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Abstract. Klebanov et al. (1985, Theory Probab. Appl., 29, 791-794} in-
troduced a class of probability laws termed by them “geometrically-infinitely-
divisible” laws, and studied in detail the sub-class of “geometrically-strictly-
stable® laws. In Section 2 of the present paper, the larger sub-class of “geo-
metric-stable” laws is (defined and) studied. In Section 3, a characterization
of stable processes involving (stochastic integrals and) geometric-stable laws
is presented. In Section 4, the asymptotic behaviour of stable densities of ex-
ponent one {and |A| < 1) is studied using only real analysis methods. In an
Appendix, “geometric domains of attraction” to geometric-stable laws are in-
vestigated, motivated by the work of Mohan et al. (1993, Sankhya Ser. A, 55,
L71-179).

Key words and phrases: Stable laws and processes, geometric-stable laws, ge-
ometric domains of attraction.

1. Introduction

Klebanov, Maniya and Melamed (1985)—referred to hereafter as KMM
(1985)—considered a problem posed by V. M. Zolotarev, namely, the investigation
of characteristic functions (ch.f.’s) (of probability distributions on the real line R)
satistying the relations:

(1.1) £t = gp0){p+ (1 — (O} Vi€ R

for every p € (0,1), where g, is itself a ch.f. Such an f may obviously be written
in the form

(1.2) F=3p1—pY el =p-g/{1 - (1-pgy}
7=1
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for every p € (0,1), and is necessarily infinitely divisible (iul. div.). KMM (1985)
called such f geometric-infinitely-divisible {GID) ch.f.’s, as the form (1.2) suggests.
They established a de Finetti type result for such f {(analogous to that for inf. div.
ch.f.’s), and, using that result, the following basic characterization:

ProrosiTioN 1.1. (KMM, 1985) f is a GID ch.f. iff it is of the form
(14+40)7", where e™" 4s an inf. div. ch.f. (i.c., iff f is never zero and exp(1—1/f)
is an inf. div. ch.f.).

It may be worthwhile recording here an alternative proof of the above result:
If e % is an inf. div. ch.f,, then e=* is a ch.f. for every ¢ > 0. Hence, for all a > 0,
p > {0, the “mixture”

1

X
—— [ e leTig = (14 pyp) @
G / (1+ i)

is a ch.f. In particular, (14+1) ! is an inf. div. ch.f. and (1.2) holds for all p € (0,1)
with g, = the (inf, div.) ch.f. (1 + p¢)~!. Conversely, if (1 + ) ! is a GID ch.f.,
then g,, in (1.1) or (1.2), is equal to (1 + py)™!, so that this is a ch.f. for every
p € (0,1). Hence, for every a > 0, by, = (1 4+ ep/n) ™" is a ch.f. for every integer
n > o, and (the continuous function) e ¥ — lim, _, by, is therefore a ch.f.
Thus e~¥ is an inf. div. ch.f. Hence the proposition.

KMM (1985) studied the sub-class of GID laws of the form (14~ where e =%
is a “strictly stable” ch.(., calling such laws “geometric-strictly-stable” laws, and
obtained a characterization thereof in terms of random sums of independent ran-
dom variables. Other sub-classes such as of “geometric-semi-stable” laws, Mittag-
Leffler laws, and the Linnik class, namely, of ch.f.’s of the form

(1.3) =T+ TWeR A>0 0<a<?

were considered in some of the other papers listed as references below.

In the present paper, we consider properties of “geometric-stable” laws (Sec-
tion 2), and a related property of stable processes (Section 3}. Section 4 comprises
a real analysis discussion of an asymptotic expansion for stable densities with ex-
ponent onc. In an Appendix, we consider “geometric-stable” laws in relation to
“geometric domains of attraction”.

2. Properties of “geometric-stable” laws

Let o € {0, 2]. The stable laws are given by exp(—,), where (suppressing in
our notation the dependence of the formula on the parameters A, i, 3)

(2.1) Yalt) = —ipt + Alt{*{1 + i(sgnt)Gtan(nra/2)}  for o #£1,
. all) = —ipl + A1 +i(sgn ){28/mylog [t} for a =1,

where g and 3 are real numbers, with |3| < 1, and A > 0. For detailed discussions
of stable laws, we refer the reader to Gnedenko and Kolmogorov (1954), lbragimov
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and Linuik (1971), Feller (1971}, and Lukacs (1970), and Lo Ramachandran and
Lau (1991) for some aspects thereof. By Proposition 1.1,

(2-2) Jo = (1+ ‘Qba)_]

is a GID ch.f. We refer to such an f, as a “geometric-stable” ch.f. with exponent
.

The following de Finetti type result holds for such f (¢f. Theorem 2.2 of
Mohan et al. (1993} on “gecmetric-strictly-stable” ch.f.’g);

PrOPOSITION 2.1. A ch.f. [ is “geometric stable” iff it is (non-vanishing on
R and) of the form

(2.3) ft) = lim {1+n(l - h{t/a,)) + ipint} !

Jor some real sequences {an} and {p,} with a, > U Vn and some non-degenerate
ch.f. h.

Proor. If (2.3) holds, then f = (1 + 4}, where
$(t) = lim [n{1 — h(t/an)} + itnt)

Write f to denote integration over R\ {0}, and let H denote the d.f. corresponding
to the ch.f. k. Then, for an appropriate sequence {u!. } of real constants, we have
forall t € R, as n» — oo,

, itz /a ,
nf (’ ~1- Y e i = o)

ie.,

n(t/an) +ipt — —(t),
4 being the log ch.f. of an inf. div. law with the Lévy representation L{0,0, M, N},
where M = H on (—o0,0) and N — IT — 1 on (0,00). If f is the ch.f. exp{(), then
we have from the above that

[F(#/an)}" explipint) » oxp(~{t).

It follows immediately (from the theory of normed sums of 1.i.d.r.v.’s) that exp(—)
ig a stable ch.f., so f is a geometric stable ch.f,

Conversely, if f = (14 v¥,) 7!, where exp(—1s) is a stable ch.f., then 1, (¢) =
o (t/nt/®) + dunt ¥n € N, for suitable real p,, hence =
litny, —oo [1{1 — Ao (6/n /7)) + dpant], with fiy = exp(—1g) itsell il o < 2, If o = 2,
so that 1, (t) is of the form: —iut + A2, we may take ho(t) = exp(ifit — At?),

where 0 < A < A and A + %;12 = A, tbn, = fin/1 — p. Hence the proposition.

Remark. In the Appendix, in the course of the proofs of Theorems A.2 and
A3, it is shown that a ch.f. 1/{1+ ) is GS (also) if and only if (A.5) holds. Thus
(A.5) and (2.3) are equivalent conditions.
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The following is the main result of this paper, and relates (o some properbies
of such laws:

THEOREM 2.1. {i) f. belongs to the “domuain of normal aftraction” of the
stable law exp(—t,}, 0 <a < 2.

(i) The corresponding d.f. Fo has absolute moments of all orders < « but
not of orders > a if 0 < a < 2. If @ = 2, Fy has m.g.f., and, in particular, has
moments of all orders.

(iii) F. is absolutely continuous (w.r. to Lebesque measure).

(iv) The following F,, are all “self-decomposable” {hence “unimodal”); {a}) if
= 2, without restriction on A, p; (b) f 0 <<l orifl <o <2, for u=20; if
=1, forp=0=0

(v) Forl<a <2, 8=0,pu#0, F, is not self-decomposable.

Proor. (i) For the case oo = 2, we define ¢ = 1 + (122 /2)). We then take:

pt/e for «a# 2,
iy, =
for o =2,
and
y.(lwnl_lja) for a#£1,2,

(2A3/m)logn  for a=1,
u(l——@) for o=2.

C

Straighttorward computations show that, as n — oo, for all a € (0, 2],
(2.4) {fa(t/on)} et — e7¥all it € R,

The “norming constant” (1/a,) being of the form: const. n="% in all cases, (2.4)
means that f, belongs, by definition, to the “domain of normal attraction” of the
stable law exp(—1/,). For relevant definitions and results, we refer the reader to
(Seection 35 of ) Gnedenko and Kolmogorov (1954) or Ibragimov and Linnik (1971).

Remark. A result due to B. V. Gnedenko (see, for instance, Gnedenko and
Kolmogorov (1954} or Ibragimov and Linnik {1971)} asserts that, in the cases
0 < o < 2, we must then have

2.5) Folz) = Mz|7*{1+0(1)} as z - —o0,
' 1— Folae) = 2o "{1+0(1)} as w— w0,
where Ap > 0, Ap > 0, with A + Az = A, the A, being the same constants as appear
in the Lévy representation Li{u,0, M, N) for —y,, namely, M{u) = A/|ul® for
u < 0, N(u) ==Xz /u® for 4 > 0, and A being the same as in (2.1}.
(i1) This assertion follows at once from (2.5) in the cases 0 < o < 2. It
also follows immediately from the form of the ch.f. f, since, as £ — 0, fo(f) =
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1 9a(t) | o(]t|*), from the gencral results in Ramachandran (1969}, also partly
reproduced in Section 1.3 of Ramachandran and Lau (1991). If & = 2, f, is an
“analytic ch.f.” —equivalently F, has m.g.f,, and, in particular, moments of all
orders exist.

(iii) We begin by noting an auxiliary result of some independent interest.

LEMMA 2.1. (a) If a # 1, £, is the d.f. of the random variable (r.v.)
X2 + w2 - 21,
where X is a r.v. with the stable ch.f. exp(—v,) and Z is a r.v. independent of X
and having a standard exponentiol d.f.
(b) Ifa =1, F, is the d.f. of the r.o.
XZ+ (280N m)Zlog Z,
where X and Z are as described in (a).

Procr. (a) For e # 1,

E{exp[iu{XZl/a +u(Z — Zl/a}}]}
= EE{exp[-+] | 4}

= fm Eexpliv{tVoX + u{t — 1/} - ety
0
= [ e thal) — thdt = (L a0 = fulu)

Hence {a}. A similar computation leads to conclusion (b). Hence the lemma.
Continuing with the proof of (iii), we see that

(2.6) Fo(z) = PIXZY* 4+ u(Z — ZY) < 2]
I et I s —t .
_/0 Ga (tl/a it +,u)e dt, .1f a#1

and
{2.7) Folz)=P[XZ+ (28\/7)Zlog Z < 1]

o T
= [ o, (? — (28X/7) log t) e~ tdt, if ao—1
Q0

where, in all cases G, is the stable d.f. with exp{—,) as ch.f.
For = > (}, we may recast {2.6) and (2.7) respectively in the forms:

28 Fule) as | R { —u(D)T p} exp{=(a/v)* b0 o,
if a#l,

and
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(2.9} Fylz)= :)3/:0 Golv — (28M/7)(logz — logv)}exp{—(z/v)}v ™ dv,
if a=1.

For z < 0, dual forms hold. G, and p, = G/, the p.d.f. of G,, both being bounded
and continuous on R, a straightforward application of the dominated convergence
theorem justifies differentiating the integrals appearing in the RHS of (2.8) and
(2.9) w.r. to = under the integral sign, leading to the conclusion that P, = FJ
exists and is continuous on (0, 0o)-—and, by a dual argument, on {—oc, 0} as well.
Hence (iii).

(iv) We need to show that, in both the cases {(a) and (b) here, fo/fa{c) is a
ch.f. for every ¢ € (0,1},

(a) If o =2, then fo(t) = (1 —ijt+ A2) 7%, preal, A > 0. For 0 < ¢ < 1, we
have

falt)/ falet) = & + (1 — {1 —ipet/(1 + )} falt)
= 4 %(1 — {1 = k)1 — 017+ (14 ko)1 —ifat) ),

where ke = (1 — p/{(1 + e)v/u2 +4X}; 61 = 3(p — /p® +4X), and 6y =
S(p + /p1* +4X): we note that |k.| < 1 and 81, 2 are real. Thus fo/fa(c)
is a convex linear combination of three ch.f.’s and hence is itself a ch.f.

by fO0<a<lol<a<2and p=0,orife=1and u=78=0, then,

for 0 < e < 1,
fa()/ fale)=c"+(1—-c")fa

and, as a convex linear combination of two c¢h.f.’s, is itsell a ch.f,

Remark. The families (a) and {b) include:

(A) L'he Linnik class of ch.i.’s defined by (1.3). Their self-decompaosability
has been pointed out in Lin (1994), who also noted that their absolute continu-
ity is an immediate consequence of their self-decomposability as well as proved
that property independently. Self-decomposability also implies “unimodality”
(Yamazato (1977)). Hence, a Linnik-type ch.f. pertains to a unimodal d.f.—a
fact derived using a different, ad hoc complex analysis argument by R. G. Laha
(see Lukacs (1970)).

(B} The Mittag-Leffler laws, supported on [0, 00) and with (1+¢*)7%, ¢t > 0,
for 0 < o < 1, as their Laplace-Stieltjes transform, and their conjugate d.f’s.
They correspond to 0 < « < 1, 8 = £1, in (2.1); their self-decomposability was
pointed out by Pillai {1985).

(v) Let 1 <a <2, #=0, u#0in (2.1). Then

Salt) = (1 =gt + AJ]*) "1
For 0 < ¢ <1,

falt)/ falct) = €™ + (1 = ™)1 = ipket) fu (0,
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where ke, — (¢ — ¢®)/(1 — c®). We check below that, for v # 0, (1 — ivt) fa(t)

is the Fourier-Stieltjes transform of a function of bounded variation, which is not

everywhere increasing, and so cannot be a d.f. It follows that f./f.{c') is not a

chf., and so f, is not seli-decomposable,
We note that, for @ > 1,

7

Pl = #40) = [ e (37

o 'LLtl_l/a + M) e—tt—(l/a)dt

is bounded (and continuous) or: R, since p,, is bounded {and continuous) on R and
since [, e /2t < oo for such . Also,

Pl( _ 00 ! €L 1—1/c —t 7(2/cx)d
o (T) = | Ta 7w M + et t

is integrable over R, since

oo p Jp < oo —t;—(2/a) /'oo p f T -1/a dr b di
[ P@e < [ [ (i — e )

[ o} o0
- U e-frlfadt> [ Pl (0)ldv < oo,
0 o —oa

since pl.(v) is bounded on R and is O(|z]7*72) as |v| — <.
For v # 0, we then consider the integrable function P, + vP., and set

V) = [ (Batt) 1 oL}t

A straightforward computation shows that V, , = E, = Fy, where E, is an expo-
nential/conjugate exponential d.f. with parameter =y, having {1/(1 — itv)} as its
ch.f. Hence

(1 —ity) fult) = femdva,,(z) vt € R.

Bug V, ., though a function of bounded variation, is not non-decreasing, since
Py + P/ takes negative values near the origin, as we check below: while P, is
bounded, we have, for z > 0,

P(;(,CC) = f() P;(U - ,!.L(.T/U)awl + #}ef(mfﬂ)uamﬂ*lefadv

80 that, as z — 0+,

o0
Pl (x)/{az®%} —>/ p;(’u—f—u)vl_“dv
0

which is finite and negative since p’,(v + ) < 0 for v > 0, u being the (unique)
mode of the stable law with the particular exp(—1,,) as its ch.f. to which we have
restricted our attention. Hence P,(z) + vP,(x) — —occ as & — 0+, if v > 0. A
dual relation obtains as ¥ — 0— if v <2 0. (Since the total ‘algebraic’ variation of
Va,y on R is = 1, being the value of its Fourier-Stieltjes transform at the origin,
P, + 7P}, has to take positive values as well on R.) Hence V,, , cannot be a d.f.,
and assertion (v) is proved.
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3. A property of stable processes involving geometric-stable laws

Let {X(t),t > 0} be a homogeneous stochastic process, continuous in prob-
ability, with independent increments and with X(0) = 0. Then, in particular,
Eexp{iuX (1)} = exp(—ty(u)) where e~% is the ch.f. of X{1}. One may define the
stochastic integral (in the sense of convergence in probability) of a real-valued con-
tinuous function g defined on an interval |a,b] C |0, 00), denoted by f;’ g(t)dX (1),
w.r.t. the process {X(¢)}. For definitions and details, we refer the reader to Lukacs
(1975) as also to Section 6.1 of Ramachandran and Lau (1991) for additional ref-
erences, especially for the result cited in the next paragraph.

It was proved in Ramachandran (1994)—also see Ramachandran and Lau
(1991)—+that, for {X{t)} to be a stable process (i.e., for X{1) to have a stable
ch..), it is necessary that, for every y > 0, and sufficient that, for some y > 0, the
stochastic integral foy td X (t) have the same distribution as X(s,) + ¢, for some
&, = 0 and real £,,.

In our present context, we can establish the following result suggested by the
one just cited.

THEOREM 3.1. A necessary and sufficient condition for { X (£}} to be a stable
process i8 that, T being a r.v. independent of the process { X (t)} and with standard

cxponentiiol d.f., the r.v.
T
( f th(t)) / T
4]

have the same distribution as X (vT') + 6T, for some v > 0 and real § -y € [1/3,1]
necessarily then. The common d.f. of these two r.u.’s is then a geometric-stable
law with the same exponent as the process (the precise relationship being given by
relation (3.2) below).

Proor. Let e™¥ be the ch.f. of X(1). Then

(31) Eeiu(fDT tdX(t)/T) :f Eetu(f(f vdX (v}/t) o~ 1t

_ /UOO exp {_/.tqb(uv/t)dv} e~ dt
_f exp{ /Mu)dv—t}
e [yt

Also,
oo
ESAM{X('TL)+§L}6*Ldt

(3.2)  pentXGTITTY

J
= f e MPCOTISI—L gy — 11 S 4 ()}
0
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Our identical distribution assumption 1s therefore equivalent to

1
(3.3) /(; pluv)dv = yp(u)  ibu

where e ¥ is a ch.f. It is immediate from Ramachandran (1994)—also see
Ramachandran and Lau (1991)—that the stable ch.f.’satisfy (3.3) and further are
the only ch.f.’s which do so, with the exponent o being given by fol vedy = 7, i.e.,
o= (1/4)—1. Hence the first assertion of the theorom. It is then immediate from
(3.2) that the common d.f. of the two r.v.’s under discussion is a geometric-stable
law with the same exponent as the process itself, the precise relationship between
the ch.f’s of these rv.’s and (e7% =) the ch.f. of X (1) being given by (3.2).

4. Asymptotic behaviour of stable densities with exponent one

The following limited asymptotic expansion for stable densities was developed
in the context of a possible extension of Theorem 2.1 (v) to the case a = 1. It is
given here as likely to be of independent interest, since it uses only real variable
arguments—asymptotic expansions involving an appeal to Cauchy’s theorem were
provided long ago by Skorokhod (1954). Feller (1971) gives such for the case o # 1,
and the result below could supplement the discussion there. For the cases o = 1,
B = £1 in (2.1), we still have to depend on Skorokhod (1954) for asymptotic
expansions: these are also reproduced in Ibragimov and Linnik (1971).

PROPOSITION 4.1. Let p(z, 1, 3) denote the density function of the stable low
exp(—¥a), witha =1, p=0, X =1in (21) Then,

14 1 1
plz,1,8) = (*ﬂ_—ﬁ) S to (;5> as x — *oc (respectively).

Proor. We have
(4.1) 7mp(z,1,8) = Re /000 ¢ Hamtrilblogt gy g — 98 /5
= /OOO e " cos(tz -+ Otlog t)dt
= fom costz - e cos(ft logt)dt

o0
—/ sintz - e ‘sin(0tlogt)dt
0

=1z} + Ix(z), say.

int
Ii(z) = ? r; Lot cos{ftlog t)|5°

1 /% si
P / %c—t{coswt logt) + 0(1 + log t) sin(ft log £) }dt
T Jo T
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on integrating by parts. The first term on the RHS above is zero. Integrating by
parts again in the second term, we have

i1 1 i .
(42) @L(z)=—5 - = / cos tme*{cos(ﬁt logt)[#2(1 + log t)* + 1]
Z Ja
+ sin(#t log t} [% — 26(1 + logt)] }dt
1 1 o0 o0
= — + — costmey (B)dt,  where f |1 (Y| dE < o0,
z? oz o 0

noting that sin{#tlogt)/t ~ Ologt ast — 0+ and fUl |log t|dt < oo.

costx
L{z) =

e tsin(ftlogt))F

- é / costze” {0 cos(ftlogt)(1 + logt) — sin(0tlog t)}dt
0

on integrating by parts. The [rst term reduces Lo sero. Integrating by parts again
in the second term, we have

5 o
(4.3) I(z) = F/ e_tsmtm cos(0t log t)dt
0

+ % | et sinta{sin(ftlog t)[1 — 62(1 + log t)?]
0
— 20 cos(ftlogt)(1 + logt) pdt

— Iy(z) + La(z),  say,

where
44 2?Lz) = f sin lode()dt,  with / {8} dt < 0o,
0 0
‘We check below that
(4.5) 2 I3(z) — iﬁg =473 as 1z — Foo (respectively).
For definiteness, let z > 0. Given € > 0, choose and fix R to satisfy both the
conditions
R _. o0t

(4.6) (a) E —/ n < e, (b) ] St <e

2 a v R t

We have by the dominated convergence theorem,

Bz ALL L6 i :
]o e’ bu; = cos(0tlogt)dt = ] e~ (w/m) Y g (9% log (E)) dv

0 )

B sinw
— ——dv  as I - 00,
0 v




GEOMETRIC-STABLE LAWS, RELATED PROBLEMS 309

so that, for some X (= 1),

Rz : B .
(4.7} / ot o cos{ftlogt)dt — f MY | e for 22> X
0 t 0 U
By (4.6b),
0 H t o0 ,—t
(4.8) / e_t¥ cos{ft log t)dt1 < / PTdt <e for z>X.
R ’ Ra

(4.6a), (4.7) and (4.8) imply that (4.5) holds as © — oo. I3(-) being an odd
function, {4.5) holds as @ — —oc also.

The proposition then follows from relations (4.1)—(4.5) and the Riemann-
Lebesgue theorem applied to ¢; and 05.

Remark. p(z,1,1) — 0 as z — oo more rapidly than any given negative
power of z; dually for p(z,1,—1) as z — —occ. As stated above, a precise estimate
is given by Skorokhod (1954).
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Appendix. GS laws and GDA's

In the classical theory of limit distributions for sums of independent ran-
dom variables, the concepts of ‘domain of attraction (DA)’ and ‘domain of partial
attraction (DPA)’ to {qualitying) limit laws are well-known—see, for instance,
Gnedenko and Kolmogorov (1954), Sections 35-37.

Their ‘geometric’ analogues may be defined as follows, as in Mohan et al.
(1993). N, will denote a r.v. with the geometric d.f.: P{N, = j| = p(1 — p)i~ 1 for
j=1,2,...,and 2 will, as usual, denote convergence in distribution/in law.

The law H will be soid to belong to the geometric domain of partial attraction.
(GDPA) of the law F if, for some p, with p, — 0, there exist {on some pr. space)
iid.r.v.’s X; with H as d.f., and r.v.’s Ny, , independent of the X, such that

2

Pn

(A1) (X; —cn)/an S F

~
Il
fu

for some sequences {a,}, {c,} of real numbers, with a, > 0 ¥n. Here, we write

Zy, “, F to mean that the corresponding sequence of d.[.’s (of the Z,) converges
vaguely to F.

If ¢, = 0 V¥n, in the above set-up, H will be said to be in the strict-sense
GDPA of F.
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If p, = 1/n ¥n, H will be said to be in the geometric domain of attraction
(GDA) of F; if, in addition, ¢, = 0 Vn as well, to be in the strict-sense GDA of
F.

Mohan et al. (1993) established (among other related results) the following:

(a) A law with non-empty GDPA is necessarily GID.

(h) If the strict-sense GDA of F is non-empty, then F ig necessarily geo-
metric-strictly-stable {GSS).

(c) If h belongs to the GDPA of the {GID) law with ch.f. 1/{1 4 ¢, then h
belongs to the DPA of the (ID) law ¢~ ¥, and converscly.

{(d) Tf h belongs to the strict-sense GDA of the {GSS) law with ch.f. 1/(1+1),
then h belongs to the strict-sense DA of the strictly-stable law with ch.f. e ¥, and
conversely.,

(e) A GSS law belongs to its own strict-sense GDA.

Also, in the classical theory, it is well-known that a law with non-empty DA
is necessarily stable, and that a stable law belongs to its own DA,

We examine below the corresponding problems for GS laws: cf. (c), (b) and
(d) above, respectively.

THEOREM A.1l. A GS law belongs to its own GDA.

Proor. Let fo = 1/(1 +¢4), 0 < a < 2, where v, is given by (2.1}. We
take:

1 1
an = nt/®, cn,u,(m——), for a#1 or 2,

n
an =% e = (28M/m)(logn/n), for a=1,
and

1 1 2\ /2
= > 1/2 M = —_— ‘= ,Ur_ =
G = Cn'%, o= (c-nlf? n) , € (1 + 2)\) , for a=2.

Straightforward computations show that, for the above choice of constants, as
n — 00,
nf{e* (14 valt/an)) — 1} — ¢alt), VEC R,
equivalent to
U, (t) .
un () + n{l — un(8)}

where
(A.2) un(t) = falt/an) - €77,

It readily follows (cf. Mchan et ol {(1993)) that {A.1) is satisfied for the above
choice of the constants, with p, = 1/n ¥n. Hence the theorem.

THEOREM A.2. A law with non-empty GDA is necessarily GS.
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ProoF. Proceeding as in the proof of assertion (a) above (Theorem 4.1 in
Mohan et al. (1993)}, we see that if u, is defined as in (A.2) above with A in place
of fo (h being in the GDA of f), we must have

1 1
fit) = lim = ,  say,
n—oo L+ n{l —u,(t)} 1+t
so that
(AS) c—w{t) — e limn{l—un(t)}

— lim{un (B} since 1 —up(t) = O (M)

n
= lim {h (i) } et
an

for some real sequence {py }. As is well-known, (A.3) implies that e ¥ is a stable
ch.f. Hence the theorem.

Conversely, let b € DA(e™¥), where ¢~¥ is a stable ch.f. By definition, then,

for gome real seqnences {a,,}, {{tm} with a., >0 Vn,
(A.4) {h(t/an) et e PO Ve R, as n— o0
We show below that, for some real sequence {vy, },

(A.5) () = lim n{l — h(t/ag)e™ '} vt € R.

00

A first-principles proof may be obtained as follows, proceeding as in the discus-
sion of the central limit theorem in the context of “row-wise independent, uniformly
asymptotically negligible summands” as, for instance, in Loeve (1960), Section 22.

Let H, = H{a,'), where H is the d.f. with h as ch.f. For some arbitrarily

fixed 7 > 0, let 73, = f]m|<T tdH.(x), Hy = Hp(- + 1), by and Ay, be the ch.f’s of

H,, and H,, respectively, so that hn(£) = h(t/an), hn{t) = hy(t)e ™. Then, for
a fixed & > 0, we have the cstimate {op. ¢it., p. 301):

b b
(A.6) max 1/ (t) = 1] _<c~n/ |Iog;hﬂ(_t)||dt—>c-f Re o (t)dt
[ <b 0 o

for a constant ¢ = ¢(r,b) > 0, taking {A.4) into account for the last assertion.
Hence {for large n for any fixed t)

nllog ha(t) — Bn(t) + 1| < nlha{t) = 1* =0 as n— o,
and, therefore, for a real sequence {\,},

(A7) n(h,(t) — 1) +idat — —¥{t) as n— oo,
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{A.6) and (A7) imply that {A,} is a bounded sequence, so that
(A.8) Pr =Xy /m=0(1/n) and -0 as n — oo
We now note that

In(halt) — 1+ ippt) — n(ha(t)ent — 1)
= [n{Rn(t) — 1)1 — ) + n(1 + ipat — 7))
< nffin(t) = Ulpallt] +0lpa’t® =0 as n—oc Ve R,

in view of (A.6) and (A.8). It follows that
n(hn(t)e’* — 1) — —{t)

which is the same as {A.5). Hence the converse part of our assertion below {The-
orem A.3) follows.

A quick proof of the converse part, appealing to Gunedenko’s “transfer theo-
rem” as in Mohan et al. (1993}, would be:

With p, — 1/n, Nymy/n->E

where F is the standard exponential di., since the ch.{ of the rv. on the
left = ¢/ /(n — (n 1)eit/"} — 1/(1 —it) as n — oo V¢ € R.

Let the X; be ii.d. r.v.’s with d.f. H in the domain of attraction of the stable
ch.f. 7%, so that, for suitable {a,}, {c.},

Z n) /iy A F, thestable d.f. with e ¥ asch.f.

Then, by the cited theorem due to Gnedenko,

Naym

Z (X *'Cn)/an‘{iga

j=1

where g, the ch.f. of G, is given by [[°{f(t)}*dE{z) = g(t), so that ¢ = 1/{1+ ),
and H belongs to the GDA of the GS law with 1/(1 + ¢} as ch.f.
The following is immediate from the above.

THEOREM A.3. h © GDA(f) if and only if h € DA(e ¥), where f =
/{1 +1) is a GS law (and ™% is a stable law).

1t follows that the necessary and sufficient conditions for H to belong to the
domain of attraction of the stable law with e=¥= as ch.f., as given by Theorems 1
and 2 of Section 35 of Gnedenko and Kolmogorov (1954}, hold verbatim for H to
belong to the GDA of the GS law with 1/(1 + %) as ch.f.
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