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Abstract. Let Z be a random variable with the distribution function G{z)
and let s be a positive random variable independent of Z. The distribution
functlon F{x) of the scale mixture X = sZ is expanded around G{z} and the
difference between F(x) and its expansion is evaluated in terms of a quantity
depending only on G and the moments of the powers of the variable of the
80 — 1, where p(c» 0) and 6(= *1) are parameters indicating the types
of expansion. For § = —1, the bound is sharp under some extra conditions.
Sharp bounds for errors of the approximations of the scale mixture of the
standard normel and some gamma distributions are given sither by analysis
(6 = —1) or by numerical computation (§ = 1).

form s
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1. Introduction

Let Z be a random variable with the distribution function G(z) and let s be a.
positive random variable independent of Z. The random variable X = sZ is said
to Le a scale mixlure of Z with the scale factor s, and its distribution function
F({z) is given by

(1.1) F(z) = Pr{X <o} = £,[G(zs™")].

In many statistical situations, s depends on sample size n and approaches to a
constant (= 1, if suitably normalized) as n tends to infinity. Studentized statistic
Y /v, in which Y and v are independent, ¥ /o follows the known distribution, and
is an estimator of the squared scale factor a2, is a typical example of scale mixtures
with s = {(v/a)~!. Usually the distribution & is basic and well-known, whereas F'
varies according to the distribution of s, and becomes more complicated. Study on
approximations of F'{z) and evaluation of its error bound has heen made, assnming
that ( is either the standard normal or gamma distributions. They depend on
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the distribution of s only through its moments. For a review, see Fujikoshi and
Shimizu {1990) and Fujikoshi (1993).

The purpose of the present article is to give a unified result in a more general
setting and to obtain, by way of a simple analysis, improved or even sharp error
bounds for two types of approximations. Numerical examples will be given for the
scale mixtures of the standard normal and gamma distributions.

2. The main result

We tacitly assume that the scale [actor s is close to onc in some sense. To
make our unified argument as simple as possible, we introduce the following trans-
formation:

&p

s=y or y=s%"

where & = £1 and p is a positive constant, which can be sct to be 1, 1/2 or any
other values depending on the situations. Suppose that the distribution G has
either R = (0,00) or R = (—00,00) as its support and is k times continuously
differentiable there.

Let g{z) be the probability density of & and for j = 1,...,k, let ¢s;(z) be

defined by o .
(07 /0y )G ay™ ") lym= 8 - co1(z) - gla),

max{G(0),1 - G(0)}, if j=0,
g5 = {(l/j!) Sl;plcé,j(ic)‘y(w)) R

and write

I'irst, we prove the basic

LEMMA 2.1, For eachy > 0, the distribution function G(zy%?) of the con-
ditional distribution of X = y*?Z given y can be put in the form

(2.1) Glay™"") = Goplz, y) + Dsp(z, ),
where
G(x), if k=1,

2.2 Goplx y) = k- :
(22)  Goule.y) Z LR

and
(2.3)  [Aspl@g)l Cesplyvy ' - 18

The ineguality cannot be improved. In other words, the constant cgr cannot be
replaced by any smaller values.

Proor. Put Qso(x) = G{x) and for j — 1,2,...,k, let Qs ;{x) be defined
by the recurrence relation

Qsj(x) = —(F — 1)Qs5-1(2) — & g,dQsé—;Cfﬂ)
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It is easy to see, by mathematical induction, that we have

(07 10y )G (zy *F) = Qs 3(zy > )y

In particular, Qs;{z) = —8&cs;(z)g{z), and applying Taylor's Theorem to
G{zy~%*), we obtain (2.1), (2.2) and
(2.4) As il y) = (6 /ktesr(w)gluhyg " (v — 1),

where u = zy, %7 and where iy is a positive number lying between 1 and y.
Inequality (2.3) itself and that it cannot be improved are simple consequences of
(2.4). 0
LEMMa 2.2, We have for allz and 0 <y < 1,
|Asx{z,y)| < Dsg = asp + 051 + - + 0 p—1-

If e-1,;(x) has the same sign as x for all x and j, then we can take

D—l,k = 0_1,0 fOT‘ k Z 1.

Proor. The case k = 1 is clear. In general, we have for k > 2,
k=1 _
|As k(. 9)| = [Glay™"?) = Glz) + Y (8 /)es (x)g(z){(1 — )]
i=1

< 1G(ey) — )| + 3 (1D ies (#)]g(2) < Do
=1

To prove the second half, let z > 0. Then, ¢ ;(z)g(z} > 0, and

0< —Ak(e,y) = (1/ke 14(wg(u)ys (1 — y)
= G i(z,y) — Glay”)

k—1

—c@ -y U j,y” c_1;(@)g(z)  Clay?)
3=1 ’
< Glz) — Glzy”)

<a_1p.
Same argument can apply to the case z < (. O

The lemmas make it possible to construct an approximating function to the
distribution function F{z) of the random variable X = y**Z and to obtain its
error bound: writing Gs x(z) = Ey[Gsx(z, y)], we have from Lemma 2.1

|P() = Gsele) < aspBllyvy™ - 1F.
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Note that the error bound depends on the tail behavior of ¥ '. However, in

practical applications we often encounter the situations where the moments of y
are computable, but that of 3% is not, or even does not exist. We, then, need an
error bound of the form

|F(2) = Gop()] € Bsplylly — 117
It is clear that we have only to prove the inequality
(2.5) |Gy ) — Gsplz,y)| < Hsxly—1|*, forall z and y >0,
or by introducing the nonnegative continuous function J(z,y) defined by

Glay™?) = Gsplz,p)l/ly — 1%, for y#1,
es1,n () |gle) /R, for y=1,

(2.6) Mz, y) = {

to prove the inequality J(z,y) < fsr.

In principle, the best possible value for G, & in (2.5) can be computed as soon
as the functional form of G is given, by numerically maximizing the J{z,y}, with
respect to x and ¢ > 0. In this article, we will first derive it for & = —1, under a
suitable condition, and an upper bound for Js g, under less restrictive situations,
by way of a simple argument. In the later section, we will present the best possible
values for 9  using numerical computations. Now we prove,

THEOREM 2.1. Pui
Bs,e = (a;:/kk + D;,/kk)k-
Then the ineguality
|Glay ") = Goplz,y)| < Bsuly — 1%,

holds for all z and y > 0.

ProOOF. Let ¢ be any given constant between 0 and 1. From (2.4) it follows
that for y = ¢,
|Agk(z,y)] < ¢ Fagply — 11

On the other hand, i 0 < y < ¢, then we have

|Asr(z,y)] =y — 175 As (2, y)ly — 1]*
< (1=¢) *Dsaly - L[

Equating the right-hand sides of the two inequality, we find that ¢ = {1 +
(Dsr/osi)t/*1 1 is the best choice, and this completes the proof. O

The following theorem is useful to obtain the sharp bound. Examples will be
given in the later sections.
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THEOREM 2.2. Suppose that G is analytic on its support and that e_y ;{x)
has the same sign as x for all x and j. We also assume that ¢ 1 ;{x)g(z} goes to
0 as |z| — oo, Then,

G(zy?) — Gtz v < Bovsly — 15,

where _1 5 = a_1,0. The positive constant §_1 ;. cannot be replaced by a smaller
one.

PrOOF. In view of Lemma 2.1, we have only to prove

{2.7) sup sup J{z,y) — 10 = @ .
Tz O«<y<l

Let 0 << ¢ < 1 be an arbitrary number. If 0 < ¢ < ¢, then keeping the second half
of Lemma 2.2 in mind,

J(&E, y) < {1- c)_k‘Afl,k(wsy)‘ < (1 - C)_ka—l,ﬂ-

Suppose next ¢ < y < 1. For a given & # 0, G{xy*), as a function of y, can he
developed in a series around y = 1:

20

Gey®) = Gla) — Z ey j(x)g(z)

=1

J‘
0
— Gog( Z c-1,5(#}y ().
If @ > 0, then each term of the summand is non-negative and

o) = 0=+ 3 e (gle)
i=k
i—k

J
< Z (1 J,.C) c—1j@)y(w) = (1 — 7R A k(w0

The same argument can apply to the case z < 0 to obtain the same inequality.
(The only difference is that. the terms of the snmmand are all nan-positive in this
case, so that ¢_; ;(z) shonld be replaced by —c_; ;(2).) As ¢ is arbitrary, we have
proved the inequality J(z,y) < a_ o which is to hold for all z and 0 < y < 1. On
the other hand, we have, for any fixed =z,

sup J{z,y) > J(z, 1} = hilc 1x{z) g(x).
0<y<1
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In particular, the definition of the a_y ; leads to

1

sup_sup J(z,) > sup rle1 4(2)lg(z) = a1
T O<y<l ® .

As we have already proved the inequality sup, supg., <1 J(%,¥) < a1, We obtain

o 1,0 = v 1, Finally, we shall prove the equality in (2.7). Tn fact, we have from

(2.1) and (2.2},

ol

-1
lim limOJ(as,y) = |G(0) — lim ¢ G{z)— > (1/iYcoq;(x)g(x)

L0 Yy— E—00 .
j=1

=1- G(O)s

and similarly,
lim  Bm Tz, y) = G0).

r——co y—0

This means that

snpsup J(z, ¥) = a_1,0,
r y>0

as was to be proved. O
3. The normal distribution

Scale mixture of the standard normal distribution is of special interest and has
many applications. Suppose that Z follows the standard normal distribution with
the cumulative distribution function ® and the density ¢. Thus, we write ® and
¢ instead of G and g. As most applications are related to a certain studentized
statistic, it is natural to take p == 1/2 in this case. Therefore, we consider the
transform s — y = 2%,

Noting that

(@ /3y ) (ay ?) ymi= —(1/2) 01,5 ()o(2),

and
(07 /0y ) B(ay™?) |ym1= —(—1/2Y acy j{z)d(z),
where

a1 ;(x) = Haj—1(x) {Hermite polynomial)  and,

i1 ,
a—1,j(m) = Z(gz — 1)”(.7 . 1>m23‘2il’
i=0 ?
and where (27 — 1)1 = (2 — 1) - (2§ — 3)---3 - 1, with the convention (-1)!! = 1,
we obtain from (2.2}
O{x), i k=1,
k—1

JOEDY ;_Jj[ﬂé,j @)y — 1Y elz), if k=2
i=1

{3.1) Psplz,y) =
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Table 1. The polynomials as ; (x).

j ay,;(z) a—1,;(z)

1 @ x

2 23 — 3z 4z

3 2% —10z% + 15z 2% + 223 + 3z

4 27 — 212% + 10523 — 105z T + 82°% + 9z°% + 15z

5 x? — 3627 + 378x% — 126023 4+ 945z 2% 4+ 4’ + 1825 4 6023 + 105z

6 211 — 552° 4+ 99027 — 6830x° 2l 4+ 529 4 3027 + 15025 + 52523 4+ 945z

+173252% — 103952

Table 2. The numerical values of oy ;.

) 0 1 2 3 4 5 6
oy 0.5 01210 0.0688 0.0481 0.0370 0.0300 0.0252
a1 0.5 0.1210 0.0791 0.0608 0.0501 0.0431 0.0380

For the derivation of these formulas, see, e.g., Shimizu (1987), Fujikoshi and

Shimizu (1990}, Fujikoshi (1993). Polynomial as;(z) and the numerical values
of

as,; = sup{las,;(z)|e(x)/(27 - 50}

for small jo are listed in Tables 1 and 2, respeetively.
By setting cs ;(z) = 2 7as ;(x) we can use Theorems 2.1 and 2.2 to obtain,

|F(5) — 4 (@)| < BouB|52 — 1]%],
where
o(z), if k=1,

(3:2) Par(®) =9 g - 223‘ as,j(2)$(@)E[(e¥ — 1)), if k2

and where the constants s, are defined by

(3.3) Be=(af +DYIE, and B =172

Table 3 gives some numerical values of #’s.

We note that Table 3 shows that our result gives substantiat improverments
on the previously obtained upper bounds: §1p = 1.94 (Hall (1979)), (12 = 2.48,
14 = 11.26, B1 6 = 51.24 (Shimizu (1987})), G- 9 = 1.84 (Fujikoshi (1987)). On
the other hand, the method used here for é = 1 gives only very poor results as
compared to the case & = —1. We shall give sharp bounds in the later section.
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Table 3. The numerical values of 8¢ 1.

k 1 2 3 4 5 6
Bre 0621 0.940 1939 3471 6.320 11.66
Bax 05 05 05 05 05 0.5

Ezxample. (t-distribution) Let x2 be a chi-squared random variable with de-
gree of freedom n, and let s — /n/x5. Then the variable sZ follows the t-
distribution with the degree of freedom n, with the distribution function Fy,(z),
say, which is approximated by (3.1) with § = —1, and an upper error bound
3.5 E(s 2 —1)*. It is easy to see that

B(s™2P) = n(”‘*'z)(n‘{‘ﬂ;‘ (n+2p — 2)‘

which, in turn, implies that if k is even, then both E{s~2 ~1)*~1 and E{s72 - 1)*
are of the order n=%/2, In particular, we have Z(s~2 — 1) = 0 and B{s~2 1)? =
2/n. It follows that for & = 2, F,(z) can be put in the form

F’n('ﬁ) - @(CC) + 0/”’7

where and in what follows § denotes a quantity not greater than 1 in the absolute
value. If & is an even integer greater than 2, then, by combining the last term
of the summands on the right-hand side of (3.1) with the error term we see that
F,(z) can be put in the form

Fﬁ($) — (I)ik_l’k(.’ﬁ) + 9Pk(n)n7k+1

where
k/2—1
B (o) = B(x) — ¢ D (Agyoia{m)n 5 4 Ay (@)n™H ) b ()
G=1

with Ap; 1 3(z) and Az x(2) being polynomials of degree at most. 2k —5 and where
Py(z) is a polynomial of degree k/2 — 1. Thus, for example,
() — (2% + 2)p(z)/dn + 8(7/n? + 24/n3) (k=4), and
®(x) — {{2® + 2)/4n + (327 + 252° + 592> + 93z)/96n°

+ (27 + 32% + 92 + 152)/8n%}o(x)

+6{67/n° + 1057/n* +1920/n°} (k= 6).

Folz) =

Rernark. Shimizu (1995) obtained somewhat stronger result which states

(3.4) Pr{X € A} -—f e ()| < 4y Blls? — 1%,
A
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where A is an arbitrary Borel set in R and ¢; ;(x) is the derivative of ® (z}, i.e.
it S
dralz) =) mﬂzg'($)¢($)5((32 -1/

=0

and where y1 = 2.0, 2 = 2.142, v3 = 11.353, and 4 = 23.678. Of these the first
two are known to be sharp. The sharp bounds for £ = 3 and 4 are conjectured to
be 2.227 and 2.287, respectively. In any case, by taking 4 = (~co. z], inequality
(3.3) becomes

|F(x) — ®14(z)] < wE[ls® - 1/F].

Compare the values of +s with those of 8s in Table 3.
4. The gamma distribution

Scale mixtures of chi-square distributions are also basic, and appear in many
applications. More generally, we can consider mixtures of gamma distribution with
the distribution function G(x; A) and the density g{z; A) = e ®z* 1 /T{)\) (z > 0O).
The approximating function corresponding to {2.2) is given by

G(z; ), if k=1,

4. DA = k-1 61 .
(4.1) Goplzy:A) G(z; ) — Z J_fcrf,j (z; Mglz; My — 1), if k>2,
j=1
where

eq,5(e A) — :t'Lglyl (), and ey (z3 ) — (ﬁl)ijgi_Lj) (2},

and where Lz{f‘)(m) is the Laguerre polynomial defined by Lg’\) (z) =1 and

LV (z) = (—1)Pz™ e dP (P e %) /dz?)
- P
=Y (-Dfp+A® (ﬁ)ﬂ—f.
£=0)
Derivation of the polynomials and the numerical values of
2o,k (A) = sup oo (5 A)gla; A) /K

were given in Fujikoshi (1987, 1993), and Fujikoshi and Shimizu (1983, 1990).
They are cited in Tables 4, 5 and 6 below.

Now we can use Theorems 2.1 and 2.2 to obtain

|F(z;0) — Gl N)| < Bsx(ME[s® ~ 117,
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Table 4. The polynomials ¢4 4 (3 A).
j 1,40z A) co1,3(wA)
1 T z
2 zlx—A—1) (r+1-=2A)
3 w{z? — 2(A + 2z z{z? +2(1 — Mz

+FA+ 10+ 2))
4 z{zd — 3(\ 4 322

+3(A+2)(A+ 3

—(A+ 1A+ 2)( A+ 3)}

+{1 — A2 -2}
z{z? + 3(1 — A)x?

+3(1 = A)2 = A

(1 - M2 - A6 - An

Table 5. The numerical values of «y {A).
N k
0 1 2 3 4 5 6
0.6 1.0 0.2420 0.1377 0.0962 0.0739 0.0600 0.0505
1 1.0 0.3679 0.2306 0.1682 0.1325 0.1093 0.0930
1.5 1.0 04626 0.3135 0.2380 01920 0.1648 0.1576
2 1.0 05414 0.3919 0.3086 0.2549 0.2567 0.2507
25 1.0 0.6103 04675 0.3809 0.3558 0.3677 0.3663
3 1.0 0.6722 05414 0.4552 0.4708 0.4985 0.5062
Table 6. The numerical values of a_q g(A).
5 k
0 1 2 3 4 ] 6
0.5 1.0 0.2420 0.1582 0.1215 0.1002 0.0861 0.0759
1 1.0 0.3679 0.2707 0.2240 0.1954 0.1755 0.1606
1.5 1.0 04626 03701 0.3243 0.2954 0.2749 0.2186
2 1.0 0.5414 04630 0.4250 04016 0.3853 0.3731
2.5 1.0 0.6103 0.5517 0.5271 0.5142 0.5067 0.5023
3 1.0 0.6722 0.6375 0.6333 0.6393 0.6393 0.6472
where
(o, (NYE 4 Dy o (N/EYE ifsither § =1 or A > 1

(42)  Ba()) = { 1

¥

and where

D5 1(A) = Dsa(A),
D],k(/\):1+CY1,1(}\)+"'+041’;C_1(A) (k‘

and

if §=—1and A<,

> 3).
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Table 7. The numerical values of F; 5 (3).

k

1 2 3 4 5 6
0.5 1.242 2207 3.880 6.947 1265 23.34
1 1368 2722 5.100 9.511 17.83 33.60
1.5 1.463 3.131 6.136 11.80 22.7T9  45.54
2 1542 3.488 7.095 14.00 28.13 5H.88
2,5 1.611 3.813 8011 16.80 36.08 76.12
3  1.673 4.117 8.902 19.70 4355 94.14

Table 8. The numerical values of 8_; x(A).

k

1 2 3 4 5 6

05 1.0 1.0 1.0 1.0 1.0 1.0

1 1.0 1.0 1.0 1.0 1.0 1.0
1.5 1.463 3.305 6.977 1444 2953 56.38
2 1.542 3.694 8154 1748 36.90 77.19
2.5 1611 4.047 9.272 2049 4437 94.92
3 1.873 4.375 10.37 23.60 52.14 113.8

Values of 85 arc given in Tables 7 and 8. Compare these with

B12(1) < 2.77 (Hall (1979)), and B_12(1) < 4.47 (Fujikoshi (1987)).

5. Numerical results

As we saw in the previous sections, the method given in the general setting
only gives poor results for § = 1. In this section, we use the numerical method
applicable, in theory, to arbitrary cases, including the case 4 = 1. For a given
y{0 < y < 1), we maximize the absolute value of

Ay (z,y) = B(zy /%) - | B(e) - i (2)(2)(y — 1y

To this end we search for the zeros of

A k{2, y)
(” ?/) = ‘/_—“——}‘é“m—

k—1

=y~ exp(-2?/2y) ~ Zoza = Ha @)y — 1Y -exp(~a?/2).
J:
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Letting u = x%/2, the zeros of fi(z;y) are found by locating zeros of

k—1
—_ ! 1 ;
(6.1) I(u) =y~ /et — ZU mHQj(V 2u)(y — 1),
j=
where A — 1 — 1/y. Dillerentialiug,
. i o
I(J)(u) = 861(?) = y_l/zAjeAu + polynomial of degree kb — j — 1.
U

In particuiar, we have
I(k—l)(u) — y71/2Ak710Au . (y o Uk—l:
which has the unique positive zero

{261y

2(y — 1) log -

Up =

Starting from this, we can find at most two positive zeros of I%=2)(y), and then
al wosl Lhree positive zeros of 1%~ (y). Continuing this process, we arrive at
k positive zeros ui,ua,...,u; of I{u}. Thus, for each given y, the maximum
of |A1x(z,y)/{y — 1)*| will be attained at one of z; = /2u;, j = 1,2,..., k.
In this way, we have obtained numerically that for k < 6, the ratio J(y) =
sup, [Aq (2, y)]/|(y — 1)*| is monotone decreasing and ), is obtained as
limy_,0J(y). In fact, 81 % = 0.5, k < 6 for the normal distribution. A simi-
lar argument can apply to the scale mixture of the exponential distribution and
we obtain, 1 x(1) = 1.0, for k& < 6.
Compare the results with Tables 3 and 7.
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