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Abstract. This paper develops a discrete reliability growth {RG) model for
an inverse sampling scheme, e.g., for destructive tests of expensive single-shot
operations systems where design changes are made vuly and lmedialely afier
the occurrence of failures. For g;, the probability of failure at the i-th stage,
a specific parametric form is chosen which conforms to the concept of the
Duanc (1964, IEEE Trans. Acrospace Electron. Systems, 2, 563—-566) learning
curve in the continuous-time RG setting. A generalized linear model approach
is pursued which efficiently handles a certain non-standard situation arising
in the study of large-sample properties of the maximum likelihocod cstimators
(MLEs) of the parameters. Alternative closed-form estimators of the model
parameters are proposed and compared with the MLEs through asymptotic

efficiency ag well as small and maderate sample size simulation studies.
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1. Introduction

As a system undergoes development, its reliability generally improves as test-
ing exposes failure modes and appropriate design changes or corrective actions are
subscquently implemented. At the end of a stage of testing on a given configu-
ration of the system, the current reliability can be estimated from the test data
available from that configuration alone. Alternatively, since the extent, of that data
can be limited, reliability growth (RG) models (in essence, regression models} can
be pursued to attempt to utilize all of the available test data and obtain a more
precise cstimate of the system reliability.

The standard application of such an approach was initially popularized by
Duane {1964). From an examination of the time between failure data of several
industrial systems, he observed that the cumulative number of failures typically
produced a linear relationship with the cumulative operating time ¢ when plotted
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on a log-log scale. This phenomenon, subsequently referred to as the “learning-
curve property”, was given a concrete stochastic basis by Crow (1974) who assumed
that the failures during the development stage of a new system follow a nonhomo-
geneous Poisson process (NHPP) with an intensity function of the Weibull [orm
pét®~1. He provided a comprehensive treatment of the above model in the context
of reliability growth and demonstrated its elegant inferential aspects for applica-
tion purposes.

Concerning the reliability growth of one-shot devices, the test results are
binary in nature as opposed to time-to-failure in a continuous-time framework.
By establishing an analogy with the NHPP model, Crow (1983) and Finkelstein
(1983) formulated a discrete reliability growth model, henceforth referred to as
the C-F model, in which the failure probability g; at the i-th system configuration
{stage) decreases with 7 according to the functional form

1.1 G=miEr — G-, 0<m<l, 0<éh <l

Implicit in the derivation of (1.1) is the assumption that the functional form
holds irrespective of the particular outcomes of the individual trials, as well as
of the specific trial numbers at which design changes or corrective actions are
implemented (Fries (1993)). Some estimation procedures for this model were sug-
gested by Crow {1983) and Finkelstein (1083); asymptotic properties were studied
by Bhattacharyya et ol (1989), Bhattacharyya and Ghosh (1991), and Johnson
{1991).

If design changes are effected only and immediately upon failures, e.g., in the
destructive testing of very expensive systems, the assumptions underlying the C-F
model are unreasonable. In this article we develop a discrete RG model which
incorporates the concept of a learning-curve in a simple manner, and provides a
suitable description of system improvement in the operational setting where fail-
ure occurrences and design changes are synchronized. The model is presented in
Section 2 along with a demonstration of its connection with the Duane postulate.
In Section 3, we discuss maximum likelihood estimation which requires iterative
solutions and also confronts a non-standard situation of asymptotics. A corre-
spondence between the new model and the C-F model (1.1} is brought forth in
Section 4, and a simple set of alternative closed-form estimators for the model
parameters are constructed by exploiting this connection. Finally, in Section 5,
the two sets of estimators are contrasted via examinations of asymptotic relative

efficiency (ARE) and the results of small and moderate sample size simulation
studies.

2. Formulation of the madel

If design changes and corrective actions are made only when a failure occurs,
the results for each configuration test would consist of a run of successes followed
by a single failure. The number of trials (#;) to the first failure under the i-th con-
figuration, should therefore be modeled as a Geometric(g;) random variable where
q; denotes the system failure probability at the i-th stage. These circumstances
correspond, for instance, to repeated developmental testing for a given number
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of hardware coples—in which a success oulcome in any Lrial permits the same
system to be retrieved and retested in the next trial, but any system failure is
catastrophic and eliminates the particular system for future testing. Examples in
the military arena include : {1) “live fire testing” of the survivability performance
of air, land, and sea vehicles against various threat munitions, {2) testing of the
launch and landing capabilities of unmanned aerial vehicles, and (3) exercises of
target homing characteristics of {unarmed) torpedos. For a parametric form of ¢;,
we refer to the Duane postulate of linearity of the cumulative number of failures
and cumulative test time on a log-log scale. If we identify each trial to take a
unit amount of time, then the cumulative number of trials until the i-th failure,
T = 23:1 N;, can be interpreted as the discrete analog of the cumulative test
time up to the i-th failure in the continneous-time case. We consider the functional
form

(2.1) gi = (/6" 7%, O<pu<é 6>1,

for the failure probability under the i-th configuration. With this choice, we have
B() = Y0t = (6/0) 355 = w=ti%, (for moderately large i), thus
conforming to the Duane curve.

Incidentally, Dubman and Sherman {1969) studied a discrete RG model under
the same inverse sampling scheme, but they assumed g; to be proportional to &,
which amounts to a “geometric decay” in the failure probability ¢;. Our model
(2.1), represents an exponential decay in g;. Henceforth, we shall refer to (2.1)
as a Nonhomogeneous Geometric (NHG) model for reliability growth. Note that
with the aforementioned correspondence of a trial with a unit time, the NHG
modcl (2.1) is preciscly a discrote version of the PEXP model discussed in Sen and
Bhattacharyya (1993).

Fries (1993) proposed a discrete RG model by taking ¢; to be of the form

(2.2) G=pli - G- O0<p<l, §>1

and applied it to reliability test data for certain missile systems undergoing devel-
opmental testing program. Since the two forms of ¢; in (2.1) and (2.2) are close
even for moderately large i’s, the asymptotic results derived in this paper hold for
both models.

To keep the exposition simple, we confine our attention to the inference pro-
cedures for a single unit undergoing reliability growth undor the proposed inverse
sampling setting. The properties of the estimators we develop for a single unit eas-
ily generalize to testing a fixed number & > 1 identical prototypes provided that all
the units are observed until the same number (r} of failures. While the treatinent
of multiple units do not induce any additional analytical complexity, the only mod-
ification appears in the expression for the asymptotic variance-covariance matrix
of the estimators which absorb the number of units tested as a scaling constant.
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3. Maximum likelihood estimation

Under the sampling scheme of observing the failure sequence of a system upto
its n-th configuration, the data consist of N;, the rumber of trials until the first
failure under the ¢-th configuration, i = 1,...,n. The N;’s are assumed to be
independent geometric random variables w1tb means /g = (6/p)¢ 1. For the
sake of brevity, we write the mean in the log-linear form exp{8'z;), where

(3.1 A =(A,R), pPi=log(é/p), R=6-1 and = =(1,logi).

The log-likelihood becomes
log L = ﬁﬁ’zmﬁ-ﬂZ(Ni—l)log[l—exp(—ﬁ’mé)], 0< B <oo, 0<f<oc,

and we have

(3.2) L(B) = mogL Zmﬁz (N; — Dexp(B'z;) — 1] 1y

(33) AB)=- 58;;5; > (N~ lexp(Bz:) ~ 1] exp(f'z:)aia
=1

As for the existence and uniqueness of the MLE, we observe from expression

(3.3} that on the complement of the set

Sy =[Ny =1 for at least (n — 1) of the i’s, i =1,...,n],

A, (B is positive definite and so the log-likelihood is strictly conecave ensnuring
a unigue maximum of the likelihood function. Unless the maximum iz attained
ontside the parameter space, it corresponds to the unique solution of () = 0.
In the sequel, we take the MLE 311 to be this unique solution and investigate its
large sample properties. Note that P(S}) tends to zero as n — oo, and so the
existence of the MLE is ensured in an asymptotic sense.

To study the asymptotic properties of the MLEs, we first note that our model
with the parameterization as in {3.1) can be recast in the framework of a generalized
linear model. A univariate generalized linear model (see the book by McCullagh
and Nelder (1983) for a detailed description and analyses of a generalized linear
model) is formulated by modeling the independent data {y;}i=1, , through the
family of pdf’s {f{y:,6:)}iz1, . » assuming the exponential class structure

flyi 6:) ox exp(By; — b(6;)), i=1,2,...,n,

b(-) being an arbitrary differentiable function related to the mean of y; through the
equation 0b(6;)/86; = Fp, (y;). The linearity in the model is imposed by relating
the mean to a twice continuously differentiable but otherwise arbitrary function g
of a linear combination of unknown parameters 3, namely, Ep,(y:) = g(8 ®); 24’8



ESTIMATION IN A DISCRETE RELIABILITY MODEL 215

assuming the role of covariates. In the literature, g is termed as the link function,
with special attention being devoted to natural link functions which oceur by
taking ¢ to be the identity funetion. Note that in our model, the independent data
{Ni}i=1, . n conform to the generalized linear model structure with g(-) = exp(-)
appcaring as the (nonnatural) link function.

Asvmptotic properties of the MLEs of the parameters in generalized linear
models have been well studied in the last decade. The most comprehensive treat-
ment appears in the work of Fahrmeir and Kaufmann (1985), who provide a unified
approach for handling hoth natural and nonnatural Jink funetions. We shall adapt.
their approach in proving the large sample properties of the MLEs in our model.

Towards that end, we let 8, = (Bi0,20) denote the true parameter vector
and introduce the matrix

Fo(B) = Bgl4,(8) = 3 vi(B)ma!

where v;(8) = [1 — exp(—f'x;)]™, i = 1,...,n. For notational simplicity, hence-
forth we shall drop the 8, from F..(8,), vi{By), &(By), and denote them by F,, v;,
and I, respectively. Also, in the sequel, Fl Q(FT{/ 2) will be taken to denote the
unigue upper (lower) trisngular square root of Fy,, and FT 2(1;,”—1/ 2) will specify
the respective inverses.

The crucial step in the MLE asymptotics is a Taylor series expansion of
L.(B,) = 0 around @,, which yields

(‘34) L, = An(Cn)(an - ﬁ(])

where ¢, is a random point on the line segment joining [in and By. Premultiplying
both sides of (3.4) by qu_l/?, we have

(3.5) F7V2L, = F7V2 AL (O FTPFI (B, - By).

The following lemma provides the groundwork for the consistency and asymptotic
normality of 8,,.

LEMMA 3.1, (a) Amin(Fn) — 00 as n — oo, where Agin(Fyn) denotes the
minimum eigenvalue of F,,.

(b) #2120, 5 Na(0, 1),
(c) For all 6 > 0,
| B2 ALBF;T2 — 1| 50
wniformly in B € ME(B,) where M?S(B,) denotes the sequence of neighborhoods

Mrf(ﬂo):{ﬁH FTT/Q(ﬁ—ﬁO) “S 6}1 n’:152a



216 ANANDA SEN AND ARTHUR FRIES

For o smoother reading, the proof of Lemma 3.1 is collected in an appendix at
the end of the article. Part (a) of the lemma ensures that the sequence of neigh-
borhoods M?(8,) shrink to 8, (Fahrmeir and Kaufmann (1985)), a fact which
is utilised in proving part (c). Both parts {(b) and (¢) of the lemma constitute
important steps in establishing the asymptotic normality result which we present
next.

THEOREM 3.1. For the sequence Bn as above, the vector (n'/*{logn)~! .

(Bln — ﬁlo),nlfz(ﬁgn — [20)) is asymptotically bivariate (singular) normal with
mean 0 and variance-covariance matriz

1 -1
S
Proor. Note that in view of {3.5) and Lemma 3.1, we have

(3.6) FE‘/Q(BR ~ Bo) % Ny(0, 1).

The nonzero elements of F,/ = (fi;(n))i j=12 are given by

fuln) = (Z Uz)
172
fia(n) = (Z ’Ul) Zvi log 4,

RPN, 72

To transform (3.6} to our required result, we define the matrix C, =
diag{n'/?(logn)~1,n'/2) and observe that

(3.7) (?11/2(10% n)_l(Bln - Bl[l)a 1/2(5'2:2 - 620))’
= Cul(B, — Bo) = C.F"PFI(B, — By)

where F, */? = (f%(n))i =12 is the inverse of F; 772 with nonzero entries

Frmy = fi'(n),
, f12(n)
(3.8) Blp)=——2
£ fr1{n) faz(n)
F2(n) = fo' (n).
Since v, — 1 asn — oo and 3 _;,(log?)® ~ n(logn)* for large n, k being any
nonnegative integer, it is easy Lo t:bLabllbll Lhal

(3.9) Ylogn) ka@ (logi)* -1 asn—oo; k=0,1,2

i=1
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Repeated use of (3.9) along with some minor manipulations for the faa(n) term
enable us to deduce fi1(n) ~ nl/2, fia(n) ~ n'/2(logn), faz(n) ~ n'/? for large
n. Thus, we have ag n — oo,

0 -1

. ~T/2
(3.10) C.F ' — [0 1

|=».

In view of (3.6}, (3.7), and (3.10), the required result follows by noting that DD’ =
2.0

Remarks.

(i) An alternative, direct proof of the above theorem is detailed in Sen {1993).
It is apparent that due to the singularity of the variance-covariance matrix ¥;, the
classical treatment involving Taylor-expansion of the score function and inversion
of the information matrix needs to be modified here. The modification, although
simple in principle, faces tedious and complicated manipulations in the present
case due to the nonstandard rates of convergence. The major advantage of the
approach presented here avoids this complication in an indirect way and arrives
at the singularity as an offshoot of a more general result stated in (3.6).

(ii) In toerms of the original parameters py and 8y, the large sample result
translates to

iy (TR 4 (o, [ ]

3.1  Estimating current system reliability

In reliability applications, one is often interested in estimating the current
value of the system reliability. Under the failure-truncated sampling scheme of
monitozing Lhe failure process ol a single-shot system, the current system reliability
at the n-th configuration is given by R, = 1—¢,,. For our NHG model, the current
system unreliability ¢, can be expressed in terms of the parameters 37 and 3, as;:

—log g, = B1 + B2 logn.

An eslimate g, of g, is obtalned by replacing the parameters by their MLEs. The
statistic log ¢, centered at the true parameter value 83, yields

(3.12) 10g(Gn/qn) = (B0 — 1) + (B20 — B2) log n.

An argument similar to that for part (b) of Theorem 3.1, with C,, replaced by the
vector e, = (n'/%,n'/? logn)’, readily establishes the tollowing theorem.

THEOREM 3.2.  The sequence of random variables n'/? log(g,/qn) converges
i distribution to a normal random variable with mean zero and variance 2.

In a classical multiparameter setup, it is more appropriate to look at joint
confidence regions for the parameters rather than individual confidence intervals
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for statistical inference purposes, especially in the presence of dependence among
the respective estimators. Three traditional approaches for finding joint confidence
regions are based on (i) likelihood-ratio statistic, {ii) Wald statistic, and (iii) Rao’s
score statistic., Fwvaluated at the true parameter vector, either of the three statis-
tics is asymptotically distributed as a x* with k degrees of freedom, k being the
number of parameters. Lacking an invertible asymptotic variance-covariance ma-
trix, none of the standard results will be applicable in the current situation. It is
however, interesting to note that a two-dimensional asymptotic confidence region
for 8 can be obtained directly from Theorem 3.2. Specifically, in view of (3.12),
the statement of Theorem 3.2 readily translates into the 100(1 — )% large-sample
canfidence region

Q.(8) = {B: (B, - BV H,(B, — B) < x}_q1}

where X%—a,l is the 100(1 — a)-th percentile of a x? random variable with 1 degree
of freedom and
n n(logn)

H, = (1/2) n{log n) n,(log n)g

4. Construction of simplec cstimators—C-F Modcl Analog

In order to motivate a simple construction of estimators for the parameters
(4, 8} of the NHG model, we first provide a connection between the NHG and the
C-F model. Consider initially the C-F model where each configuration consists of
a single trial (as in Finkelstein (1983)). The expected number of failures up to the
i-th configuration equals (1741, where the serial number 4 can now be interpreted
as the cumulative number of trials. This establishes a correspondence between the
cumulative number of trials and the cumulative number of failures until the i-th
configuration as:

. . 1/6
cumulative number of failures /&

H1

cumulative number of trials =

Under the NHG model, the left hand side is considered to be the random
variable T}, and the right hand side becomes (i/p1)*/%. Consequently, N; =
T; — T;—1 would correspond to [(4/p1)Y/ % — ((3 — 1)/p11)*/%1]. We match this last
expression with E{N;) to arrive at

1/6;
(4.1) g = Jui/‘gl [V — (- 1)) /"-151 jlert

The above approximation is good even for moderately large 2. An inspection of

(2.1) and (4.1) yields the parameter relations

(42) 0= 1/6’13 "= #’1/515
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which can now be used as a basis for constructing estimators for the NHG model
from those for the C-F model. In particular, we consider the Continuous Analog
Estimators (CAEs) for the parameters in the C-F model, which were proposed by
Finkelstein (1983) from an analogy ot the C-F model and its NHPP counterpart. In
terms of the present notation, the CAEs {henceforth denoted by {u7, 7)) assume
the form

-1

_6*
, i =ndy .

(4.3) §f=n [Z log(T,/T5)

=]

They are of particular interest because of their structural simplicity, and also for
the model {1.1), their asymptotic equivalence to the MLEs {Bhattacharyya and
Ghosh {1991)). Guided by the correspondence in {4.2), we define the estimators
(u*,6*) for the parameters of the NHG model as

*

* * 1 - " * * ’n,5
(4'4) 6 = 1/61 = ; Z ]'og(Tn/T’r,)a L = (#1)1/6 = T_
i=1

n

The pair of estimators {p*,6*) has an alternative interesting interpretation
from the point of view of misspecification. If the C-F model is “wrongly” fitted
to a dataset conforming in reality to the NHG model, and the CAEs (p7, 67) are
used for statistical inference, then (p*,6%) represent the estimated values of the
true parameters {ji, §).

In what follows, we let {p0, 80) denote the true parameter values for the NHG
model and refer to (u*,8*) as the C-F model Analog Estimators {CFAEs). Since
T;s are random variables with growing expectations in the order of % it is easier
to work with the scaled random variables X; = uoT; /4%, i = 1,...,n. Necessary
large-sample results concerning the sequence of X;s are detailed in the following
lemma.

LEmma 4.1, Asn — oo,

(a) nt/2(X, —1)-5 N(0,82/(26 — 1))

(b) n'/2(X, — X)) 3 N(0,82/(260 — 1)).

(c) nt/2 i1 log(X /X)) = 2 (X, — Xn) + op(1).

The asymptotic propertics shared by the scquence of X;s arc clearly nonatan-
dard and the derivation depends heavily on a refined treatment of the first two
moments of certain specific random variables such as Y (X; — X,,), >0, (X, —
1)(X;] — 1) ele. We refrain from presenting a detailed prool whichi [ollows along
similar lines of argument to that adopted for a corresponding result laid out for
the PEXP model in Sen and Bhattacharyya (1993). It may be worth noting, how-
over, that in the aforementioned article the authors dealt with continuous random
variables and there is no direct way of translating the results obtained there to
the present case in spite of the obvious analogy between an exponential and a
geometric random variable.
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The large-sample result for the CFAEs are detailed in the follwoing theorem.
THEOREM 4.1.  For the NHG model (2.1), the asymptotic distribution of

(n*/2(log n) ™ {p" — po), nY/2(6* — 80)) is bivariate (singular) normal with mean
0 and variance-covariance matriz

2 _ 1 o
s/en - p[ ko).

Proor. We first express the CFAESs in terms of X;s as:

(4.5) 8 =log(Tu/n™) ~ n™" Y "log(13/i%) + sen ™' Y log(n/i)
=1 =1
=n1 Z log(X,,/Xi) + dallogn — (log n!)/n]
=1
(4.6) log 1" — log pg = log(n® /ueTy) + (ogn)(6° — o)

= (logn){(6* — éy) — log X,,.

An inspection of (4.5) yields

(4.7) nM2(E" —do) = n VD log(Xa/X;) + 026 [logn —~ (logn!) /n — 1]
i=1
=n'2(X, — X,) +n'28ullogn — (logn!)/n — 1] + 0,(1)
=nl2(X, - X)) + op(1),

where the second equality follows from Lemina 4.1 (c), and the last equality results
from an application of the Stirling’s formula yielding

logn — (logn!)/n — 1= —(logn)/2n + O(1/n).
Also from (4.6),
(4.8)  n'2(logn) " (log u* — log ug) = n'/2(8" — &) — n*?(log n)~" log X,,.

In view of Lemma 4.1 {a) we have n'/*(logn) ™! log X,, converging to zero in prob-
ahility so
n'2(logn) ™ (1" — o) = pont2(6" — 8a) + op(1),

The stated theorem then follows from the asymptotic normality of n!/ X, —
X,).0O

The measure of unreliability g, = pun!~¢/8 can be estimated using the CFAEs
as g, = p*n'~% /6*. As a consequence of the above derivations, we obtain the
following
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THEOREM 4.2. n'/2log(qh/qn) — N(U, (82 4 265 — 1)/ (280 — 1)).
IProor. We observe that

(49)  log(er/an) = n'/*(log p* — log o) — n*/*(log 6 — log &)
— 02 log n(6* — &)
— —n'%{log 6" —log 6y) — n'/?log X,
= —nl2E — 80) /60 - n (X, - 1) + op(1)
= 02X = X0) /80 —nMH(X0 — 1) + 0p(1),

where the second and the fourth equalitics are consequences of (4.6) and (4.7),
respectively. The third equality results from a combination of Taylor expansion
and the facts that both n'/2(6* — §,) and n'/2(X,, — 1) are O,(1). Recasting the
problem back to the original random variables N;’s, we can write the difference of
the first two terms in (4.9) as

T
S = o Y _INAn™ V2 din f8g — ' P70} — T 25,
i=1

where d;, = 377 (7% —n'"%(n— i+ 1)7'). Following some tedious algebra
{omitted here) it can be shown that as n — oo,

(1) B(Sn) =o(1),

(i) Var(S,) — (&5 + 260 — 1)/(260 — 1),

and

Th
(iii) > BIN{n V265 diy — nP0} - n T2 = 0(1).
i=1

In proving all three assertions the key role is played by the identification of d;,, as
a Riemann sum

* 1 1
diﬂ, — 1450 —1 _
n " Z (G/m) 1 -—u] |’

J=lnu|

by viewing the index i = [nu|, 0 < w < 1. The asymptotic normality of
1 og (g fuypn) now follows as o consequence of Tindeberg-Foller central Limii, (he-
orem.

5. Comparative study of estimator performance

This paper concludes with a report on the relative performance of the maxi-
mum likelihood estimators and the simple C-F model analog estimators developed
in Sections 3 and 4, respectively. Two perspectives arc taken—Ilarge sample ef-
ficiency expressed in terms of the ARE, and bias and the mean squared error
comparisons for small and moderate sample sizes.



222 ANANDA SEN AND ARTHUR FRIES

From Theorem 3.1 and Theorem 4.1 it is seen that the simple estimators,
although consistent under the NHG model, lose asymptotic efficiency compared to
the MLEs. Specifically, comparing the asymptotic variances based on the marginal
distributions of the estimators, the numerical value of the ARE turns out to be

ARE(u* : i) = ARE(6* : 8) = (260 — 1) /62,

which is less than 1 and approaches 1{0) as & approaches 1(cc). The corresponding
loss in asymptotic efficiency in measuring the current system unreliability g, is
measured by the ratio of the asymptotic variances stated in Theorem 3.2 and
Theorem 4.2, respectively, which equals 2(26, — 1)/(8¢ + 283 — 1). Figure 1 shows
the plot of these AREs as a funetion of &, which indicates that the loss in efliciency
in estimating the unreliability is substantially smaller compared to the individual
cstimators for a moderate range of 8.

10

0.9

o1:]

ARE
0.7

05 0.6
!

0.4

della

Fig. 1. Relative efficiencies of the CFAEs w.r.t the MLEs when estimating the individ-
ual parameters {solid curve) and the current system unreliability (dotted curve).

Monte Carlo simulation techniques were employed to study the performances
of the MLE’s {ji, 5) and the CFAE's estimators (7, 67) in both small and moderate
sized samples. Four pairs of (ug,é0) values, (0.3,1.5), (0.3,2.0), (0.5,2.5) and
(0.8,2.5) were used for the study. For each case one thousand realizations of the
two sets of estimators were obtained with the sample sizes n = 10, 25, and 50. The
MLEs were computed using the two-variable Newton-Raphson procedure with the

consistent, estimators (p25,67) as the initial value for the iteration.
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Geometric random variables G{g) with the p.d.f
PGg)=xz)=(1—-¢)* g, z=12,...

were generated by exploiting the following relationship hetween the exponential
and the geometrie distribution. Naote that if £{X) iz an exponential randam variahle
with mean A7%, then

Plr <& <r+1) =exp(—Ar)(1 —exp(—=X))
=P[Ge M =r+1], 7

To generate a value z from G(q) we first generate y from £(A) with A = —log(1—¢)
and then take z = {y + 1], the nearest integer less than or equal to y + 1.

Table 1 gives the estimated bias and mean squared errors for both the MLEs
and the CFAEs. Overall, the MLEs for both parameters perform better than
the CFAEs. As is evidenced from Table 1, p* and & show a strong tendency
of underestimation over all ranges of (i, dp) values considered. The magnitudes
of bias are substantially smaller for /i compared to p*. For almost all values
of the sample sizes, the estimated mean squared errors for the MLEs are either
comparable to or smaller than those of the corresponding CFAEs.

In conclusion, it appears that the MLEs outperform the simple estimators
even in small samples. The trade-ofl seems to be the ease of obtaining the estimate
versus a better performance in terms of bias and variance. In practical applications,
the simple estimators can in the least provide an initial guess about the parameters
and can be used to demonstrate reliability growth (£ > 1) or otherwise. Moreover,
if the estimation of reliability is the ultimate goal, choosing the simple estimator g,
will not he unadvisable in view of its stabler behavior compared to the individual
estimators.
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Appendix

Proor oF LEMMA 3.1, (a) Since Ay (Fr) = max(F71)) 71, we need to
cotablish that Amax(F;71) >0, as n + co. Recall that

Ti T

Z vy Z vy log ¢

Fn i=1 =1

Z v; logi Z v;(log1)?
i—1 i—1
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where v; = [1 — exp(—fgx;)] ' Using (3.9}, it follows that >, v; ~ n,
oo wilogi ~nlogn, 370 vi(logi)? ~ n{logn)?. Further,

i

n T 2
d, = |F,| = Zvi Z:'U?;(logf.i)2 — (Z v logfi)
i=1

i=1 i=1

= Z v Y willog(i/n))? — [Z (5 10%(7:/“)J
i=1  i=1 i=1

~n?.

Let AV, A2 be the eigenvalues of F,,'1. As a consequence of the ahove discussion,
n T
(AL A AP = a(r) - d? (Z + Zw(“g”g) o emn
i=1 i=1

Since F! is a positive definite matrix, AQ), }\%2) are positive for all n, and thus
(A.1} entails that both )\n,(f), 2D and consequently max()\g) ; )\%2)) converge to zero
as n — 0o.

{b) We define a sequence of random variables e;, 1 = 1,2,...,n, as

(A.2) e; = (N; - Llexp(Byz;) — 1177 - 1.

Note that ¢;’s are independent with mean zero and Var{e;) = v;. Denote I, =
(I1n,12,)’, and consider the random vactor

—1/2 1 0 lln):Dl
" [{1—logn) IJ (l2n oo

Since L, = 301, €; and lp, = > e;logi can bath be expressed as a sum of
independent mean zero random variables one can apply the Lindeberg-Feller form
of central limit theorem to demonstrate that ¢’ Dyl,e — ¢’c as n — oo for any

¢ # 0, which yields the result
(A.3) Db, -5 No(0, ).
Using the notation in {3.8) for F,, T2 4e have

) s Fin) 0
PR =0 g — 1 20m) — 12m) f”(”)} |

Since f11(n) ~ n"Y2, f2(n) ~ n~Y2 it is immediate that both the diagonal
terms in the above matrix converge to 1. As for the positive off-diagonal term,
ohserve that

n![(logn — 1)f*2(n) — f12(n)] - n!/2f2(n) [1 - Z?Zgi biwn)] —o(1)
=1 "
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by virtue of the facts that n ' >0 ;v — 1, not > 7" vilog(i/n) — —1, and
nt/2f22(n) - 1 as n — oo, and so

(A.4) F7\2p-inTg

Since Fn_llen = Fn_l/zD,;anlm we have our required result in view of (A.3)
and (A.4).
(c) Denoting A, = A, (8y) = (aij)s,j=1,2, and writing

(A5)  F7'V2AMC)F, T2 = FVPALF T2 FV%A4(C,) — ARl R

we observe that it suffices to establish (1) the probability convergence of the first
term on the right of (A.5) to the identity matrix and (ii) uniform negligibility of
the second term in the prescribed neighborhoaod.

In order to show that Fy L ‘A Fy g , we simply need to demonstrate

that expectation of each term in Fp 1 AL Fy T/z converges Lo the corresponding
entry in I, while the respective variances are o{l) as n — oo, We ghall anly
establish this for the off-diagonal term and indicate that the treatment is similar

for the other two. Observe that the off-diagonal element of F, 24, F. 7% can

be wrillen as
(A.6) fiitfagt (@1a — fii Fraany)

n -1 n n
= (Z ’Ui) d;l/g (alz Z Vi —ai Z’U@ log ’l,)
i=1 =1 =1
n n
~ T2 ((112 Z v; — @11 Z Y5 Iogi)
i=1 i=1

using arguments as in part{a) of the lemma, where d,, as before represents the
determinant of F,. Exploiting (3.2), (3.3), (A.2), and the expressions for v;, we
can express a1 and ayz as

T
a1 =n+ i, + Z(ei + 1){v; — 1),
=1

T

n
thiy = Z(log i)+ lop + Z(ci + 1)(v; — D logd,
and thus we can present (A.6) (after some simplifications) as

T n
n=? (&12 Z vy — aqy Z v; log z)
i=1

i=1

T T T
- {n2 Zm Z v log(i/n) —n~t Z vy log(i/n)
=1 i=1 i=1
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{( o e
QZ e; + 1) (v; — 1)  log(i/n) va Zvjlog {(3/n)
7=1 =1
=K +K2+K3.

Using arguments as before, it is easy to establish that Ky = o(1). The result
stated in (A.3) entails that n=1/*(ly, — Iy, logn) > N(0,2). Since Yo v~ m,
we conclude Ka = 0,(1). As for K3, once again, we use the limiting properties of
the {v,} to conclude that both E{K3) and Var(K3) converge to zero as n — oo.
Turning to the second term on the right side of (A.5), we first reexpress the

entries of the matrix F,, 1/2A F, T2 = = {wij)ij=1,2 88

2,411
wyy = [nfn } n

Wz = Wiz = (10gn){[nf111f221] (&>

nlogn
(A7) — [n(log ”)_lfﬁgfg_zlflﬂ%},
ez = (o) { [nf |2 — fnllogn) ™ 7l 2

+ Inflogn) 27252 12

‘The expressions are arranged in a way such that the terms within the square
brackets converge to unity. In view of (3.3) and (A.7) thus, we need to establish
that

T = (log n)?n " (logn)~ ’“Zaogw (N: ~ DfuslB) — us(Bo)]

converges in probability to 0 uniformly in 8 € M?(8,) for k = 0,1,2, where
ui(B) = exp(B'z;)lexp(f'a;) - 1]

In view of part (a) of the lemma, it is clear that the sequence MJ(8;) shrinks to
B, as n becomes large for each fixed 6. Since it suffices to establish the uniform
convergence of 73, ;. in any sequence of ncighborhoods shrinking to By, we shall
work with a neighborhood with a simpler structure. Specifically, we consider the
rectangular neighborhood of the form

RalBo) = {(B1,3) : 1B1 — Brol < (ogmn V2, |82 — fao| <m™'/7}.
Writing u;(8) = (exp{(8'a;) — 1)~ + (exp(8'z;) — 1) 72, we can decompose T}, ;. into
two parts as

Tnze =n"logn)*" kZ(lng?) Ny —1)
i=1
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[(exp(B'@:) — 1)1 — (exp(Bpm) — 1)7Y
+n"Ylogn)* " Z(log PH*(N; — 1)
=1

[(exp(B'a;) —1)7% — (exp(Bym:) — 1) 7%
= B, 4+ Bs.

Using the triangle inequality on By, we have

(A8) g (|Bi]) < n {logn)?* Zn:(logi)k

j=1

-[lexp(Byz:) — Llexp(fa) — 1] 1 = 1

— = (log )2 F 3 (log i)F exp(B'z)oxp(Bar) — 17!
i=1

|1 = exp{—(8 — Bo) @:}.

By exploiting certain bounds for exponential functions (see Sen (1993) for details),
it can be established that

n~ (logn)*™* Y "(log)*|1 — exp{—(8 — Bp)'@i}| — 0

uniformly in 8 € Rn{B,) as n — oo. To establish that right side of (A.8) converges
uniformly Lo zero, it now suffices to show the uniform convergence of the scquence
b, = exp(#'a, ) exp(B z,)— 1]~ to a finite quantity. For a fixed n, #'z, (and hence
b, viewed as a function of #) attains its extremums (maximum and minimum) at
one of the four corner points of the rectangle R,,(8;). Since b, converges to 1
at all the four corners, we have Eg (|B1|) — 0 uniformly for 8 € R,.{(8;). The
Markov inequality then yields the uniform probability convergence of By to zero.
The proof that By = 0,(1} follows along similar lines.
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