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Abstract. To test that an experimental treatment is better than an existing
oue (or control), one can equivalently consider the difference in their response
and test if the distribution of the difference is symmetric (about zero) versus
it exhibits positive bias (skewness to the right}. In this paper, we test the
symmetry (about zero) of a discrete distribution against two particular classes
of one sided alternatives. We obtain the maximum likelihood estimators un-
der each alternative., The asymptotic null distributions of the likelihood ratio
statistics are shown to have chi-bar square type distributions. A power study is
performed to compare these one-sided alternatives with other one-sided tests.
‘The theory developed is illustrated by an example.

Key words and phrases:  Chi-bar square distribution, consistency, isotonic re-
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1. Introduction

A random variable X has a symmetric distribution about 8 if X —@ and § — X
have identical distribution. The concept of symmetry has played an important
role in statistics, especially in nonparametric literature. In parametric inference,
there are often situations when the assumption of normality as the underlying
distribution can be replaced by the assumption of any symmetric distribution
(e.g. Chaffin and Rhiel (1993)).

Tests of symmetry come up in several real life situations. The following paired-
data example is given by Hettmansperger (1984). To determine the effect of en-
vironment on brain anatomy, an experiment is conducted as follows. Rats from
several litters are randomly assigned to an enriched cage containing a variety of
toys and an impoverished environment in which the rats lived in isolation. The
variable of interest is the weight gain of the cortex over a specific period of time.
The pairs are formed by litter mates with the same genetic makeup of the rats in
an impoverished environment to the rats in an enriched environment. Let X(Y)
denote the impoverished {enriched) measurement, the random variable of interest
is D =Y — X. If there is no difference in the effects of the two environments,
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12 has a distribution symmetric about 0. If we let & denote the center of the
distribution of I3, then it is of interest to test Hy : # = 0 versus H7 : 6 > 0.
The Wilcoxon signed rank test is used for this test of location of the center of the
underlying symmetric distribution. Tests of symmetry (about ) versus one-sided
alternatives are also of interest in medical studies where patients arc monitored
before and after the administration of a drug.

One-sided hypotheses arise naturally in many situations. When testing
against such hypotheses, it is desirable to take the available one-sided informa-
tion into account, rather than simply applying a two sided test. This helps to in-
crease the power of the test. When testing for symmetry of a distribution against
both one-sided and two-sided alternatives, many nonparametric tests are available
in the litcrature. However, most of the work on devcloping nonparamectric tests
against one-sided alternatives are directed to testing for possible changes in the
location of the center of an underlying symmetric distribution {as in the above
example). Many of the suggested tests for symmetry can be described as varia-
tions of either sign tests, Wilcoxon tests, Kolmogorov-Smirnov tests or Cramer-von
Mises tests (Gastwirth (1971); Rothman and Woodroofe (1972); Hettmansperger
(1984}, for other related references). Since symmetry (about ) is equivalent to
F(t—)+F(~t) = 1 Vi, many tests are phrased in terms of the empirical cumulative
distribution function (CDF) and take advantage of the rich literature on this topic
(see Shorack and Wellner (1986), for details). Aki (1993} discussed nonparametric
tests for symmetry in R™ and also provides many related references.

Of course, instead of testing for the location of the underlving distribution,
it would be more useful to know the specific type of one-sided bias or skewness
property of the underlying distribution that can lead to the rejection of the null
hypothesis of symmetry for a given data set. In this paper we consider two one-
sided alternatives to symmetry and consider the likelihood ratio tests against such
alternatives.

We suppose the data are discrete, and assume without loss of generality that
f = 0. We let X take on the (2k + 1) values -k, -k +1,...,—1,0,1,...,k— 1.k
with P(X =4) = pi, —k < i < k. We will denote the probability vector {PV)
(P—kyPtdls e s P=1,D0:P1, -+, Pe—1, Pr) Dy p. We assume that p; > 0, Vi.

Suppose n;, —k < i < k are observed random variables from a multinomial
distribution with Zf:_k n; = n and PV p. Also let n denote the vector of
ohservations.

The null hypothesis of symmetry about 0 can be expressed as

HO:pi:p—is ’iil,...,k}.

Some possible alternatives to symmetry can be obtained by considering partial
order relations between X and —X. For example, X is stochastically greater (in
usual sense) than — X, or

k ke
(1.1) Nopi =Y vy i=1l.k
j=i j=t
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willl at least one strict ineguality, This would imply that E(g{X)} > E(g{—X))
for all nondecreasing functions g. A stronger stochastic order relation is obtained
by directly comparing the i-th cell with the —i-th cell, for all 4, as follows

(12) Pi 2 Pis t=1...k

with at least one strict inequality. Both (1.1) and (1.2) are examples of positive
bias (or, skewness to the right) in the sense that the probability of positive X is
larger than the probability of negative X {referred to as the positive bias of first
kind later in the paper). However, positive biasedness can also occur due to the
factor that the random variable X under the condition X > 0 is stochastically
larger than —X under the condition X < 0 (Yanagimoto and Sibuva (1972)). An
example of this latter {or, second) kind of positive bias is the following

{1.3) H, bi nendccrcasing in ¢, ¢=1,...,k.

P

An appropriate cxtension of {1.3) for a general univariate random variable, not
necessarily discrete, is (with some algebra)

(_1.4) P(_ag <X§ag\a| <X<(I:;)>P(G.Q<—X<a2|a1 <—X<(L3),

for all 0 < @1 < a2 < ag. The types of positive bias given by (1.1), {1.2), (1.3) and
related properties have been discussed by Yanagimoto and Sibnya (1972).

Here we introduce a new type of positive bias {(corresponding to the second
kind) as follows

k
Zi:j by
k
Zo’:j P

Also, for a general univariate random variable, not necessarily discrete, an appro-
priate extension of (1.5) is (with some algebra)

(1.5) H,:

nondecreasing in §, j=1,...,k.

(1.6) PX>s+t|X>t)2P(-X>s+t|-X>1t), Vs>0, t>0

It can be seen by some algebra that (1.3) is more restrictive than (1.5) (for k& >
2). The likelihood ratio tests of symmetry versus the order relations given in
(1.1) and (1.2) have been considered by Dykstra et al. (1995a). In this paper
we are interested in the order relations given by {1.3) and (1.5} as alternatives
to symimetry. The corresponding restrictions of negative bias can be handled by
mineor changes to the results of this papcr.

In Section 2, we derive the maximum likelihood estimator {MLE) of p under
the hypotheses Hy and Hy, and uge these estimates to obtain the likelihood ratio
statistic for testing fy versus Hy — Hy. The asymptotic distribution of the test
statistic is shown to be of the chi-bar square type {a weighted combination of
chi-square random variables mixed over their degrees of freedom). In Section 3,
we consider the corresponding problem for the order restriction in Hy. Dykstra
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et al. (1995a) have shown that in the class of all univariate distributions, the
generalized MLE (in the sense of Kiefer and Wolfowitz (1956)) under the restriction
{1.1) is strongly consistent. However, the generalized MLE under the restriction
{1.2) is not consistent when considered in the class of all univariate distributions.
In Section 4, we show that the generalized MLE of F, the distribution of X
under Hy, is strongly consistent when considered in the class of all univariate
distributions. However, the generalized MLE of F'. the distribution of X under
Hs, is not consistent when considered in the class of all univariate distributions.
In Section 5, we perform a Monte Carlo study to compare the power of different
tests. As in Dykstra et al. (1995a), we consider the shifted binomial distribution
for which the uniformly most powerful (UMP) test for testing symmetry against
any of the one-sided alternatives is readily available. Using this UMP test as a
benchmark, it is shown that the tests considered in this paper are quite powerful.
In Section 6, we illustrate the procedures developed with an example. A discussion
by comparing the results obtained in this paper with those in Dykstra et ol. (1995a)
is given in Section 7.

2. Testing Iy versus ) — Iy

We first obtain the MLE of the vector p under hypotheses Hy and Hy. The

likelihood [unction is proporlivnal to

k
Lip | n) = pg° [ [0027'0}.

i=1

The unrestricted MLE of p; is p; = n;/n, i = 0,%1,...,tk. Let p = (P, ..., Px)-
We consider a reparametrization as follows. Let

91‘:—%—“; Gi=pi+p, 1Zi<k
Py p—g
Then
{2.1) pi=0is, p_y=(1—-0)d;, 1<i<k

Let @ = (6q,...,8;) and ¢ == (¢1,...,¢xk). The likelihood function, in terms
of the parameters 8;'s and ¢;’s, is proportional to

k k k no
(2.2) L{8,¢| n) — {H o1 — 9.&)"—«:] lH prritr—i (1 -3 ¢1) ] :
i=1 im1 i=1
It is easily seen that the MLE's of 8,’s and ¢;’s under Hy are
. 1 .
9?25, ¢ =p_;+p, 1<i<k

Under H;, the constraints on p; can equivalently be expressed in terms of the
f;’s and ¢;’s as 0 < 8;,¢; < 1,Vi, and

(2.3) B < by < <
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To find the MLE's of §;’s and ¢;’s under (2.3), we can maximize the terms
in two brackets in (2.2) individually, since there are no constraints connecting the
8;’s and ¢;'s. Maximizing the quantity in first bracket subject to the restrictions
in (2.3) is a bioassay problem (as described in Robertson ef al. (1988)), and hence
the MLE of 8 under (2.3) is 8 = E3(8 | Tp), where @ = (61,84,...,81), © =
(@1, . ,?}k),

(2.4) b= — P pi=p_ 4P, L1<i<k

and Ey{x | Zx) is the least square projection with weights w of the vector & onto
7., the cone of nondecreasing vectors of length &. Since there is no restriction on
the ¢;’s, the MLE of ¢ under (2.3) is the same as the corresponding unrestricted
MLE’s. Using (2.1), we obtain the MLE of p under Hy, as given in the following
theorem,

THEOREM 2.1. The MLE of p under Hy is given by

ko o
0 n )
Ak Nog +nz 7 .
(2.5) o = T—E@ (3 | Ik)fi,, 1 S 3 S k‘,
TR Y NCJE ST 252

where 4 and 6; are defined in (2.4).

Robertson et al. {1988) described several algorithms for computing the least
square projection Ey{x | Zg). The pool adjacent violators algorithm (PAVA) is
one of the simplest and can be used for our purpose.

2.1 The asymptotic null distribution of the test statistic

Let A; be the likelihood ratio when testing Hy versus H; — Hp and we reject
Hy for large values of Ty = —2In A;. Using the MLE as constructed earlier, it is
straightforward to show that

T—Qni[ﬁln(gr)—kﬁ m(l”gr)]
1= i il —in| ——F |-
2 L 17

Expanding In 6, In 82 about 4;, and In(1—83), In(1— 62} about (1 —8;) via Taylor’s
theorem with a second degree remainder term, we see that the linear terms drop
eomt, and enmbining appropriate terms, we obtain

k . R R .
_ 0 _ 43\2 Pi Poi| g _jgy2 | P P—i
T = 'n.Z {(Qi — ;) [W(l EPWE + ﬁf :| {87 — 6,) li%z + w(l — 5@)2] }

i=1
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where ay, 3; are between ¢ and 6;, and i, &, are between 07 and 8;. Under Hy,
each of «y, 3;, vi, 6; converges to 1/2, and hence it follows that, the asymptotic
distribution of 7} is the same as the asymptotic distribution of

_24(1% + o) {[Vn(8? ~ 6) — [Valg; — 8]}

Using the multinomial central limit theorem to /n(p — p), and using the
delta method, it follows that

V(@ -85 MVN(0, W),

where W is a diagonal matrix with i-th entry equal to pp_i(ps +p_:) ">, Let U =
{(Uy,...,Ux) ~ MV N(0,W). Then, under H,, using continuity of the projection

operator, it follows that /7 (0 — 6") LU- E,(U | Iz}, where v = {m,...,v) and
U = 2p;, ¥i. Then, under Hy, the asymptotic distribution of 77 is the same as the
distribution of

ZSpﬁ E,(U | T)i)?

"
Ma*
I

8piUi By (U | Ip.); +ZSP2 (Ui By (U | I )i — By (U | Ti){]

=1

.
Il
—

I
M»

o
Il
—

since 35 80U Eo(U | T)i = Yor, 80 E (U | Ii)3.

Let p € Hp, and let ¢ be a real number. Also, let G(Bj,..., B;) be the event
on which By, ..., B; are the ordered level sets of E, (U | Z) (level sets are subsets
of {1,...,k} where F,(U | Z}) has constant value). Then

k
P(Tzc)=> Y PT>cCB,. . By

¢=1 B1,...,By

k [ ¢
:Z Z P Z(Zap«?) AV(B ) >CG(BI:“':B£)]

¢=1 By,....Be i=1 \jeB

:i Z P_i(ZSpJ) (Av(B))? > ¢

¢=1B1,...B; |i=1 \j€B
x P(G(B,..., BY))

G(Bla e °,B€)}

I
bl
P S
s
3
2
o
o
~—
o
S
A
S
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(the equality before the last follows by using Lemma B on p. 71 of Iobertson
et al. (1988)) where Av is the (weighted) average function and P(£ k,v) =
2,1, P(G(B1, ..., By)) is the probability that £, (U | Z;) has exactly £ level
sets.

The above developments are summarized in the following theorem. The
asymptotically least favorable distribution of 7} (corresponds to the case when
the probability of rejecting Hy is maximum) can be obtained from Theorem 3.6.1
of Robertson et al. (1988).

THEOREM 2.2. When Hy is true and p; > 0, Vi, then for any real number ¢

k
lim P{Th 2 ¢) = Pk, v)P(x2 > ¢),
¢

n—o0
£=1

where X% is a chi-square random variable with v degrees of freedom. The asymp-
totically least favorable distribution is given by

k

k—1

{2.6) sup lim P{Ty > ¢) = Z (E _ l>2_k+1P(X§ > ).
PEH T =1

The asymptotic distribution of 71 depends on p through the level probabili-
ties. When v;’s are equal (which corresponds to an essentially uniform distribution
under Hy), then the level probabilities can be calenlated reenrsively (Corollary A
on p. 81 of Robertson et al. (1988)). For arbitrary weights and & < 4, the calcu-
lations for level probabilities are given in Robertson et al. (1988). TFor arbitrary
weights with £ > 5, no closed form expressions for the level probabilities exist.
Monte-Carlo techniques often provide a good alternative due to the difficulty of
calculations. Another possibility is to use pattern approximations (see Robertson
et al. (1988), for details).

Note that according to Lee et al. (1991), bounds identical to the right side
of (2.6) are obtained for the case of nonincreasing weights which corresponds to a
symmetric, unimodal distribution under Hy.

The asymptotic critical values of T| based on the least favorable distribution
of {2.6) are given in Table 1 for k—1 = 2,..., 14 and @ = 0.10, 0.05, 0.01. However,
a test based on the least favorable distribution is likely to be conservative. An
alternative is to approximate the level probabilities by P(£, &, p°), where p° is
the estimate of p under Hy (see, e.g., Bohrer and Chow (1978)). The resulting
expression has the same asymptotic distribution as 7} under Hy and provides a
good approximation (Oh (1994)).
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3. Testing Hp versus Ha — Hy

To find the MLE of p under H,, we reparametrize as follows. Let

k k
-1 =ZP~;, 91=ZP¢:
e i—1
K k
Z@:j P Zizj Di

L g = 2<j<k.
k ’ 3 & ' >~ J =
zg:j—l P—i Zi=j 1 P

Then it can be seen that the p;’s can be expressed in terms of the new parameters
as follows

b_; =

J
pi=0-0_ ) [[0- p=0-00)][8: 1<i<k-1L

=1 =1

K k
poi = []0-0 pe=]]0
i=—1 i=1

Let m; = Ef:j N, Moy = Zfzj n_;, 1 < j < k. The likelihood function in terms

of the new parameters is proportional tn
(3.2) L(O|n)=(1—0_ — )"~ "1™l igm

k

o [ G R e LG I i

i=2

(3.1)

In terms of the parameters ¢;'s, the hypotheses Hp and Hg can be rewritten as

Hy:6_;=0;, 1<j<k,

(3.3) :
Hg:(i_jgﬂj, 2535}'6

Note that, for both Hy and Ha, there is no constraint over 8; for different values
of 4, vnly 6_; and 6; are related, 1 < j < k. Then it follows that, under Iy, the
MLE of §; is given by

m_1+ 1M

3.4) S Ta

3.4 . .
ngzﬂgzw__ ZSjSk.

b
Mgyt | Mgy

Under Hsy, there is no constraint on #; and 6_1, so the estimates of these pa-
rameters under F; are the same as the corresponding unrestricted MLE’s. Maxi-
mizing the second line of (3.2) subject to the constraints Hy in (3.3) is equivalent
to (k — 1) bioassay problems, which can be solved independently. Thus the MLE
of 8; under Hy, is given hy

* m—_ * mi
-1 = y 91 =
(3.5) noo . n ' -
025 = By, ((6-5.0;) | Za)1, 07 = Es,((F-5,0;) | T2)s, 2535 <Kk,
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where

(3.6) b_; = Mg gy = B = (m_jp,my—1),  2<j<k

2
TTL_j+1 mj_]_

Using equations (3.1), {3.5) and (3.6), we obtain the MLE of p under H; as given
by the following theorem.

THEOREM 3.1. The MLE of p under Hy is given by:

b
ﬁtj Hg—u ﬁjz(l_g;—}—l)Hg:? I<ji<k-1,
t=1
k
Pl = Hgiu Py, = HB:‘,
i=1 =1
where 6%, and 0 are as defined in (3.5).

3.1 The asymptotic null distribution of the test statistic

Let As be the likelihood ratio when testing Hy versus Hs — Hy and we reject
Iy for large values of Th — —21n Az, Using (3.2} and the MLIYs as constructed in
(3.4} and {3.5), it is straightforward to show that

=A+B

87, &

A=2 |:m_1 In (E) +my In <9—§)):|

k 9—3 9*
B =2 Zmﬁln +ngln 00

J j=2
k
JE

+Z M—j+1 — —j)ln(l_ggj)

J=

where

and

b 183
ij 1—mj)ln( 90)

We will find the asymptotic distributions of A and B separately. First consider
the asymptotic distribution of A. Expanding In 6? about 87, for i = —1,1, we find
the linear terms drop out, and the asymptotic distribution of A is the same as the
distribution of

87 g 3
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where 7 and ¢ are obtained from the Taylor expansion. Under Hyp, the asymp-
totic distribution of the quantity in (3.7) is chi-square with 1 degree of freedom
{also equivalent to the chi-square goodness-of-fit test of symmetry on a 3-cell
multinomial).

Now consider the asymptotic distribution of B. For negative and positive
indices j, expanding In 63, In 89 about §; and In(1 — 6%}, In(1 — 69) about (1 4;)
via Taylor’s theorem w:th a second degree remainder term, we note that all the
linear terms cancel out and we obtain

k 00, —6_5)" (6=, —6_;)°
B:Zmﬂ-{ J?,Df,,-j _ Jngi'

(02, =67 (02,6 )
+Z(m-9+1 m“’){ (lj—%b:sj)2 - (13—’@43’)2 }

=2

@6, (-0,
+j§mj{ v ¥ }

S (69 -8, (65 — ;)"
+jz=;(mj—l—mj){(l_w73) (1“‘7!183')2

where 915 to 1), are obtained from the Taylor expansion.
After combining similar terms, we obtain

k

M. m_; — M o

B = J i+l J 0 _ A2
i= { {; L R } (0= = 0-3)

k
_ M-j |, M—jt1 — 2
Z{wzg R }(9 0-3)

i=2

k
o e

F=2

k
my-1— * "
-2 {%J O — v, )z‘} (07 —8;)°.

1=

Then it also follows that, under Hp, the asymptotic distribution of B is the
same as that of

(3:8) Zew 1% {10625 050" — (62, = 61 +1(6) — 6,)* — (6 — ;).

Using the multinomial central limit theorem to /n(p — p), and the delta
method, it follows that, for 2 < j < k,

0_;(1-6_j)
0
] A Ei:j—l P—i
(39) '\/ﬁ((g—jfej) (9*5': )) "_)MVN ((05 0)7 { 0 Zﬂ{(ll—ﬁ‘zg' } ) '
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Table 1. The 100(1 — «) percentiles for the chi-bar squarc distribution given in (2.6) and {3.11}.

i
|
-

010 005  0.01
3.81 514 R2T
4,78 625 9.64
5.68  T7.27 10.86
6.54 522 11.99
7.35  9.12 13.05
814 10.00 14.07
891 10.84 15.056
9.66 1l.66 18.00
1040 12,47 16.93
11.13 13.25 17.83
11.84 14.03 18.72
12.55 14.80 19.59
13.25 15.55 20.45

w00 -] & Ut e Wb

— = R e e
= W b o~ O

Let Y; = (Y;1, Yj2) has the distribution given by the right side of (3.9). Then,
using continuity of the projection operator, under Hg, and some algebra, it follows
from (3.8) thal, ihe asywptotic distribution of B is the same as the distribution
of

Eosk o ) ]
(3.10) Z; ﬁ{[Euj (Y; | Tt — V52 + 1B, (Y5 | T2)2 — Y517},

k k ¥,
where v; = (vjl,ng) = (Zi:j_lpfiazg':j_]pi) and an‘ = (Ujlytfl +?J;;2Y}2)/(Uj1+
vj2), 2 < j < k. If we denote each quantity in (3.10) under the summation by B;
for 2 < j < k, then the distribution of B; is given by

P(B; > 0) = tPOG 2 ) + 5 P0G 2 9

where x2 = 0. It is clear from (3.9) that é_j, éj are asymptotically independent, for
2 < 5 < k. It can also be verified that éj and A ; are asymptotically independent
for different j, 1 < j < k. Thus it follows that the asymptotic distribution of 75 is
a convolution of a chi-square random variable with 1 degree of freedom and k — 1
independent chi-bar square random variables. The final form of the asymptotic

distribution of Ty is given in the following theorem.

THEOREM 3.2, When Hy is true, then for any real nuwmber ¢

Bl e 1y /1)
(3.11) nlirr;o P(Ty > c) = Z ( , ) (i) P(xi., = c).

£=0
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Note that the asymptotic null distribution of T is free of p. Also the distri-
bution on the right side of (3.11) is the same as the one on the right side of (2.6),
approximate critical values of which are given in Table 1.

4. Consistency of MLE under bias

If k is held fixed and n — oo, then it follows from (2.5) that p; — p;, Vi
under (1.3). For a general univariate random variable X with CDF F, which has
a probability density function f with respect to the Lebesgue measure, the positive
bias given by (1.4) can be expressed as

flz)

(4.1) P

is nondecreasing in z (a.e.), 0<zx < oc.

If we define the maximum likelihood estimate in the generalized sense of Kiefer
and Wolfowitz (1958) which allows probability to only be placed on the sample
points, the problem reduces to the discrete case. In this section, we show that
in the class of all univariate distributions the MLE of F under (4.1) is strongly
consistent. This guarantees that the test 71 developed in Section 2 is a consistent
test.

We assume that we have a random sample of size n from F. Also, let F, (")
denote the usual empirical CDF, and F;{-} denote the restricted MLE under {4.1).
Our proof is a refinement of the one given by Dykstra et al. ((19955), Section 3).

We fix w (arbitrarily in a set of probability 1) such that F,(z,w) — F(x)
uniformly in z. It will suffice to show for a fixed € > 0 and ¢, there exists n{e,w)
such that

[Fx(tw) — Falt,w)] <e
for n > n(e,w) (we hereafter suppress w).

Suppose that ¢t > 0. We let sy, 89,...,3; denote the positive sample points

and assume that aq,as,...,0, (ap = 0) denote the upper end points of the level

sets of 8 = E(@ | Ip), where @ and & are defined in (2.4). We assume that
a,.1 <<t < a,. Then

* * n_; +n; 7
Fit) - Fi0)= >, ———E:{8| L)

#:0<Cs; <t

r—1 ]
{4.2) = % Z Z (n_; +n;) Z(Ij—l(stgﬂ‘.j Ny :1

Ge=1 aj71<SiSaj Zag—l<siSCﬁj (ni + n—‘i)

ZGT_1<Si <t (nfi + n;) Eﬂq-_l <& <y L
Ea,«,1<s,-£t L Za,‘_1<31<ar (n—i + n?;)

(4.3) +
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1 1
=22 2 mEds ) om

i=1 a.j_1<si§a3 Gpe1 <85t

= Fn(ar—l) - Fn(o) + A(ant) - Fnﬂ(arAl))
(4'4) = Fn(t) - Fn(o) - (1 - A)(Fn(t) - Fn(argl))

where A is the entry in brackets in (4.3). R

Following similar decomposition as in {4.2), it can be seen that F;,(0) = F;(0).
By the minimum lower sets algorithm, 0 << A </ 1 and thus F;(t) < F,(¢). Since
Fn(t) — F(t), there exists a positive integer ng such that for € > 0 and n > no,

|(ﬁn(t) - ﬁrb(a'r'—i)) - (F(t) - F(a,,_l)ﬂ < '5/2-
So if F(t) — Fla,—1) < €/2, it follows from {4.4) that for n > no,
Fr(t) = Falt) <e

since A is bounded. i

Now suppose F(t) — F(a,—1) = €/2. As Fy,{t) — F(t), uniformly, there exists
a positive integer ny > ng such that for n > ny,
~ (F) + F(-t) — Flar—1) — F(=ar 1))(F(a,) — Fla,—1))

(F(t) = Fla,—1))(Flar) + F(—ar) = Flar-1) = F(—ar-1))

since the denominator is bounded away from 0.

Now f(x)/f{—z) is nondecreasing in z if and only if f{z}/(f(z) + f(—z)) is
nondecreasing in z. If f(£)/(f{t) + f(—t)) = ¢, then

fz) 2 (Qelf(z) + f(=2))  for z > (<)t

Integrating both sides, it follows that

(45) |A

< €

]' fmmw>c] (F(@) + f(—a))dz
(tva'T‘]

{(t,ar]
and

f(arl,tl Sw)yde < C/ (f() + f(—=))dx.

(a‘f‘—l ’t]
Dividing both sides we obtain

Fla,) — ()
B Flar_1)

Fla,)— F(t) + F(—a,) = F(~t)
F(t) = Flay 1) + F(=t) = F{—a,_1)’

Ed

or, equivalently,

F(l) — Fluy—1) + F(=t) = F(=ar-1)
F(t) - F(ar—l)
. F(Gfr) - F(ar—l)
Fla,) = Flar-1) + F(=a;) — F{—ar1)’

(4.6) 1<
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Using (4.6) and F(t) — F{a,—1) > ¢/2, it follows from (4.5) that A > 1 — ¢,
for n > ny. Again it follows from (4.4) that

[Fa(t) — Fa(t)] < e

for n > ny. By following similar steps it follows that |F*(—¢)} — Fn.(—#)| < € for
sufficiently large n. This proves that F}(-) converges to F(-) uniformly {a.s.) as
n — 0o.

For a general nnivariate random variable X, the positive bias given by (1.6)
can bhe expressed as

P(X >nx)

R & S

is nondecreasing in z (a.e.), 0<z < oo,

However, the generalizod MLE under (4.7) is not consistent except in the case of a
discrete distribution. It can be seen by inspection that under (4.7) an observation
at a positive r must be “shared” with —z to preserve monotonicity while an
observation al a negative x need not be. On the contrary, under (4.1), both
positive and negative x’s are “shared” to preserve monotonicity. The conclusion
of inconsistency of the MLE for the restriction (4.7) is somewhat expected based
on the work of Rojo and Samaniego (1991). Thus we recommend the test T»
mainly for the discrete situation or a grouped data situation.

5. Simulated powers of tests

We perform a simulation study to compare the powers of the likelihood ratio
tests of symmetry against alternatives Hy and Hs as derived in Sections 2 and 3
with other tests. Similar to Dykstra et al. (1995a), we consider the shifted binomial
distribution given by

2% \ IR
pj(jm)P”’“(l—p)k o I=0ELL

with k& = 3 for power comparisons. Thus there are 7 cells. It is casy to verify
by algebra that the distribution is symmectric when p = 0.5 and it satisfies the
alternatives H; and Hy when p > 0.5. We take the sample size as fixed at n = 100
and replication size is 10,000. We take o = 0.05.

Recall the likelihood ratio tests against alternatives Ff; and Hy are denoted
by 11 and T3, respectively. For the test Ty, the level probabilities under Hy, are
calculated using the formula given in Robertson et al. (1988}, and these are 0.3017,
0.5000, 0.1983. For the test Ta, the level probabilities under Hy are 0.25, 0.50,
0.25.

For the shifted binomial distribution, the UMP test is to reject Hy in favor
of Hy (and Hy) if >°° | X; is too large. We will denote this test by 75. The
unrestricted likelihood ratio test for testing symmetry versus non-symmetry (also
equivalent to the usual chi-square goodness-of-fit test for symmetry) will be de-
noted by Ty (distributed as a chi-square with 3 degrees of freedom). We used
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Power

4] 4 ¥ t t + + + + 4 4
0s 051 052 0535 054 055 05 05 058 058 [1X]

Probability
------ (top) UMP test —--— DKR tesl T2 =~ DKR lest T1
—-—-Ourtest T1 QurtestT2  ------ (bottom) Unrestricted

Fig. 1. Power curves for k£ = 3, n = 100, & = 0.05. Legends: (top) dot — UMP test;
dash-dot-dot = DKR test Th; dash — DKR test T7; dash-dot = Our test T7; solid
line = Our test Ty; (bottom) dot = Unrestricted test.

simulated critical values for power comparisons. Using the asymptotic 5% criti-
cal points, under the null hypothesis of symmetry the p-values of these tests are
0.0582, 0.0576, 0.0459 and 0.0396, respectively. The power functions of the pro-
posed tests are shown in Fig. 1. Clearly the tests 77 and T perform much better
than the unrestricted test Ty and perform favorably with respect to the UMP test
T5. The test Ty performs better than the test 75 as the H; constraints are more
restrictive than the Hoy constraints.

Also, we have considered the likelihood ratio tests against the alternatives
(1.1) and (1.2) treated by Dykstra et al. (1995a). We will denote these tests
by ‘DKR test T7’ and ‘DKR test T3’, respectively. Under the above context we
calculated the power curves for these tests, and are shown in Fig. 1 as well. Recall
that both of the DKR tests are designed to detect specific types of positive bias
of the first kind, whereas both of our tests are designed to detect specific types of
positive bias of the second kind. Here both of the DKR. tests are found to have
uniformly higher powers than both of our tests. However, this is not expected to
happen in general, since neither of {1.1) or (1.2} implies {or, is implied by) any of

(1.3) or (1.5).
6. Example

To illustrate the methods discussed in the earlier sections, we consider some
data given in Clogg and Shockey (1988). The data, given in Table 2, consist of
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Table 2. Classification of 95 nonwhites favoring President Clarter in the 1080 Presidential vote
based on their political views.

Political views*

1 2 3 4 5 6 7
6 16 23 31 8 T 4

*Political views range from 1 = extremely liberal to 7 = extremely consecrvative.

the cross-classification of ninety five nonwhite people based on their political views
who voted for President Carter in the 1980 Presidential vote. Dolitical views range
from 1 = extremely liberal to 7 = extremely conservative. We are interested in
tests of symmetry about 4 against alternatives H; and Hs.

Wheun lesting Hy: symmetry versus the unrestricted alternative of nonsym-
metry with the usual chi-square goodness of fit test, the test statistic is 11.1798
{p-value = 0.0108 from a x3 distribution).

To test Hg : symmetry versus the alternative Hy, we first find 8 = (0.2581,
0.3043,0.4000) = 8. Then we calculate the test statistic 73 = 11.5920. To find
its p-value, we estimate the v,’s under Hj, and then use the expressions from
Robertson et al. (1988) to find the level probabilities which turn out to be 0.3185,
0.5000, 0.1815. Using these, the asymptotic p-value of the above T3 is 0.0033.

When testing Hy : symmetry versns the alternative Hy, then B? =60, —
0.3368, 63 = 02, = 0.5156 and 65 = 6%, = 0.3030. Also, {8%,,87) = (0.4737,
0.2000}, (82,,83) = (0.4889,0.5789) and (8*4,03) = (0.2727,0.3636). Using these
values we compute the value of the test statistic 7, = 11.5920. The asymptotic p-
value is 0.0039. Clearly, there is strong evidence supporting both of the one-sided
hypotheses Hy and Hs over Hj.

It is somewhat surprising that these two test statistics values came out to he
the same. However, as the asymptotically least favorable distribution of 7y is the
same as the asymptotic distribution of 75, these two p-values give an idea of how
conservative the least favorable distribution of 13 in this case is.

Also we calculated the DKR test 77 and DKR test 7% for this example. For
DKR test T}, the test statistic value is 0.7179 with a p-value of 0.6516 (obtained
by using simulated level probabilities with the estimates under Hy). For DKR
test T3, the test statistic value is 0.0. Thus we fail to reject the null hypothesis
of symmetry for both alternatives (1.1) and (1.2). So for this example, specific
positive biases of the second kind are detected rather than those of the first kind.

7. Discussion

We have considered two particular types of alternatives to symmetry (positive
bias of the second kind) and the corresponding likelihood ratio tests. Dykstra et
al. (1995a) considered two similar alternatives to symmetry (positive bias of the
first kind). It is noteworthy to compare the different behavior of our tests from
theirs, First, our test 41 and DKR test Ts both are for alternatives based on ratios



LRT FOR SYMMETRY 253

wifp—i (nondecreasing and grealer than or equal to 1, respoctively). Their test is
asymptotically similar, ours is not. They get binomial weights, while ours are
classic level probabilities, Their MLE’s are not universally consistent, while ours
are. On the other hand, our test 75 and DKR test 77 both are for alternatives
based on ratios of tail probabilities (nondecreasing and greater than or equal to
1, respectively). In this case, the behavior just gets turned around. In particular,
our test is asymptotically similar, theirs is not. We get binomial weights, they get
the classic level probabilities (with the chi-square degrees of freedom reversed).
Their MLE’s are universally consistent, ours are not. Thus one might anticipate
the presence of some kind of duality between these two types of constraints that
gets the results reversed for different boundaries {constant 1 and nondecreasing).
(These behaviors somewhat duplicate in the two-sample case also, see c.g. Dykstra
et al. (1991); Robertson and Wright (1981); Dykstra et al. (1995a).) Further
research in this direction is needed.
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