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Abstract. We discuss the asymptotic properties of some tests to detect pos-
sible changes in the mean of linear processes.
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1. Introduction and results

Testing for a change in the mean of a sequence of observations is one of the
most basic and important problems in change-point analysis. Assuming that the
observations are independent normal random variables, Sen and Srivastava (1975a,
1975b), Worsley (1979, 1986) derived several methods to test for a shift in the
normal mean. Yao and Davis (1986), Haccon et al. (1988), Gomhay and Horvath
(1990, 1994) and Horvdth (1993b) derived the asymptotic distribution of the max-
imally sclected likelihood ratio when changes in the parameters of the observations
are tested for. Without assuming any parametric form of the distribution functions
of the observations, Page (1954, 1955) and Csorgd and Horvath {1988) studied the
detection of changes in the mean. Picard (1985), Kulpelger (1985), Giraitis and
Leipus (1990, 1992), Tang and MacNeill (1993), Ilorvath (1993¢) and Davis et ul.
(1995) considered tests when the ohservations are dependent. For the estimation
of the time of change in the mean of dependent observations we refer to Picard
{1985), Bai (1994) and Horvith and Kokoszka (1995).

We agssume that the observations {X;, 1 <4 < n} satisfy the model

X =ty by 1=<i=<n,

where the errors {e;,1 <14 < n} are given by the linear process

(1.1) £; = ) Qi€i—j.
bLj<oo

We wish Lo test Lhie null by pothiesis

Hotpn=pz == pn
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272 LAJOS HORVATH
against the alternative H4: there is an integer £*, 1 < k™ < 1, such that

fy o= S R LT Yl

The tests for H, against H4 will be based on functionals of

{ef. Theorems 1.2 and 1.3 for the distribution of weighted supremum functionals),
where ,
nV? 3 X, if 0<t<l
1<i<{n+1)1
nH N X, iIf t=1.
1<i<n

Z.(0) =

Throughout this paper we assume that

(1.2) {€;,—00 < i < oo} are independent, identically
digtributed random variables with Fe;, =0,

0<o?=Fe < oo and Elg]” < oo with some v > 2.

The random variables ¢; are smooth with density function f satisfying

]‘ o)

(1.3) sup AH/ Pl s) — f(8)dt < oo
Also, the condition
(1.4) ap = 0(k™7), as k— o0, withsome > 3/2
holds. Let

g(z) = Z arz®, zeC

0<k<o0

and assume
(1.5) g(z) #0 forall lz|<1.

We note that conditions (1.2) and (1.4) imply that

Fe; =0 and vare; = o° Z ai < o,
0<k<oo
First we obtain the necessary and sufficient condition for the weak convergence of
Z? in weighted metrics. Using weight functions we can improve the power of the

tests if the change occurs at the beginning or at the end of the observations (cf.
Picard {1983) and Csorgd and Horvath (1988}). Let

2

(1.6) % =g° S: a; | >0

0< <o
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(1.7) Q= {q : inf  g(t) > 0,q is non-decreasing in

St l—e
a neighbourhood of zero and non-increasing
in a neighbourhood of one}.

The condition for the weak convergence of Z° in weighted metrics will be given
by the integral

1 2
(1.8) Is1(g.c) _/0 ﬁ exp (M) dt.

TrHrorEM 1.1. We assume that H,, (1.1)-(1.6) hold and ¢ < Q. If
Ini(g,c) < oo, then we can define a sequence of Brownian bridges {B,{t),0 <
t <t} such that

(1.9) supl \Zg(t) — 7By ()|/q(t) = op(1).

<t

If imsup,_4t/q(t) < oo, limsup,_;(1 — t)/q(t) < oo and (1.9} holds with a
sequence of Brownian bridges, then In(q,c) < oc for all ¢ > 0.

If we are interested only in the convergence in distribution of weighted supre-
mum functional of ZZ, it can be cstablished under weaker conditions than in
Theorem 1.1. Let {B(t},0 <t <} denote a Brownian bridge.

THEOREM 1.2, We assume that H,, (1.1)-(1.6) hold and q € Q. Then

(1.10) e |Z3(0l/a(h) 2 sup [B@)|/g(2)
wined
(L.11) sup ZA0/a(t) B sup B(t)/a(t)

if and only if In 1 (q,c) < oc for some ¢ > 0.

The variance of Z3(t) is proportional to 72t(1 — t). However, Io1((¢(1 —
£))1/2,¢) = oo for all ¢ > 0, so the results in Theorems 1.1 and 1.2 cannot be used
to get the asymptotic distribution of the standardized statistic

1 .
(1.12) T == sup [Zp()|/(#(1 - ))'/*.
T 0<t<l
Bai (1994) pointed out that T, is related to the generalized likelihood ratio, if

{ei,—00 < i < oo} are independent, identically distributed normal random vari-
ables. Let a(t) = (2logt)'/? and b(t) = 2logt + 3 loglogt — § log .
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THEOREM 1.3. If Hg and {1.1)--(1.6} hold, then
ﬂlim Pla{logn)T,, <t + b{logn)} = exp(—2e™ %)
for all t.

Theorems 1.1-1.2 will follow from a general invariance principle for tied down
partial sums of stationary sequences. The Appendix contains the results and the
proofs on weighted convergence of tied down sums of stationary sequence. The
proofs of Theorems 1.1-1.3 are given in the next section.

2. Proofs of Theorems 1.1-1.3

The first lemma will show thal {e; = Eo<g<oo‘1j5i—js —x0 < i< oo is a
stationary strongly mixing sequence. For the definition and properties of strongly
mixing sequences we refer to Ibragimov and Linnik (1971) and Philipp and Stout
(1975).

LEMMA 2.1. If (1.1)(1.6) hold, then {e; — oo < i < oo} is a stationary
strongly mizing sequence with mizing coefficient p(k) = k=% with some a > 0.

Proor. Thke result follows from Corodetekii (1977) and Withers (1981).

Combining Lemma 2.1 and the strong approximation of partial sums of
strongly mixing random variables, we get the next lemma.

LEMMA 2.2, If (1.1)-(1.6) hold, then we can define a Wiener process {W(t),
0 <t < oc} such that

(2.1) S e Wk ok 27
1<i<k
with some 3 > (.

Proor. It follows from Lemma 2.1 and Theorem 4 of Kuelbs and Philipp
(1980).

Now it is very easy to prove Theorems 1.1 and 1.2

Proors or THEOrREMS 1.1 and 1.2,  Ii [ollows (rom Lemima 2.1 that

(2.2) 2 S P

1< (nd 1)t
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and by the modulus of continuity of Wiener processes (cf. Csorgs and Révész
(1981}) we have

(2.3) g > e~ TWiz)| /2" = 0p(1).

1<i<z

Hence by Lemma 2.2 condition C.2 in the Appendix is also satisfied and therefore
Theorems 1.1 and 1.2 follow from Theorems 3.1 and 3.2.

Proor orF THEOREM 1.3. Using (2.1) we get that
(2.4) 1Z.(1)] = Op(1),

and therefore the strong approximation in Lemma 2.2 and Darling and Erdés
(1956) yield

(2.5) (2r%loglogn) /2 sup |Z8(t)|/(t(1 —1))"/2 B 1
0<t<1/2

(2.6) (27%loglogn)™  sup  [Z3(t)]/(¢(1 — )2 51
0<i<1/logn

and

(2.7) sup  |Z3(8)]/(t(1 - £))V? = Op((logloglog n)*/?),

1/ log n<t<1/2

By the stationarity of {e;,1 <7 < oo} we get from (2.5)—(2.7) Lhat

(28)  (2r%loglogn)™? sup |Z2(8)|/(t(1 )2 51,

1/9<8e

(29)  (2r’loglogn)™?  sup  |ZR(1)]/(t(1 - 1)/2 D1
1-1/ logn<t<1

and

(2.10) sup Z28)] /(1 = 0))? = Op({logloglog n)'/?).

1/2<t<1~1/logn
It follows from (2.4), (2.6) and (2.9) that
(2.11) sup | ZR(8)|/(H(1 — 1))*?

0<t<1/logn

k172 1 Op((logl 172 11
= A > oo £((loglogn)'/#/logn)

1<i<h

and

(2.12) sup | Zp()l/ ((1 - )2

1-1/logn<t<l

1
= max T 75
n-n/logn<k<n (n - k)1/2

+ Op((loglogn)/?/logn).
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In light of (2.5) (2.12), Theorem 1.3 is proven if we show that

. . 1 1 _
(2.13) ?}iléop a(logn);lgkglﬁbxlognm K;kci <t | b{logn),

1
a(log n)l max m Z e;| < s+ b(logn)

T n—nflogn<k<n hizn
=exp{—(e™t +e7).

Since Lemma 2.2 and Darling and Erdés {1956) yield that

(2.14) T}LITOIOP a(logn)%lgkgl%ﬂgnkllm Z ;| <t 4+ b{logn)
1<i<k
=exp(—¢ ')
and
(2.15) lim P a(logn)l max L Z ;| < s+ b(logn)
n—00 T n—n/logn<k<n (TL — k)l/Q

E<i<n
= exp(—e™*),
(2.13) is established if we can prove asymptotic independence.
Let
Xin = Z aj€i—j, n-n/logn<i<n

N<5<n—3n/logn
It is easy to see that {X;,1 <4 < n/logn} and {X;n,n —n/logn < ¢ < n} are
independent random vectors. Next we note that
Xi—X,;,ni Z &jei_j, n—n/logngzgn
0<j< o0
where

. {O, if 0<j<n-—3n/logn
(Ij:

aj, if n—3nflogn < j < occ.

Using the proof of Proposition 1 of Bai {1994} we get

1
2.16 P max - X, - X, >
( ) n—n/logn<k<n (n— k)l/Q Z { i n) T
k<i<n
2

90'2 _ 1

<= SNoa| [+ > 5

0z j<o0 1<i<n/logn "

2

—

902 - logn
ey el (e
0<j<os \F<i<oo 1<€n
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Applying (1.4) we can find two coustauts €1 and Co depending on 0 only, such
that

2
(2.17) dooaj | <Omt
0<Lj<o0

and
2

(2.18) 3 N o | <ot

0<icon \j<i<oo

Choosing » = 1/logn in {2.16), we get from (1.4), {2.17) and (2.18} that

1

max T Z X
_ < — k)1/2
n—n/logn<k<n (N — k) E<i<n

i
max =TT Xin| +Op(1/logn),
n—n/logn<k<n (n—k)l/z k@Z_{ﬂ ) p(1/logn)

which gives the asymptotic independence in (2.13). 0

Appendix
Let {£x,—00 < k < oo} be a sequence of stationary random variables and
define
n /2 Z &, O0<t<l
S, (t) = 1<i< (n+10t
(1) =
T2 N g, if t—1.
1<i<n

We assume that
C.1 there is o > 0 such that

S () PSY oW 1),

where {W{t),0 <t < 1} is a Wiener process and
C.2 there are two sequences of Wiener processes {W;(1),0 < ¢ < oo},
{W*(t),0 <t < oo} and a sequence of positive numbers ¢, such that

max | Y & — oaWila)| /2% = 0p (1),

1<z<n -
T |1z

max Z & — o W) /z2/% = 0p(1).

1<e<n -
—r<i<—1

and
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0 < liminf o, < limsup g, < oc.
n—roo n—oo

We are interested in the weighted approximations of the tied-down partial sums
process
So{t) = Sn(t) —1Sa(1), 0<t<L.

We find the necessary and sufficient condition for the weak convergence of S (¢)
in weighted metrics, if conditions C.1 and C.2 are satisfied. We recall that the set
) and the integral Iy 1{g, ¢) are defined in (1.7} and (1.8}, respectively.

THEOREM A.l.  We assume that C.1, C.2 hold and ¢ € Q. If In1(q,c
For all c > 0, then we can define a sequence of Brownian bridges {B, (), 0< ¢
such that

<oo
<1}

(A1) S Sa(t) — o Bu(t)| /alt) = 0p(1).

If limsup, _gt/q(t) < oo, limsup,_ (1 — t)/q(t) < oo and (3.1) holds with a
sequence of Browntan bridges, then fq1(q,¢) < 0o for all ¢ > 0.

Proor. Tt follows from C.I that there is a sequence of Wiener processes
{W,.(#),0 <t <1} such that

sup [Su(t) — oWy (t)| = op(1)
0<t<1

(cf. Remark 2 in Shorack and Wellner ((1986), p. 49)). Hence

(A2) sup |S2() — 0B, (t)] = 0p(1),
0<1<1

where

(A'S) By, (t} - w/?’l(t) - H’Vn(l)'

We assume that Iy 1(g,¢) < oo. Then we have
(A.4) lim glt)/t"? = o0 and lim q(t)/(1 - Y2 = oo

(cf. Csorgd and Horvath {1993), p. 180). If {B(¢),0 <{ < 1} stands for Brownian
bridge, then

{(A.5) lim sup |B{#)|/¢{t) =0 as.

«—0pct<e

(cf. Csorgt and Horvdth (1993), p. 189). Next we show that

(A.6) lim lim sup P{ aup |82 /q(t) > ﬁ} =0
0<<le

el nooo
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for all & > 0. It follows from the definition of Sp(t) that

sup |S2()]/q(t) < Sup. 1Sa ()] /q(t) + Sup 1Su(V)[t/q(t)

O<t<e
and

sup |, (1)#H/q() < €/2(8a(1)] sup /2 /q(t).
0<t<e 0<i<e

Using C.1 and (A.4) we obtain that

(A.7) lim hmsupP{ sup |S.(1)[¢/g(t) > 6} =0
D<t<e

TT—r 00

for all & > 0. Next we note that

(A8 sup [Su(Bl/a(t)

= n_l/z sup Z &i /Q(t)
1/{n+1)<t<e 1<ig(nt1)t

<n Y2  sup Z & —anWo((n+ 1)t)| fa(t)
A SESC <<t 1)t

+n Y2 sup o [Wr{(n 4 1Y) /q(2).
1/(n+1)<t<e
By C.2 we have
n~Y2  sup Z & — o Wi ((n+ 1)1} /q(E)

W+ St<e |y cictnr1)e

1/2,,—1/2
< sup E & — on WK /EY? su ((n+1)t) n
12k<n || 52, 0x12e q{t)

t1/2
— O —_
p(l )0<t<€ q(t)

and therefore by (A.4) we have

&

1<i<{n+1)t

(A.9) hm lim sup P{ 2 sup
neoo (n+1)<e<e

— o Wi {(n+ 1)t}

/a(t) > 5} =0
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for all & > 0. Observing that

(A.10) a7 sup [Wi((n+ )6 /q(t)

1/(n1 1) <05

1/2
i») i
*( ) on  sup  W(B)|/q(t),
n+1 1/ (nd1)<i<e

we get {¢f. Csdrgd and Horvath (1983}, p. 189) that

(A.11) lim sup |[W{t)i/g(t) =0 as.

e=00ct<e

Putting together (A.7)-(A.11) we obtain (A.6). By the stationarity of {£;, —oc0 <
1 < oo} and C.2 we get similarly to (A.6) that

(A12) lim limsupP{ sup  [82(1)|/q(t) > 6} =0

=0 noo 1—e<t<]
for all 6 > 0. Similarly to {A.5} we have

(A.13) lim sup [|B(#|/q(t)=0 aa.
=01 el

Now {A.2), (A.5), (A.6), (A.12) and (A.13) yield the first part of Theorem A.1.
Next we assume that {A.1} holds. First we show that lim: ,ot/g(t) = 0. By
definition, S,(t) =0,if 0 <t < 1/(n+1), and therefore by C.1 we have

(A.14) sup 1S0(8)|/q(t) = 1Sa(1)]  sup  t/q(t) = Op(1)
0<t<1/(n+1) 0<t<1/({n+1)

and

(A.15) sup  |Sp(0)l/q(t) = Op(1).
n/{nt+l}<t<l

Hence (A.1) yields

(A.16) sup  [Bn{t)i/q(t) = Or(1)
d<t<l/(nt1)

and

(A.17) sup  |Balt)l/ait) = Op(1).
n/{n+1)<t<1

The distribution of 73, does not depend on n, and therefore Ini(g,c) < oo for
some ¢ > 0 {c¢f. Csorgd and Horvath (1993), p. 189). Since fo,1(g, ¢) < oo for some
¢ > 0, we also have (A.4), and therefore (A.14) and {A.15) can be replaced by

(A.18) sup [ Sp{t)l/q(t) = op(1)
0<t<t/(n+1)

and
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(A.19) sup  [Sa(5/q(t) =
nf(n+1)<t<

Thus (A1) yields

(A.20) sup | Ba{t)|/q{t) = op(1)
O<t< 1/ (n+1)

and

(A.21) sup  |Ba(t)|/q(t) = op(1).

nf{n4-1)<t <l

The distribution of B,, does not depend on n, and therefore by Csérgd and Horvith
((199%), p. 189) we conclude that Jy (g, ¢) < oo for all ¢ > 0.

The next theorem shows that the weighted supremum functionals of S% con-
verges in distribution under weoker conditions than nceded for weak convergence

in weighted metrics. Let {B(¢),0 <t < 1} be a Brownian bridge.

Trurorem A2, We assume that C.1, C.2 hold end g € Q. Ini(y,¢) < o
for some ¢ > 0 if and only if

(A.22) sup |S9(t)//q(t) Do sup |B()|/q(t)
<t Qt<]

and

(A.23) sup S2(t)/q(t) B o sup. B(t)/q(t).
0< <1 Q<t

PRrROOF. First we note, that if (A.22) and (A.23} hold true, then the limit
distributions are almost surely finite and therefore I 1{g, ¢) < oo for some ¢ > 0
(ef. Cséirgd and Horvath (1993), p. 188).

Next we prove that if I 1(g,¢) < co for some ¢ > 0, then (A.22) also holds.
Similar arguments give (A.23). Given ¢, by Lemma 4.1.1 in Csérgd and Horvath
(1993}, there arc constants 0 < ¢ = ¢,(g) < oo and 0 < ¢z — ea(g) < oo such that

(A.24) lim sup |B{#)|/q(t) =c1 as.,
—0p<t<e

(A.25) hm sup |B{t)|/q(t) =c2 as.
e—=0q e<t<1

and

{A.26) hm sup (W{t)|/q(t) =1 as.,
=00

(A.27) lim sup [W{{)|/g{l-t)=c2 as.,
eloqi<e

where {W(t),0 <t < oo} denotes a Wiener process. We use the construction in
Proof of Theorem A.1. It follows from (A.2) that

(A.28) sup - SR(1) — o Ba(t)]/a(t) = op(1)
esi<l—e
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for all 0 < € < 1/2. Next we show that

(A 20) lim lim sup .P{ sup |S2(8)]/g(t) — 1| > 6} =0
=0 n oo O<t<e

and

(A.30) lim Hmsup # { sup  |Sn(d)|/g(t) — ca| > b} =0
20 n—oo l—e<t<l

for all & > 0. Following the proofs in (A.7) and {A.8) we get that

n—oc

(A.31) 51_{11 limsup P{

sup |S,(t)l/q(t)
Q< t<e
Y2, sup W2t 1)t>|/q<t>{ > 6} 0

1/ {n+1)<e<ec

for all & > 0, where W are the Wiener processes in C.2. Using (A.10) and (A.26)

wc get that
> 6} =0

for all 6 > 0. Now it is clear that (A.29) follows from (A.31) and (A.32).

o, sup  [Wr((n+D0)/g(t) — 1
1/{nt+1}<t<e

n—od

(A.32) 11_1% lim sup P{
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