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Abstract. For the invariant decision problem of estimating a continuous
distribution function with the Kolmogorov-Smirnov loss within the class of
‘proper’ distribution functions, it is proved that the sample distribution func-
tion is the best invariant estimator only for the sample size n = 1 and 2.
Further it is shown that the best invariant estimator is minimax. Exact jumps
of the best invariant estimator are derived for n < 4.
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1. Introduction

The best invariant estimators for a continuous cumulative distribution func-
tion F' defined on B! under monotone transformations and the weighted Cramer-
von Mises loss function were introduced by Aggarwal (1955). Since then there had
been a longstanding conjecture that the best invariant estimator, dy is minimax
for n > 1 under the loss

(L.1) L(Fya) = f IF(#) — alt) Fh(F(2))dF (),

where & is a positive integer, A{f) is a nonnegative weight function and a{t) is
a nondecreasing function from (—oc¢,00) into [0, 1] (see, for example, Ferguson
(1967)). This conjecture was proved in Yu (1992) and Yu and Chow (1991).

A parallel problem was to consider the Kolmogorov-Smirnov loss function,

(1.2) L(F,a) = SEP{WFU) —a{t)[},
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which is also invariant under the monotone transtormations. This loss function
is difficult to handle analytically and therefore not much was accomplished for a
long time. Brown (1988) obtained the best invariant cstimator under this loss
for the sample size n = 1 by hand and investigated its admissibility under the
assumption that the unknown distribution function is discrete. This was followed
up by Friedman et al. (1988) who obtained the best invariant estimator for sample
sizes n > 1 and proved its uniqueness. Again, the obvious question is whether the
best invariant estimator under this loss is minimax. This question was answered
affirmatively in Yu and Phadia {1099).

For a continuous distribution function, it should be noted that all invari-
ant estimators under monotone transformations and either the von Mises type or
Kolmogorov-Smirnov type loss functions arc of step function form, Furthermore,
except for a particular loss function (k = 2 and h(t) = t=*(1 —#)~!) considered by
Apgarwal when the sample distribution function is the best invariant estimator,
none of these best invariant estimalors are proper disbributions. Some natural
questions that arise are: If we restrict the action space to ‘proper’ (to be defined
below) distribution functions, does there exist a unique best invariant estimator?
Will it be the sample distribution function? Will it be a minimax estimator? We
consider these questions in this note and provide affirmative answer to the first
and third question and a negative answer to the second question except for the
trivial case of » = 1 and 2. Qur proofs heavily depend upon the two papers cited
above, viz. Friedman et al. (1988) and Yu and Phadia (1992).

For any ardered sample { X;} of size n from F, all invariant estimators are of
the form

n+1
(1.3) d(t) = ZuiI(mi—l <t < ﬂ?i)
i=1
where ry — —o0, Tpt1 — +oo, 0 < up € ug £ -+ L upy1 X 1 are constants

and I{A) is the indicator function of the set A. Under our restrictive setting that
an estimator has to be a proper distribution, we have u; = 0 and u,41 = 1 for
the invariant class of estimators. Thus it is natural to take the action space of
“proper” distributions as

(1.4} A={a(t):a(t)=0fort < X1,1 for t = X,,},
where a(?) is a measurable function of the order statistics X,.
2. Main result

ProOPOSITION 2.1.  The best invariant estimator for o continuous distribu-
tion function under the Kolmorov-Smirnov loss, monotone transformations and
action space A uniquely exists. It is symmetric in the sense that u; = 1 — ty 2 4
foralli=1,2,..., [”T“] and sotisfies the partial derivative equations

OF[L{F,d)|

(2.1) o

=2(Vol(u; — 231 = maxil;) — Vol(z; — u; = maxl;)) =0,
J i
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where I = u; — ;1 or x; —uj, 7 = 1,2,...,2n+ 2 Vol(z; — u; = max;l,;) =
[I(z; ~ ui = max; )0 < 23,0, 20 < I)H?f dx; and x; are order statistics
from the uniform distribution on [0,1], 2o =0, £,11 = 1.

Proor. Notice that the set of all invariant estimators in A is closed under
convex combination operation. The proof of this proposition is now the same as
in Friedman et al. (1988) and will not be repeated here.

When n — 1 or n — 2, the restriction that the hest invariant. estimator has ta
be within A obviously yields the sample distribution function as the best invariant
estimator. However, in general it is not so as the following proposition shows.

PROPOSITION 2.2. Formn = 1 and 2, the sample distribution function is
the best invariant estimator of F under the Kolmogorov-Smirnov loss, monotone
transformations and action space A. For n > 3, the sample distribution is not the
best invariant estimator.

PrROOF. For n = 1 and 2, by symmetry, it is easy to check that the best
invariant estimator has to be the sample distribution. But when n > 3, if d is

the hest invariant estimator, then, B%F"i} hags to be zero for alli =1, 2,. . In

particular it should be so for i = 2, i.e., d%(f D — 0, or Vol{ug — X1 = max; [ l } =

Vol{ X5 —us = max; l;}. To show that the szample dlstrlbutlon function is not the
best, we only need to show that for the sample distribution function with u; = ’;1 .
the dbove equality is not satisfied. Since {; = u; —x;— or z; —wu;, the Vol {us—X; =
max;, I;} in this case can be Computed as follows. 1 /n —z1 = max; l; implies that
for cach z, i=1...,n 1 -z > and £ —xy > a; — ‘;1. Therefore,
0<o < 2 ,and & l +:r1 R 1 2,...,n. All these regions for
2; do not overlap, so Vol{l/n —xy — mamj I;} = fl/zn(l — 22 )M, = z—n—,j-"m

On the other hand, for Vol{Xy— 21 = n1axJ [;}, X2 — = = max/; implies that
“’1 Xy oy < g + 2 2 for @ # 2 and To > . It is clear that Vol{X; - = =
maxj i} is strictly greater than the volume Computed under the restriction LhaL

% < pp < 2 In the latter case, all z; and z; have no overlapping regions and

therefore the volume can be computed easily as f3 /qn(2$2 3 2yn=ld, = %ﬁ
The proof is completed.

For n — 3 and 4, in view of the symmctry, we nced to determine only one
coefficient for the best invariant estimator. The computation of this coefficient
can briefly describe as follows. For n = 3, 4 we need to find a up such that
Vol{us — X1 = max; l;} = Vol{X3 — u2 = max; [;}. The prool of Propusition 2.2
shows that Vol{Xy—uy = max; [;} > Vol{us—2, = max; [;} forup = 1/n,n > 3.
As we increase ug, the first volume decreases whereas the second increases. The
two volumes should be equal in order to achieve the best invariant estimator. This
suggests that for n > 3, up > 1/n. Under this constrain, for n = 3, routine but
tedious computation leads to VoE{uz—Xl = max, L} =1/12—3us /4—&-2u2 Aud/3
and Vol{ Xy ~ug = max, I;} = 1/12 — 3u3 /4 + 5u3 /6 Equating these two volumes
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and solving, we get ug = (33 — 3v/17)/52 = 0.396744, which is the answer because
of the uniqueness of the best invariant estimator. So the coefficients u; in (1.3) for
n = 3 are 0, 0.39674, 0.60326 and 1 {compared to 0.2441, 0.4013, 0.5987, 0.7559 in
unrestricted case in Friedman et al. {1988)). Similarly, for n = 4, the suggestion
for uy is that it is greater than 1/4, and we get two 4th order polynomials for the
corresponding volumes: ©*/8 —u?/24+9u?/16 —17u,/96 +13/768 and —301u*/96+
1076 /24 — 37u®/16 + 471,/96 — 23/768. An admissible numerical answer (using
Mathematica) is up = 0.324424. Therefore, for n = 4, the coefficients in (1.3)
are 0, 0.324424, 0.5, 0.675576 and 1 (compared to 0.2072, 0.3366, 0.5, 0.6634,
0.7928 in unrestricted case (Friedman et al. (1988})). The weights assigned to each
ordered observation for the best invariant estimator when restricted to a proper
distribution are, for n — 3 and n — 4 respectively, 0.306741, 0.20652, 0.30674; and
0.324424, 0,1755706, 0.175576, 0.324424. In both cases, outer observations receiving
heavier weights than the inner cbservations.

As In the unrestricted case in Friedman et ol. (1988), we have been unable to
get an iterative formula to compute the coeflicients of the best invariant estimator.
However, the same way of computing coefficients as in Friedman et al. (1988) must
work for n > 5, but it wiil not be pursued here.

ProrosiTiON 2.3. The best invariant estimator is ¢ minimax estimator
among all estirnators in the action space A.

Proor. Yu and Chow (1991) showed that for any a(X,t} € A and any
positive ¢, &, there is a distribution function F and an (unrestricted) invariant
estimator d; such that

dF)" T ({ X X ) falXt) —di{ Xt 2 e)) <6

where dF' denotes the probability measure induced by the distribution function
F. If we simply change the first and last coefficients in above d; to 0 and 1
correspondently, and call the resulting invariant estimator d», the above property
is still true by the virtue of the definition of a(X,t). Therefore, for any a(X,t) € A,
and for any € > 0, there is a distribution 7' and an (restrictive) invariant estimator
d» such that

(@F) (X, Xy ) £ (X, ) — da(X,0)] > ) < .
Now the minimaxity can be concluded as in Yu and Phadia (1992).
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