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Abstract., This paper provides necessary and sullicient conditions for a so-
lution to likelihood equations for an exponential family of distributions, which
includes Gamma, Rayleigh and singly truncated normal distributions. Fur-
thermeore, the maximum likclihood cstimator is obtained as a limit case when
the equations have no solution. These results provide a way to test departures
from Rayleigh and singly truncated normal distributions using the likelihood
ratio test. A new easy way to test departures from a Gamma distribution Is
also introduced.
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1. Introduction

Several kinds of statistical models are used to approximate data on non-
negative real numbers. The Gamma, Rayleigh and singly truncated normal distri-
butions are some examples which at the same time are exponential families. These
arc distributions of maximum cntropy associated with some sufficient statistics and
thorefore they frequently appear in many problems.

The main goal of this paper is to consider a larger family that includes these
three families in order to get a more general way of fitting non-negative data and,
morcover, to be able to test departures from the three classical familics against
this more general family, using the maximum likelihood estimators and likelihood
ratio test.

Barndorff-Nielsen and Cox (1979) proposed to introduce the statistic z? as
a dispersion measure in order to test whether the data are consistent with the
assumption that they come from a Gamma distribution, which is an exponential
family gencrated by the statistics {x, Log(z)). We consider the exponential lam-
ily, say P, generated by the statistic (z,2%,Log{z)). This family is a system of
asymmetric bell-shaped distributions which include and generalise the Gamma,
Rayleigh and singly truncated normal distributions. The family P had already

255



256 JOAN DEL CASTILLO AND PEDRO PUIG

been introduced by Toranzos (1952) as the solution to a differential equation, in
a similar way to Pearson’s system (sce also Johnson and Kotz (1970)).

Toranzos (1952) uses a recurrent formula for the moments, given in (3.1),
to provide an estimation of the parameters of the family £. This formula is
closely related to Ricatti’s differential equation and it can be used to describe
and ecompite the ecnmulant generating finetion of the distributions. However, the
estimation method is unsatisfactory because it can produce estimates outside the
domain of the parameters, as we shall illustrate with an example.

Family P iz also o particular case of one of the four types of exponential
families introduced in Cobb et al. (1983), as the stationary probability density
functions of a nonlinear diffusion process. These families are also the solutions of
differential equalions, in a similar way to Pearson’s system. The paper by Cobb
ef al. {1983) gives recurrent formulae for the momenss and, from them, exhibits
congistent asymptotically normal estimators of the parameters.

Here we study the likelihood equations of the family P from the point of view
of exponential families. In this context, see Barndorff-Nielsen (1978), for a regular
or a steep exponential family there is one and only one solution to likelihcod
equations, but P is a non-steep family. The main results of the paper, given in
Theorems 4.1 and 4.2, provide necessary and sufficient conditions for a solution
to likelihood equations for P and for certain sub-families P, with v fixed. When
v is larger than 1, these sub-families have an increasing failure rate and can be
uscd in survival analysis, see Ross (1983). Moreover, when v is equal to 1 we have
the truncated normal family and therefore cur results generalise some of Castillo’s
(1994).

In Subsection 6.1, we give an algorithm to apply the Newton-Raphson method
to the likelihood equations in the reduced form given in (3.11). We include a graph,
in terms of the coefficient of variation and the log-ratio between arithmetical and
geometrical means, which can be used to find an initial value for the parameters.
Lstimators (3.2) from recursive moment equations could also be considered as
starting points when they belong to the natural domain of parameters I,

Using maximum likelihood estimation for family P, we can test departures
from Rayleigh or from truncated normal distributions with the likelihood ratio
test, which is highly accurate {see McCullagh (1987) or Barndorff-Nielsen and
Cox (1989)). However, the Gamma distribution appears as a limit case in family
P and therefore the standard theory of likelihood does not work properly. In
this case, Theorem 5.1 provides a new easy way to test departures from Gamma
digtribution which is closely related to the main results of the paper. Subsection
6.2 shows that this new test can be more powerful than the classical EDF-tests
A2, W2 and U? for some alternatives even not included in family P.

2.  The statistical model

Some families of probability density functions are introduced by generating a
differential equation of the form:

2
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where g(z) and v(x) are polyuomials. Pearson’s system is a particular case, when
g{z) has degree 1 and v{z) has degree 2. Cobb et al. (1983) consider four important
cases on (2.1), assigning an arbitrary degree to g(x) and setting v(z) equal to 1,
x, 2% or z(1 — z). L'he family introduced hy Toranzos (1952) is a particuiar case
with g(z) of degree 2 and v(z) = z.

The integral of rational functions can always be expressed as a linear combi-
nation of functions such as:

(2.2) (zx—a)", Loglz—0b), Atan(z®+pz+q),....

Assuming the latter constants are known, the solution of {2.1) is always an
exponential family distribution with sufficient statistics given by the functions in
(2.2). In particular, the family introduced by Toranzos is the exponential family
generated by the sufficient statistic T'(z) = (z,z?% Log(z)}, with respect to the
Lebesgue measure defined only for non-negative values of . We shall express
these probability density functions in the [orm:

(2.3) plz;a, B,v) = 27 L exp(—ar — B/ Cle, B,v), (z>0),

where the normalizing constant is the Laplace Transform
20
(2.4 Clag = [ e expl-az - Gx)is
0

which converges fora ¢ R, 3 >0, v>0and ¢ >0, =0, v > 0.

Let © — {# = (0, B,0) rac R,A>0,1>0}, O={#=(o,00):0>
0,v > 0} and D = © U 8. We call D the natural domain of parameters for the
statistical model P of distributions given by (2.3). By P, (or simply P,), we
denote the distribution of P with v fixed and, in the same way, P, and P are
the distributions of P with « or 3 fixed.

The P-model includes the Gamma distributions, P.q_, as the limit case 3 = 0.
Then the 22 statistic can be used as a dispersion weasure in order to test whellier
the data are consistent with the assumption that they come from a Gamma dis-
tribution. This idea was considered in Barndorff-Nielsen and Cox {1979).

The sub-model Py, corresponding to a = (, is just the Rayleigh family of
distributions used in quality control. In fact the model P is the set of all distribu-
tions that can be obtained by ezponential tilting from the family of Rayleigh (see
Barndorff-Nielsen and Cox (1989)).

Another particular case is the sub-model Py, the left truncated normal dis-
tributions. The moment-generating function of P,. where n is a positive integer,
can be obtained by taking derivatives of the moment-generating function of P.

The shape of the probability density functions depends on the values of the
parameters. When 1 > 1, they are unimaodal and vanish at zern and af. infinity;
when v < 1, they tend to infinity at zero and are always decreasing or have a local
maximum depending on the values of & and S.

The sub-model P, with > 1 is uscful in survival analysis because in this
situation the logarithm of the probability density functions is concave and the
P, are distributions of increasing failure rate (IFR) random variables (see Ross
(1983)).
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3. The estimating problem

In the same way as Cobb et al. (1983), from (2.3}, (2.4) and integration by
parts we find the following recurrent formula for the theorctical moments pi:

(31) 20ks2 + Gflpyr = (I/+ k),u,k, kE=0,1,2,...

where jp = 1. Note that this allows us to calculate all the theoretical moments
once i1 18 known.

Toranzos (1952) has already remarked that by identifying the theoretical with
the empirical moments and successively giving the values 0, 1, 2, to k£ we may fit
the parameters hy snlving a linear system of equations. Given a random sample
&= (21,...,2,) with empirical moments mz = = 3 «¥, the solution of the linear
system is given by:

= (2mamsz — mymyg — mim3)/A,
= (mims — 2mj + myma}/(24),
(—2m3 + 3mymamg — mima) /A,

(3.2)

T T e

where A = m3 — 2mymama + mi + mims — mams. This method of estimation
is not the method of moments. Note that we use four moments to estimate three
parameters. These estimators are consistent and asymptotically normal (see Cobb
et al. (1983)). This method is simple but not very good because very often the
cstimated parameters do not belong to I, as we shall see in Section 5. Moreover,
since P is an exponential family, the maximum likelihood estimate is the best
estimation procedure. Tor instance, it depends on T, which is a sufficient statistic,
whereas the first moments are not.

Let K{c,j,v) = Log(Cla, 8,v)) be the eumulant function of P. The log-
likelihood function of the model can then be written:

(3.3) 1(0) = (e, 8,v;2) = n{—aty — Bta + (v — 1)t3 — K{eo, 3,v))

where (tl,fg,tg)" =t = ZT(Q’JQ)/’H Note that 1 = my, o = ma, 3 =
S Log(z;)/n. We define the mean value mapping: 7 = (71,72,73)/, on ©, by
7(8) = Eg(T). This mapping is one to one and continuously differentiable both
ways between © and T = 7(©) (see Barndorff-Nielsen (1978)).

Since Eg(%) = 0, the likelihood equations of the model P are

(3.4) @) =t, 6Heco.

When t € T, equation (3.4) have only one solution. Note that with our def-
initions 7(#) # %—‘g because of the signs that appear in (2.3). Howover, Fisher
information matrix F{#) = Eg[—%l = %, agrees with the natural parame-
terizations in exponential families.

The models P and P, are invariant when the scale of the data changes. That

is, if X is a random variable with probability density function p(z;«, ,v), then
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AX, for A > 0, has probability density function p(z; e/, 3/A%,v). This fact allow
us to reduce the likelihood equations. To this end, we introduce the functions:

(35) @y = / 2 tog®(z)exp(~z® — yx)dr, v=>0, s>0, yeR
0

Notice the differentiation properties of these functions

b d
(3.6) 6—7%(7) = —0ln(, el = AR C))

In numerical approaches the following expression can be used, obtained from
(3.5) using Taylor’s expansion for exp(—x) and taking integrals:

5 1 > (77);6 s v+k
(27 P27 = 5o kZ T =)
=0

where T0) is the s-th derivative of the Gamma Function.
We denote ¢! by ¢,. Notice that ¢, (v) = C{v,1,7). Then using (3.1) with
k = 0 we find the recurrent formula:

(3.8) 20u42(7) + w41 (7) — v () = 0.

Thie formula and the propertics (3.6) state that ,, is a solution of the Ricatti
equation:
28u(7) — 10 (7) = vpu(y) = 0,

where dot means differentiation with respect to - The solution can be expressed
in terms of Kummer’s Function R(a, b, ¢) according to:

puly) = Val(¥)2™ 2 i
BT /e w(237) /)

This is the solution of Kummer’s Differential Equation, ccf:T‘? +(b—c)iE _qR = 0.
For properties and more information about this function, see Abramowitz and
Stegun {1972).

The asymptotic behaviour of ¢, (v) when « tends to o0 and of @L{~) when
v tends to —oco will be needed to prove the main results. The following asymptotic
expansions can be obtained using Watson’s lemma (see Appendix) and the classical
methods described in Barndorft-Nielsen and Cox (1989) and Breitung (1994):

R .

(39) (M ~VT (—%)Wl exp (T—j) {1 + (’L%”——m +o (ig) } :

Y ¥
as ¥y — —00,
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en(y) ~ VT (—%)”_1 exp (j)

. {Lug (—%) + _(_vl%{#} Log(—v) + O (/12) } ,

¥rom (2.4) the cumulant function 18 now:

K(a,8,v) = - Log(8) + Loglpu{a/v/A)]

Taking derivatives, the likelihood equations are:

Y i/ :-——}—(TOU_F] ¥ =1
n{a, A, v) \/ﬁ (v//B) =1

(3.10) o .0) = 57 = ﬁi/;";j(a/\/ﬁ)ztg,

1
7alcr, B,v) = Log(1//B) + %(a/\/ﬁ) =

Now, equation {3.1{}} can be written in a more suitable form:

Tl(aaﬁa y) - tla
CV¥{a, 8,v) = ¢,
RM{a, 3,v) =,

whiere ¢ = {9/ 1 is the enipirical squared coellicient of variation, r — Log(¢1)—t3
is the logarithm of the ratio between the arithmetical and geometrical means,
CV? = 75 /72 ~1 and RM = Log(r1) —73. Note that CV? is the theoretical squared
coefficient of variation and RM is the log-ratio between the theoretical arithmetical
and gcometrical means. Due to the invariance with respoct to changes of scale,
CV? and RM depend only on v and v = «/+/F, and we can reduce (3.10) to
) —1=c
1
R (3,0) = R, 1) = Log (#21 ) ) - ﬂm -
P Y

Once we solve the system of equation (3.11) we can obtain the estimates of the
original parameters o and 3 by using the first equation in (3.10) and the definition
of ~.

In the same way we can obtain the likelihood equations for the family P,. In
fact these are the first two in (3.10), and the reduced form is only the first equation
in (3.11),

Notice that family P is not regular because D # © (D) is not open), but it
is also non-steep, as we shall see in the next section. Cobb et al. (1983), do not
seem to have been awarc of the fact that the family P is not steep and hence the
likelihood equations may have no solution. The same situation occurs for families

P,. For the Normal Truncated Family Pj, in particular, this problem is studied
in Castillo (1994).

CVi(y,v) = CV?(v,1,v) = = (z/ [ Pu (7)]2

(3.11)
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4, Characterisation of the domain of means

Let X = R™ he the sample space. Given any sample 2 = {x1,...,2,)" the
statistic t = > T'(z;)/n belongs to the closed convex hull of T{X'), which we denote
by C. Moreover, any neighbourhood of any poeint in € has non-zero probability
of including ¢ when the sample x comes from a distribution of P. Proposition 4.1,
proved in the Appendix, characterizes C for P and, in the same way, the set C,
for P,.

PROPOSITION 4.1.  The closed convez hull of T{X), for the model P, is the
set of points t = (t,13,t3)" defined by C = {t : t; > 0,42 > &3, Log(ty) — i3 = 0}.
In the same way, for the model P, and its corresponding sufficient statistic, the
closed conver hull is C, = {t 1 t; > 0,4, > 3}

Notice that for any sample of non-negative numbers the mean, the mean of
squares and the mean of the logarithm of the data define a point in C.

On the other hand, for a full exponential family we can solve the likelihood
cquation (3.4) only when ¢ belongs to the domain of means T, always enclosed in
C. An exponential family is said to be steep if |7(8)| tends to infinity as 4 tends
to any boundary point of the natural domain of parameters. In this situation the
domain of means is exactly equal to the interior of (' and the likelihood egquations
always have a solution (see Barndorff-Nielsen (1978)).

Proposition 4.2, proved in the Appendix, shows that the family P is a non-
steep family.

ProposITION 4.2, The functions 7; defined on © extend continuously to ©q.
Moreover, if a > 0 and 3 tends to O then

!

T—l(a,ﬁ,y}—)i!//ﬂf, TQ((}{,ﬁ,I/)—)V(J/-Fl)/O{Q, T3(a3f811/) - %(U)“Log(a)‘

Moreover, as a consequence of this proposition, it follows that P, is a non-
steep family for any v > 0; P, is regular for & < 0 and non-steep for o > 0; and
for any A = 0, P is always regular.

The following theorems determine the domain of means for families P, and
P, and so they establish the conditions under which the likelihood equations have
a solution. The proofs can be found in the Appendix.

THEOREM 4.1.  For families Py, likelihood equations have solution iff the
coefficient of variation of the sample satisfies ¢ < 1/v.

Note that for the Normal Truncated Family the theorem says that likelihood
equations have a solution iff ¢* < 1 {see Castillo (1944)).

Let (v} = ~.{v) be the solution of the likelihood equations established by
Theorem 4.1. Proposition 4.3, proved in the Appendix, shows us that () tends
to oc when v tends to 1/¢*.
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PROPOSITION 4.3. Given v < 1/c¢*, let v{(¥) = ~.(v) be the solution of
CV2i(y,v) = @ established by Theorem 4.1. Then, ¥(v) tends to oo when v tends
to 1/¢% and tends to —co when v tends to 0.

This result and the asymptotic expansions (3.9) allow us to approximate v(v)
for values of v near 1/¢* by:

(1) \/;Jr—\/cv[V-l-Z )+t dvt2

2y 1

THEOREM 4.2. For family P, likelihood equations have a solution if and only
if the following dnequality holds:

(4.1) l;—j(l/cg) —log(1/e®) +r > 0,

where r is the log-ratio of means and ¢® is the squared coefficient of variation of
the sample.

Note that for the Gamma family P, the theoretical squared coefficient of
variation, CV?, is given by CV? = 1/v. Moreover, the likelihood equations in
terms of & and CV? are:

1
e
(4.2) ;,CV
(1/cv2) Log(1/CV?) + 1 = 0.

:tlr

Theorems 4.1 and 4.2 provide an easy way to determine whether equations
(3.11) have a solution. If the likelihood equations have no solution, because the
log-likelihood function (3.3) always has a maximum, it is found in 6. From
Proposition 4.2, we know that {3.3) restricted to O is the log-likelihood function
for the Gamma family. Then, when (4.1) does not hold, the maximum likelihood
estimate for the family P can be obtained as a solution of (4.2), i.e., as a maximum
likelihood estimate for the Gamma. family

Similarly, for family P,, if the condition of Theorem 4.1 does not hold, then
the maximum likelihood estimate can be found by solving the first equation in
{4.2), that is, by finding the maximum likclihood cstimatc for the family I?,. For
the Normal Truncated Family this is the Exponential Distribution.

5. Testing hypotheses

To test departures from Rayleigh or singly truncated normal distributions,
we can use the classical likelthood ratio test. 'I'he null hypothesis is established by
8y = (0,3, v) for Rayleigh distribution, and by 6y = (o, 3,1) for singly truncated
normal distribution. In both cases 8, are interior points of the natural domain of
parameters.
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The situation is dilferent when testing departures from Gamma distribution
because fy = (@, 0,v) is a boundary point. Then, the asymptotic distribution of
the likelihood ratio test statistic is not a chi-squared {see Self and Liang (1987)).
We propose to use the fact that condition (4.1) is important in discerning between
the Gamma family and the general family P. Then, for testing the hypothesis
3 =0 versus £ > 0, the asymptotic behaviour of the left hand side of (4.1), when
the null hypothesis is true, can be employed. This behaviour is established by the
following result.

THEOREM 5.1. Given a random sample x = (x1,...,2y)" of a Gamma dis-
tribution, the statistic:
v (T o 2
(51) O,(CQ) "ﬁ(l/c ) o log(l/c ) +r

temds in loan to an N(0,1) as n fends to oo, where:

/1 /1N /1 1) 4

v(a) = T (z)

The proof is given in the Appendix.

Note that for the Gamma distribution, the statistics ¢* and r are invariant
with respect to changes of scale and thus the statistic in [5.1) depends only on
v. Notice that Theorem 5.1 provides a very easy way to test Gamma distribution
against the family P alternative without finding the likelihood estimators. The
following table displays the upper tail 5% points of the distribution of the statistic
n (5.1), based on 10000 samples of size n = 5, 10, 20, 50, 100, 200, 650, and v = 1,
1.5, 3, 5, 10, 15, 20.

Table 1 shows that the convergence to a standard normal is very slow for
practical purposes. For small samples it is necessary to evaluate specifically the
percentiles. Retter approximations for the distributinn funetion of the statistic in
(5.1) may be obtained by using higher order expansions.

Table 1. Estimated upper tail 5% points, for the statistic given in Theorem 5.1.

N v—1 p—15 v—3 »v—5 v—10 w=15 » =20
5 2.76 2.37 1.70 1.54 1.30 1.22 1.20
10 2.94 2.56 2.07 1.84 1.63 1.54 1.49
20 2.52 2.33 1.99 1.89 1.71 1.68 1.67
50 2.12 2.06 1.96 1.81 1.74 1.70 1.67
100 2.09 2.00 1.85 1.77 1.77 1.74 1.63
200 1.89 1.86 1.74 1.76 1.70 1.70 1.71
650 1.77 1.77 1.73 1.71 1.67 1.67 1.67
o0 1.64 1.64 1.64 1.64 1.64 1.64 1.64
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6. Some examples

6.1 Fitting distribution of divorces using the family P

The distribution of divorces by duration of the dissolved union, in France in
1900 (see Pressat (1966)), is a classical example in which the data has traditionally
be fitted to a Gamma distribution, but family P can do better. The 650 times
of duration of the dissolved unions described in the book by Pressat have an
arithmetical mean m; = 11.99384, a squared coefficient of variation ¢? = 0.366657
and an r = 0.211235. Moreover the moments of orders two, three and four are
mo = 196.5969, ms = 3931.461 and m4 = 83575.643. The method of estimation
given in (3.1) using the first four moments is inadequate because it gives negative
cstimations of 4 and r. The evaluation of the left part of (4.1) gives the value
0.016 and it shows that equation (3.10) have a solution. In order to solve them,
we use the reduced equation (3.11) and the Newton-Raphson method. The steps
to improve it are the following;:

Step 0. Choose a starting point (v, 1) near the solution. Given ¢? and r
of the sample, Fig. 1 can help us to do it.

Step 1. Compute the gquantities,

d=vu,(n), e=wur1ln), [=e, ()
9= ros1(Y0)y  B=3 (Y0)-

Step 2. Compute the values of the function and its derivatives,

2 yd
Flzyilgwn/i—cz—l, F2=L0g(§)(£>—r,

2e? 2e d
oo + d*vg B 3d% 1970  d{dw — Y5 +2)
M7 T g3 4e? de ’
o= Ad+2fm+gv) P9 [
12 — 2 3 e
2e e 2e
o ety ef wd _g . [Pdfth
=gt e 2 =07 d? '
These have been deduced using {3.6) and {3.8).
Step 3. Calculate the point,
oy = o — Fpo by — Fio by =y Aufr - En By
FiiFay — FiaFoy’ LT FaFyy  Fioky
Now we shall iterate steps 1 to 3 in order to obtain (va, 0}, (va,73),... until

the sequence stabilizes.

vy P, @2 in Step 1 can be evaluated by numerical integration of (3.5) or
using (3.7). If the expansion {3.7) is used then it is necessary to compute the
gamma function and its first two derivatives. Suitable algorithms can be found in
Abramowitz and Stegun (1972},

We used the program MATHEMATICA to follow the steps described above,
and the evaluations of Step 1 was performed using numerical integration with the
procedure Nlntegrate.
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Fig. 1. Sclutions of (3.11) for values of r and ¢2. Dotted lines and numbers outside
the square are the y-values. Continuous lines and numbers inside the square are the

-values.

For the data of duration times in divorced couples, solving the equation (3.11),
starting with the point g = 2, 79 = 3 we obtain the values v = 2.15023 and
~ = 311197 in 3 iterations. These values correspond to v = 125740 and 3 =
.00163282. If we fit these data to the Gamma distribution, we also obtain a good
result which passes, for instance, the x? test. However it does not pass specific
tests for the Gamma distribution like the EDF-tests A2, W2 or U? (scc D’ Agostino
and Stephens {1986)). In the same way, if we calculate the expression (5.1), the
result is 2.1517. Looking the upper tail 5% points of the Table 1 for n = 650, it
rules out the hypothesis that the data belong to a Gamima distribution.

6.2 Testing Gamma distribution against miztures

The statistic introduced by Theorem 5.1 is conceptually adequate for testing
Gamma distribution against alternatives in family P. It is not an “omnibus” test
like the EDF-tests .42, W2 or U2, but for certain alternatives, some of them even
not included in family P, it seems to have good power. This is the situation
when the alternative is a mixture of a Gamma distribution with parameters v, o
and a small proportion of a Gamma distribution with the same e and the smaller
parameter of shape v.

We have considered a Gamma with v = 10 and o = 1, contaminated by
an 2.5% of a Gamma with o« = 1 and v = 1, 2, 3, 4, 5, 6. Table 2 shows the
powers based on 10000 samples of size n = 200 obtained when using the test of
Theorem 5.1 (test P) and the EDF-tests A%, W? and UZ2. The level of significance
considered is 0.05 and the critical point for test P showed in Table 1 in 1.70. The
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Table 2. Estimated powers for the tests P, A2, W2 and U2 for different values of the parametor
1.

P A% w2 oy
98.0 95.2 03.3 92.3
92.6 833 76.5 T72.8
7.5 BR6 493 422
52,2 20.7 236 200
281 132 11.2 9.5
143 70 62 6.2

SOl A W R

critical points for the EDF-tests A%, W and U? can be found in D’Agostino and
Stephens (1986), and they are respectively 0.754, 0.127 and 0.117.

Table 2 shows that, for the case considered, test P is always more powerful
than the EDF-tests.
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Appendix

Watson’s lemma. Given is a locally integrable function f{#} on (0, c0)
bounded for finite ¢ and f(t) = O(e"), ¢ — oo, and f(t) ~ 3 entA™, t — 0+,
with —1 < A0 < Al < --- << An — oc. Then, as A — o0

o0

A C_rytf(t)dt ~ Z %_

m={
PROOF. See Breitung ({(1994), pp. 47-49).

PRrROOF OF PROPOSITION 4.1. Given two points in T(X) any convex combi-
nation of them is in C because z, z* and — Log(z) are convex functions. On
the other hand, given ¢ € T{X), Bolzano's theorem shows that the equation
a?Log(t; — /ta — ti/a) + Log(t, + a/ts — 12) — t3(a® + 1) = 0 has a solution,
a, in [0, /ty — t1/t;]. Therefore, taking A = a*/{1 + a%) and 2, y in T(X) with
its first components given by z; = t; — \/ta — t1/a, y1 = t; + ay/ta — t3, we find
t=Ax (1 ANy

To characterize €, it is enough to take x; and y1, as before, for any a > 0.0

Proor oF ProOrosITION 4.2, We have only to pass limits inside the inte-
grals. Notice the following inequality:

|/ () exp(—oz — Bz° + (v — 1) Log(z))| < |f(z)| exp(—az + (¥ — 1) Log(z)),
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where & > 0, z > 0 and f(z) are the functions 1, z, z* and Log(z). I'he functions
in the right part of the inequality are integrable and using the Lebesgue bounded
convergence theorem the result holds. The values of the limits can easily be
obtained by integration and they correspond to the Gamma Distribution. O

CoROLLARY A.l. If (v, v,) tends to {+oo,v) then

CVE(n,vm) = CV3(1,1/72,v,) = /v
F

RM, (0, 2) = RM(1, 1/, v) — Log(v) — ().

Proor oF THEOREM 4.1, For the family P,, we consider the first equation
in (3.11). Now CV? is only a function of v because v is fixed. The asymptotic
hehaviour (3.9) and some algebra show us that CV2(y, 1) ~ (2/92)+0(1/42) when
~ tends to —oco, which implies that CV2{%, v} tends to 0 when + tends to —oo, for
any v. Moreover CV2(~y, ) tends to 1/v when ~ tends to +oc, as a consequence
of Corollary A.1l. Then, theorcm of Bolzano cstablishes that the equation has a
solution if €2 < 1/v, and this is unique because 7(#) is 1-1. Suppose now that there
is a solution for a random sample with ¢® > 1/v. Then, there is also a solution for
a random sample with ¢? = 1/ because the domain T is a connecled set. Now we
have one point in @ and another in O (see Proposition 4.2) that have the same
T-image. This is a contradiction because, as a consequence of the Inverse Function
T'neorem, 7 has an inverse on neighbourhoods of £ € 1. 0

COROLLARY A.2. Given v > 0, the map CV2(-,v): R — (0,1/v) is differ-
entiable and one to one. Moreover, when v tends to oo CV2(wv,v) tends to 1/v
and when vy tends to —oo then CVZ(v,v) tends to 0.

PROOF OF PROPOSITION 4.3. By definition CVZ(y(),v) = . If ~{v)
tends t0 v, < oo when v tends to 1/¢2, then CVZ(v(v), v) tends to CV2{y.,1/c?)
and it is lower than ¢® by Corollary A.2, thus vielding a contradiction.

Notice that using (3.11) and the recurrent formula (3.8) the equality
CVZ(v{v),v) = ¢ can be expressed as:

P2 B 8v(1 + ¢?)
(A1) 4‘Pu+1 (y(») = Y+ VA L8 = )

Now, if v(v) tends to any finite value when » tends to 0 this is impossible
because the right part of (A.1) tends to zero and the left part tends to a certain
positive value. However y(¢) does ot tend to +ou when v tends to 0; using (3.9),

2

we can see that :’;:—1(7) ~ ”T“-}-o(l /?) as 7y tends to +0o. Then, multiplying both

i

parts of (A.1) by y(v) and taking v tending to 0 would lead to a contradiction. [

PRrROOF OF THEOREM 4.2. Given ¢?, for each v fixed belonging to the open
interval (0,1/c?) we consider the solution of the first equation in (3.11), y(v).
We substitute v in the second equation by the function v(») and the problem is
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reduced to determining whether the equation RM, (+(r), ) — v has a solution for v
- . . H P 14 2 reo- -+ PR

in (0,1/¢?). Using expression (3.8} we can write %(ﬁ/) =5 2$uizm+§$vif%§’
1, 2eppe(MHyens (1)
v Zgeta (Y yevsi{y)
these expressions in the second equation in (3.11) we can use Proposition 4.3, {3.9)
and some algebra to see that RM. (v(v),v) ~ 1/v + O(1) as v tends to 0. Then,
BM., (y{¥), ) tends 1o +o0 when » tends to zero. Moreover, RM, (v(v), ) tends
to —l;; (1/¢?) + Log(1/c?) when v tends to 1/¢? as a consequence of Corollary A.1.

Then, the theorem of Bolzano establishes that there is a solution if E—f( 1/¢%) —
Log(1/c?) + r > 0. The same topological argument used in the proof of Theorem
4.1 can be applied here, and we conclude with the proof of Theorem 4.2, 01

.1
and deriving (3.8) with respect to v, %(7) — - . If we replace

Proor or THEOREM 5.1.  Given a random sample z = {z1,...,2,) coming
from a Gamma distribution with parameters o, v, it is easy to establish that the
statistic y/m(ty,t2,t3) converges in law to a trivariant normal with mean vector
given by E(t) = (%, V(‘:Ql), F%(;u) — log(a)) and covariance matrix 3. = {ay;},
where 011 = v/a?, oag = 2v(v + 1}{20 + 3)/at, o33 = ¥/ (v), 012 = 2w(v + 1)/0?,
o153 = 1/ and 095 = (2v + 1)/a?. The left part of (4.1) can be written as a
differentiable real valued function ¢(t) = ¢(#;, ta,t3). Now, the é-method (see Rao
(1973)) establishes that +/n®(t;, s, 1) converges in law to a univariate normal
with mean ¢(E(t)) = 0 and variance do(E(#)) Y. do(E(t)) = o' (v) (24 (v)(? +
v)—4r—5)+2+4 (3/v). The last expression is a continuous function of v and 1/¢2
converges in probability to 1. Then standardizing, this concludes the proof. O
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