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Abstract. In this paper we consider sequential fixed-width confidence inter-
val estimation for a parameter 8 = ay + bo with @ and b being given constants
when the location parameter p and the scale parameter ¢ of the negative ex-
ponential distribution are unknown., We investigate the rate of convergence of
the coverage probability for fixed-width sequential confidence intervals of 8.
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1. Introduction

Let X1, X5, ... be asequence of independent and identically distributed (i.i.d.}
random variables having the probability density function (p.d.f.)

(1) fuol@) = Zexp (<2 Tz

a

where the location parameter p € {—o0,0c) and the scale parameter o € (0, )
are both unknown and I, denotes the indicator function. We want to find a
fixed-width confidence interval of

(1.2) 8 =au+bo for given constants @ >0 and b > 0.
When we take ¢ = b = 1, # = p 4 o is the population mean of (1.1). For given

€ (0,1), 8 = p— olog(l — p} is the p-th percentile of (1.1). In the case a = 0
and b =1, § = ¢ is the standard deviation of (1.1).
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Let d > 0 and o € (0,1} be given constants. We choose the constant # > 0
such that ®(z) — &(—z} = 1 — @ where ® denotes the standard normal distribution
funetion. For n > 2, set

T = min(X1,. . Xn) G = — S - T,

0, = a (Tn - “—;) b8, L= Io(d) = [0, —d, 8, +d]

and

2
{1.3) ne = (%f) o, nt=ng+ 1.

For simplicity, ng is assumed to be a positive integer. Then it is known that n* is
the asymptotic optimal sample size for large n. But & is unknown, so is n*. Thus,
to find a sequential confidence interval with length 2d and coverage probability
1 — « for the parameter 6 of (1.2), Isogai et al. {1995) proposed the following
stopping rule:

2
M:M(d):inf{n>m:n>(mf) c“rfl-l—l} for d>0

where m > 2 is the starting sample size, n(x) is a positive continuous function on
[0,0c) for which n(x) = 1+ Az "+ o{z ) as 2 — oo with a constant A, and
2, = zn{n —1). Then Isogai et al. (1995) showed the asymptotic consistency of
the confidence intervals Insq){d) = [Bnray — &, Opriay +d] of 8, Le.

and gave the second order asymptotic efficiency of the procedure. For the scale
parameter § = o, Govindarajulu (1985) considered this problem. However, we
are not aware of the convergence rate for the coverage probability of sequential
confidence intervals for # of {1.2).

The aim of this paper is to investigate the rate of convergence of (1.4). Since
the term &,,/n of the definition of statistic 8,, above does not play any role as far
as asymptotic theory goes, in this paper we use

é’u - aTrt + ba'n
ag an estimator of #, and define a confidence interval for # as

L =1{(d)=1[0,—d8,+d.

To find the convergence rate we propase the following stapping rmle:

2
N:N(d)—inf{an:nz(b—;) 6'721+1} for d>0
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where
(1.5) m = m(d) = max{2, [med™7]" + 1}

for any fixed mg € (0,00) and v € (0,2), and [z]* denotes the largest integer
not greater than x. For the location parameter y, Mukhopadhyay {1974) and
Swancpocl and van Wyk (1982) considered this problem. Problems of this type
for population means have been generally studied by Chow and Robbins {1965),
Csenki (1980), Callaert and Janssen (1981) and Mukhopadhyay and Datta (1996).
In Section 2 we shall derive the rate of couvergence of (1.4), In Seclion 3 we shall
give the estimates of the terms in the proof of Theorem 2.1 in Section 2.

Remark 1. By Lemma 1 of Chow and Robbins (1965) we have that
P{N({d) < oo} =1forall d>0

2. Main result

In this section we shall give the main result concerning the rate of convergence
of the coverage probability for # of (1.2) which will be derived by the method similar
to that of Callaert and Janssen (1981).

The following lemma is Lemma 9 of Landers and Rogge (1976) which, together
with (2.6), (2.7) and (2.8) below, yields the convergence rate,

LEMMA 2.1. Let {Xp, bk > 1} and {Y,, k > 1} be two sequences of random
variables. Assume that for a sequence of positive numbers {ax, k > 1}

Sup |P{ Xk <t} — ®(t)| =Olax) and P{|Yk| > ar} = Olax).

Then

sup  |P{X, + Yy <t} — B)] = Ofak)-
— o0t oo

We shall now give the main result.

THEOREM 2.1. For any fized § € (0,~/4),
PO Ing( )} =1—a+0(d'"*%)  as d-0.

Remark 2. Replacing b, by 8,, defined in Section 1, this theorem also holds.
Proor or THeoreMm 2.1. Let any 6 € {0,+/4) be fixed and set
(2.1) g=1-26

Since

1

PO € Iy} (1 -a)| <2 sup ‘P {ém) iy aﬁ} ()

—o0L T o0 Z
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in order to prove the theorem it is sufficient to show that

(2.2) sup ‘P {éN(dk) —6< wd—j} — &(z)| = O(dfp) as dp — 0

— 0L <0

for 5 of {2.1) and any sequence of small positive numbers {dg, k& > 1} such that
Mg oo ds = 0 and 0 < dy < min{1/2, (2b22)2/B=2) (hze [S2)2/ 2B} Tt any
sequence {dz} above be fixed. For simplicity, let dy and Ny = N{d;) be denoted
by d and N with dropping the suffix & throughout the remainder of this paper
cxeept for lemmas. Lot Xj) < Xpy £ - £ Xpn) denote the order statistics

for X1,...,X,. Put
Um = (‘T), — i+ ])(Xn(w) — X—ﬂ(z 1)) for 2 S 7 S 7.

Then it is known that Usy, ..., Uy, are i.i.d. random variables with p.d.f. fo in
(1.1) and that

O

(2.3) by =~ 0
=2

We define the following stopping rule:

n4+1
d
N* = N*(d) — inf ~ 1 Uin <__3/‘2 ,
(d) =in {n_m ; +1 < on
where m is given by (1.5). It is clear that
(2.4) N=N*+1.

For all n > 2, set

(2.5) Qn = L Z(Um —o) and R, =a(T, —u).
=2

Then, from (2.3) and (2.5) we have

0, — 0 =bQp + Ra.

Let any real number z be fixed. It tollows from (2.4) that

(2.6) }P {éN _o< md} B(0)| = [P{br/d)Qnr a1+ (2/d) R < 2}—B(a).

It will be shown in Section 3 that

(2.7) . |P{(b2/d)Qn~+1 <z} — (2} = O(d/?)
and
(2.8) P{(z/d)Rn+,1| > d*?} = O(dP7?).

Thus, by Lemma 2.1, (2.6}, (2.7) and (2.8) we obtain (2.2). Therefore the proof
is complete.
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3. Proofs of (2.7) and {2.8)

In this section we shall prove (2.7) and (2.8} along lines similar to those of
Callaert and Janssen (1981). Theorem 1 of Landers and Rogge (1976} plays a
crucial role in showing (2.7). Throughout this section, let V1, Vs, ... be a sequence
of i.i.d. random variables with p.d.f. fo, in {1.1) and let ¢;,c2 and ¢z denote
appropriate positive constants.

We shall provide four lemmas concerning two sequences of random variables
{5, Uin,n > 2} and {E::f o, > 2}, Lombard and Swanepoel (1978) give

LEMMA 3.1. Two sequences of random variables

n—1
{iUm,ﬂ,zQ} and {Z%,T;ZQ}
=2 i=1

have the same distribution.

We define the following stopping rule:

i=1

T
T“_T(d)ﬁ——inf{n>m1:2%5%113/2} for d>0

where m is given by {1.5).

LevMMA 3.2. We have the following two facts.
(i) N*(d) and T{d) have the same distribution.
(il For any fizved integer k(> m — 1} satisfying P{N"(d) = k} > 0, we get

k1
P {Z Uirp1 =2

=2

k
N*(d)zk}:P{ZVigzc

i=1

1'd) = k:} Jorall z >0,

where m is given by (1.5).

Proor. Firaf, we shall prave (i). By Temma 3.1 we have

P{N™ >k}
41 d
—P{;Umﬂ > Ena/z forall n =m— 1,...,k}

i=1

=P{I'>k} forall k>m-1

—P{ZW>%?13/2 foralln—m—l,...,k}
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and P{N* —m — 1} — ’{T — m — 1}, which conclude (1). Nexl, we shall show
(ii). By (i) above, the definitions of N* and T and Lemma 3.1 we get

A+1
P{ZUHCH < z|N* = k}
i=2

AR d 3 .
=P{> Uy > = forall j=m—1,... k-1,

= bz
k+1 d k41
Y Ui < K% and Y Uippr < P{N* =k}
i=2 bz 322

3
d . .
:P{ZV}>ij3/2iorallj*m—l,...,kkl,

i=1

which gives (ii). This completes the proof.

By a theorem on the moments of U-statistics (see Lemma A of Serfling (1980),
p. 185), we have the following lemma.

LEMMA 3.3. Let

(3.1) Ay =

Sl

i(ﬂ-—a} for n>1.
i=1

ElA) =0n"%  asn—ooc forany > 2.
By Lemma 3.3 and the method analogous to Lemma 4 of Callaert and Janssen
(1981}, we can obtain the following lemma.
LEMMA 3.4. Let A, be as in (3.1), v and ¢ arbitrary positive constants, X

any veal constant and g(d) be positive numbers tending to o positive constant as
d— 0. Then

P{ sup  |Anl > cd"} = QdW/ 2Ny s d—0

nZ[g{d}d=v]*

Joranyr > 2.
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First of all, we shall show (2.8). Throughoul the remainder of this section, 2
is given by (2.1). Let

S = P{{(z/d)EBn-s1| > d*?}.

Then, for a > 0

(3.2) Ji < P{Tnes1 — p > e1d?*F |N* —ng| < dPnglt
+ P{ N* — ?’bo‘ e d’sﬂo}

< P{Tnoq1 — i > e1d??Y my < N* <y} + Ja,
where ¢; = (a2)7!, Jo = P{|N* — no| > d®no}, no is given in (1.3) and
(3.3) myp = [(1—d"Ing]*  and  mg = [(1 +d%)ng]".
Let us estimate Jy. Clearly
(3.4) Jo < P{N* > mo} + P{N* <ma} = .Joy + Jon, say.

First, we shall estimate Jo;. By the definition of N*, Lemma 3.1 and (3.1) we get
d 1/2
(3.5) Jog < P Am2_,1 > B—Z—{TTLQ — 1) - g ;.

From {1.3) and the fact that 1 > 2c3d®~7 = 2{(dng) ™! — 0 as d — 0 we have

-1
1 — 2(d%na) S a8

d 1
3.6 = {mg — DY? — g > od?
( ) bz( 2 ) g >0 {1+d'8*27151)1/2+1 4

Set g(d) = (1 + d@®){(bzo)? — d2. Then my — 1 = [g(d)d 2]*, which, together with
(3.3) and (3.6), implies

Jop < P sup Al = Al
i2lo(d)d=2" 4
Hence it follows from Lemma 3.4 that
(3.7) Jor = O™ P forany > 2.
We shall now estimate Jss.
JQQZP{TRMISN* Sm3}+P{mg < N* Sml}
= Joo1 + Jaz2,  say,
where m3 = [(1 — d®)ng]*, 8o = v/2+ 8 — 1 and v is given in (1.5). We shall

estimate Jany. Since

d 1/2 2
—my " o< ——d™,
bz ° 4
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it follows from Lemma 3.2 and (1.5) that

d

221 == { 15,

1/2 .
ms/ aforsomeml<3<wa3}

SP{ SUp A;,I?%dﬁ“}.

i=lmod=7]"
Then by Lemma 3.4 we get
(3.8) Jog1 = O™ Y forany > 2.
By the same argument as {3.8) we have
(3.9) Jare = O™ ™) forany r > 2.
Hence it follows from (3.8) and (3.9) that
{3.10) Jop = O(d™ L2y for any > 2.

Thus, in view of (3.4), (3.7) and (3.10) we have that J, — O(d"(1=8)) for any
r > 2. By choosing a constant r satisfying » > max{2, 3/2(1 — )} we obtain

{3.11) Jy — o{d®/?).

Since T}, > Tn+1 a.s. for n > 2, my ~ (bzo)?d=2% and P{Tn —p >yt =exp(—2y)
for ¢y :» 0, we get that for a > 0

P{Tnei1 —p > ad® mg < N* < my)
< Pl 41— p > and?/?h)
= exp{—(c1/0)(my + 1)d?*+1}
< exp(—cod®? 1) = 0@ ~#/?)  for any integer 12 1,

which, together with (3.2) and (3.11), implies that J; = O(d"'=%/2)) 4 o(d?/?).
For a = U this equality holds. Hence, with { = [3/{2— 3)]"+1 we get J1 = O(d?/?),
which concludes {2.8).

By Lemma 3.2 and the estimate of Jy in (3.11), we can get the following
lemma which will be used when the assumption of Lemma 3.6 is verified.

LeMmmA 3.5, For any constant ¢ > @,

T(d)
P{W“l‘wdﬁ}‘%ﬁ/?) as d— 0.

Now, we shall prove (2.7). The following lemma is given by Landers and
Rogge (1976).



CONVERGENCE RATE OF CONFIDENCE INTERVALS 207

LemMMma 3.6, Let {X,,n = 1} be independent and identically distributed ran-
dom wvariables with variance 0% > 0 and E|X,|° < cc. Let {N,,n > 1} be a
sequence of positive integer-valued random variables and assume that

&—1‘ >gn} — O(yFm)

)

(3.12) P{

for some constant T > 0 and a sequence {€,} with nl<eg, —0asn— o0 Then

— O(yn).

sup
—oo<t<oo

P {f(xi ~ B(X;)) < ta\/m} ~ (1)

i=1

Set
J3(r) = |P{(bz/d)QN-+1 < 2} — P(2)].

Then, by (2.5) and Lemma 3.2

oo n+1
(313)  Js(a)=| Y P {(bz/d)nl S W1 —0) <

n=z 1

N* = n}

- P(N* =n) — &(x)

i P{(bz/d)n_li(i/}a)<:r T:n}

T
P {Z(m —a)/{(oVT) < mdﬁ/(bza)} — O(z)

i=1

=2

For the sequence {di} given in the proof of Theorem 2.1 let n(k) = [d; )",

. T{(dy) if n=n(k) forsome k>1
(3.14) " { [(bzg)"]n]* otherwise
and
(3.15) en = {CSdﬁ if n=n(k) forsome k>1
csn™?  otherwise

where c3 = (bzo)~2. From g8 € (0,1), the fact that dp < min{1/2, (¢3/4)*/ 2=}
and the definition of ¢, we get

nt'<eg, forall n> cé/m_l).
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Let
1! >En} with 7 =c5 1.

Ny
J4=P{

™
Then, for n = n(k)

T'{dy) 3
3.1 Ji = F —
{3.16) Ja {(bzcr)zn( 1 > cady,
T(dk) (,3 ﬁ} { 1 1 Ca ﬁ}
<P e —— -1 > —= P s | 7y~ —2 _d
= { (bza)zd;“ T (f)ZO') k) dku 2k
T(dy) cs } { T(dy) _ 3d,° s}
<P{|l——= -1 —d P : d;
= { Gropdi? |7 2% T Groreai? T 8
T(dy) €3 8
SQP{‘(bza)%f 1‘ Z %)
because
1 1 4 c3dit? . -
e — | < odf < ——E—  whenever dj < min{1/2, {c3/4)"/ =},
‘[dkz}* a?l "3 2+ c3d?
Since , )
‘[((;T?);ﬁ——lgcw'ﬁ for n # n(k),
we have
(3.17) Jo=0 for n#£nk).

Hence, in view of (3.16), {3.17) and Lemma 3.5 we get that J, = O(\/2,,), from
which (3.12) of Lemma 3.6 is satisfied. Thus, by Lemma 3.6 we have

Nn
_sup P {Z(% —0}/(6V/Na) < :ﬂ} — ®(x)| = O(VeR),
which, with setting n = n{k) in (3.14) and (3.15), yields that
T
(3.18) sup |P {Z(H — )/ (oVT) < ac} — @(x)| = 0(d*?),

where T' = T'(dy) and d = d},. Since |z — /§] > b for nonnegative constants z, y
and b implies |z — y| > 6%, by Lemma 3.5 we have

dvT

—~—_1

bzo

(3.19) P{ rre

dﬁﬂ} < P{(—T_—w 1] > dﬂ} = O{d?'¥).

To show (2.7) we need the following lemma which is Lemma 1 of Michel and
Pfanzagl (1971).
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LEMMA 3.7. Let {Xg,k > 1} and {Y, &k > 1} be two sequences of random
variables. Assume that for a sequence of positive numbers {ax, k > 1}

sup |[P{X), <t} —d(t)] — Ofay) and  P{|Yy — 1] > ar} = Olag].
—oo<to

Then
sup | P(Xp < tYe} ()| = Olar).

—oodi<oo

We are now in the position to prove (2.7). By (3.13). {3.18), (3.19) and
Lemma 3.7 we have
T

Ja(@) < sp PO (Vi — o) /(aVT) < 2dV/T/(bza) 3 — ®(z)

—co<T<on e
=0(d??)  forany =
Thus
sup  [P{(bz/d)Qn+y1 <z}~ P(2)|= sup Jalz) = O(d??),

— e el oo — 0 I D

which concludes (2.7). Therefore (2.7) and {2.8) are proved.
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