=0.001) 1.64 0.314
Ro(Y,t=1) 1.20 0.133
Ba(y,t=+2) 1.19 0.110
Ry(Y,t=00) 1.20 0.115
Cyp 1.65 0.583
GOV 1.65 0.682
AKA 1.40 0.727
50 20 R.(V,t—0.001) 1.64 0.2390
Ry(Y,t=1) 1.14 0.069
Rp(Y,t =+2) 1.14 0.071
Rp(Y,t — w) 1.14 0.068
Cp 1.65 0.583
Gcv 1.62 0.765
AKA 1.2% 0.829
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Fig. 1. Relative risks along six configurations.
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point of view but it also enhances the porformance of G in its most lfavorable
configuration.

There are a host of further configurations that may be considered. We briefly
report on the following six which show some trends the truth of which we have
observed also in other cases. Here we have m = 10 and we assume o2 — 1 and
known. Then we take

Configuration 1: py = d and p; =0 for ¢ = 2,...,10;

Configuration 2: y; =dfori=1,23and y; =0fori =4,...,10;

Confipuration 3: ;s =dfori=1,....5and y; =0fori=6,...,10;

Configuration 4: p; =dfori=1,...,7and y; =0 for i = 8,..., 10;

Configuration 5: y; =d fori=1,...,10;

Configuration 6: py - d, pz — 2d, pz — 3d and p; — 0 for s —4,...,10.

For each of these configurations we varied d on the grid 0{0.25)5 and estimated
the relative risk (4.9) by 1000 simulation repetitions and fitted a smoothing spline
to the results. Figure 1 shows the results for the three chuices ¢ = 1, V2 and oo.
When d = 0 all these configurations revert to the most favorable case g = 0 and
it is evident that the relative risks are low there. Along configuration 1 the three
choices do about equally well as long as the spacing d is small but for larger spacmg
the parametric bootstrap choice £ = 1 seems the better option. This tendency is
also visible for configurations 2, 3 and 4. Configuration 5 is the least favorable
configuration where there is little difference between the choices. Configuration 6
is comparable to 2 in that they have the same number of non-zero p;’s and again
the choice t = oo shows up as the worst. The choice ¢ = oo relates to the prior
expectation that g = 0 and it is therefore not surprising that it should turn out
poorer when this is not true; what is a bit surprising is that it should be almost
as good as the others in the least favorable configuration. We may summarize
the findings of this numerical work by saying that, within the class of criteria
(3.4) or (4.7), the parametric bootstrap choice ¢ = 1 yields a model selection and
estimation procedure for the problem of this section which seems overall quite
satisfactory in terms of its final relative risk performance. We will refer to (3.4)
with ¢t = 1 as the “partial bootstrap” criterion for reasons explained in Section 5.

To put this finding into perspective, we also compuled the inal relative risks
associated with C,(= FPE,), GCV and AKA as given by (1.1)-(1.3). As is
argued in the appendix both GCV and AKA become equivalent to ), when
o is known (effectively n very large). Table 3 shows the relevant “maximal”
and “minimal” relative risks. It is evident that the partial bootstrap criterion
performs substantially better in both respects. Indeed, Configuration 5 of Fig. 1
shows that the partial bootstrap completely dominates C,, in very high dimensional
configurations and this is also true for very low dimensional configurations as
is illustrated by Configuration 1. Between these extremes, however, there are
limited regions where €, performs somewhat better than the partial bootstrap
as is illustrated by Configurations 2, 3 and 6. These findings have also been
checked for the case o2 unknown. On balance, where the partial bootstrap does not
overshadow C,, GCV and AK A, the differences between them are not substantial,
which makes the partial bootstrap criterion an appealing option.
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5. Conciuding remarks

1. Breiman (1992} called (2.4) the “little bootstrap” estimator, “little” pre-
sumably refers to the small value of ¢ required for approximate unbiasedness. It is
now evident that there is good reason to prefer the value £ = 1 instead which makes
the “little” part of the name seem inappropriate. The idea is to apply bootstrap
considerations to one term in (2.1} only, namcly the term E(T — &) g(T) (which
is the term that is also prominent in Stein estimation) rather than to all three
terms. With ¢ = 1 this term is estimated by the ordinary parametric bootstrap.
For this reason (2.3) with t = 1 and its versions in special problems ((3.4) and
(4.7}) are referred to as “partial bootstrap” risk estimators in the sense that only
a part of the risk is involved in the bootstrapping.

2. We have carried out simulation studies also in the variable selection prob-
lem {Snyman (1994)) and while our findings by and large agree with the extensive
results reported by Breiman (1992) on variable selection, they also show that the
remarks above are valid in that context as well.

3. Although not required for selection purposes, the user may want to esti-
mate the risk 17| Py 5 Y — pl|? of the final estimator Py 5 Y. Since p — p(Y)
and L(Y,p(Y)) are both homogeneous of degree 0, §(Y) = Pry » Y is homo-
geneous of degree 1 so that the basic method of Section 2 may again be applied
to get such an estimator. A simulation within a simulation calculation is required
making it computationally demanding,

4. In Sections 1, 3 and 4 the discussion mainly revolved around least squares
estimators of the form Fr Y. Here L = L(Y) may depend on ¥ with L(Y')
homogeneons of degree 0 in order to ensure that P, Y is homogeneous of degree 1.
The risk estimation method of Section 2 then applics. More generally the method
of Section 2 will still apply to families of estimators of the form 8(Y) = Hp .Y
where g indexes the family H; , which need not be projection matrices. Here L =
L(Y)and/ora = a{ Y) may depend on Y as long as they are both homogeneous of
degree 0. An example is the ridge-family for which Hy, , = X (X] Xy +al) 1 X]
where X, is the matrix of columns corresponding to L of the given design matrix X
of a regression variable selection problem. Further research is required to evaluate
such generalizations.

5. The partial bootstrap selection criterion resulting from this work is an
attractive alternative to critoria such as Cp and it is to be hoped that it wiil soon
find its way into statistical packages.
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Appendix

Motivation for the criterion (1.3)
If Y* =p+ e” is a future observation on Y, independent of Y, and P Y is
used as a predictor of Y™, then its prediction risk is

E|PLY — Y*|* = no® + E|PLY — pl? = o*(n +dim(L)) + | Py ]|



MODEL SELECTION BASED ON RISK ESTIMATION 339

We also have

. _n+dim(L} 2 2 , n + dim(L) 5
BAKA) = B2 T P Y = o+ dim(1) + Sy
, 2dim(L)
— _ #(2 2
=BIRY = Y7 2SR Pl

Hence, if g € L (i.e. L is true) then || Py rpl| = 0 and AK A estimates E|| P Y —
Y*|? unbiasedly. If g ¢ L (so that L is not true), then ||[Pyrpl > 0 and AKA
is an upwardly biased estimator of E||PLY — Y *||*. Hence, if we select L to
minimize AK A we tend to avoid selection of an untrue L.

Fquivalence of Cp, GCV and AK A when o* 1s known

We argue that both GC'V and AK A becomes equivalent to C), if n — oo while
m remains fixed in the context of Section 4. We have n2GCV = ||PpL Y|3(1 +
2n~"dim{L) + o{n™")). With L = span{a;,j € J} we have n ![|P. Y| =
nl Y g YR+t S iom Y7 The first term here is < n~" Yo YR - 0as.
and the second term tends to ¢2 as n — oo. Consequently n2GCV becomes
|Pr. Y ||* + 2dim(L)o? as n becomes large which is FPE> or Cp. The argument

for AK A is similar.
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