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Abstract. We study the asymptotic behaviour of the posterior distributions
for a one-parameter family of discontinuous densitics. Tt is shown that a suit-
ably centered and normalized posterior converges almost surely to an expuonen-
tial limit in the total variation norm. Further, asymptotic expansions for the
density, distribution function, moments and quantiles of the posterior are also
obtained. It ie to be noted that, in view of the results of Ghosh et al. (1094, Sta
tistical Decision Theory and Reloted Topics V', 183-199, Springer, New York)
and Ghosal et al. (1995, Ann. Statist., 28, 2145-2152), the nonregular cases
comsidered here are essentially the anly ones for which the postoriar distribu-
tions converge. The results obtained here are also supported by a simulation
experiment.

Key words and phrases:  Asymptotic expansion, posterior distributions, non-
regular cases.

1. Introduction

It is well known that in the usual “regular” cases, for a wide variety of pri-
org, the posterior, suitably normalized and centered at the maximum likelihood
estimate, tends to the standard normal distribution. Such a limiting behaviour
of the posterior was studied by several authors including Le Cam ({1953}, Bickel
and Yahav {1969}, Walker (1969) and Johnson (1970). Johnson (1970) obtained
asymptotic expansions for posterior distributions in regular cases with a normal
distribution as the leading term.

Recently Ghosh et al. (1994) considered a general situation including the
regular and a wide variety of nonregular cases. They considered the general set
up of Ibragimov and Has'minskii (1981) and obtained a necessary condition for
the existence of a limit {in probability) of suitably centered posterior in terms
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ol the limiling likelihood ratio process. In Ghosal et ol. {1995) this condition is
also shown to be sufficient for the existence of an in-probability limit. Ghosh et
al. (1994) applied their results on different classes of nonregular examples and it
turned out that for many of the nonregular examples, a posterior limit does not
exist.

In this paper, we consider the nonregular cases which, in view of the results of
Ghosh et al. (1994) and Ghosal et al. (1995), are essentially the only ones for which
posterior limits exist. By results obtained in Ghosal et al. (1995), an in-probability
limit of the posterior exists for this class. In Section 2 of this paper, we obtain
an almost sure limit of the posterior distribution. We further extend this result in
Section 3 where almost sure asymptotic expansions of the posterior density and
the posterior distribution function are obtained. Asymptotic expansions for the
posterior moments and quantiles are presented in Section 4. In Section 5, we agsess
the quality of the approxirmations by means of a simulation experiment,.

2. Almost sure limit of posterior distributions

Let X4, X3, ..., X, be independent observations with a common distribution
Py possessing a density f(z,#) on R with respect to the Lebesgue measure where
# € O, an open interval (bounded or unbounded) in R. We fix 83 € © which may
be regarded as the true parameter point. We assume that for all 8 € 8, f(.,8) is
strictly positive in a closed interval (bounded or unbounded) S(8) := [a+(6), a2()]
depending on # and is zero outside S(#). It is permitted that one of the endpoints
ig free of 8 and may be plus or minus infinity (see the examples of this section).
In view of the results of Ghosh et al. ({1994}, Theorem 2.4 and Example 3.2},
in order to have a limit of the posterior, it is necessary that the sets S{#) are
cither incrcosing or deercosing in 8. The casc where §(#) incrcascs with 8 may
be reduced to the case where S(f) decreases by the reparametrization 8 — (—8).
We therefore consider only the latter, namely the case where a1(#) is increasing
aud ue(f) Is decreasing in ¢, Moreover, we assune Lhat thiese funclions are sbrictly
monotone unless they are infinite or free from 4.

We now make the following assumptions on the density f(x,#).

(Al) The endpoints a; and aq are continuously differentiable functions of # if
these are not minus or plus infinity {as mentioned above, one of the endpoints may
be infinity).

(A2) On the set {{xz,0): 2 € S(8)}, f(x,0) is jointly continuous in {z,8).

(A3} For each z, log f(z, 8) is twice differentiable in # on {a;(8) < = < az(6)}.
Further, we have the following:

(a) For all 8 € ©, c(0) := Ep[(8/09) log f(X1,0)] is finite.

(b) There exist a neighbourhood Ny, of 3 and a Py, -integrable function
Hg, () such that for all @ € Ns, and z € {a1(8). a:{8), [{5%/06) log f(z,9)] <
HE’U (flﬁ')

{A4) For all sufficiently large A > 0,

Eg, [sup{log(f(X1,8}/f(X1,60)) 1 8 < bp — A, 0 € O} <0.

{AD) As p — 0, Ep,log f(X1,0.p) — Eg,log f(X1,8), where f(z,0,p) =
(£, #) 6~ ¢ = .
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Several important examples fall in the above sel up.

1. Location family: f(x,8) = f(z —8), 8 € R, where f{) is a density sup-
ported on [0, 00) with f(0} > 0. Here a,(6) = @ and as(f) = occ. A particular
example is f(x) =e “, x > 0.

2. Uniform distributions supported on (i) [0,6], 8 > 0; (1) [—0,0], # > 0; (iii)
[8,1/6], 0 < 8 < 1.

It may be noted that for distributions like U780, 8+ 1| or U0, 28], the supports
are not monotone and hence these do not fall in our set up.

3. Truncation family: f{z,8) = g(z)/G(#)., z > 6, where g{-) is a density
supported on [0, oc) which is positive on (0, 00) and G{x) = jfo gl{t)dt.

It can be casily seen that the set {a1(8) < X, < as(6),i = 1,2,...,n} can
be expressed as {én{Xl,...,Xn) > #} where 6, = min{afl(Xm;u),a;l(Xmax)}
(if a1(6) is free of 8 or —oc, then we interpret the above minimum as a;l(Xmax)
while it is interprcted as al_l(Xmin) if aa(f) is free of # or oc}. It is to be noted
that én is defined a.s. [Fy,] for all sufficiently large n and én > By s, [Py,] as
n — oc. Further, using a dominated convergence argument and Leibniz’s rule of
differentiation of an integral, it is easy to see that ¢(fy) = o' (8p) flai(6y),0;) —
ah(B0) [{u2(b0),60) > 0, whore prime slands [or derivalive. Here, we use the
convention that a(#) = 0 il ;(-) is infinite, i = 1,2. The phrase “for all sufficiently
large n” will be often omitted.

We now consider a prior probability distribution on © with density #() with
respect to the Lebesgue measure. The posterior density of # given the observations
X1, Xa,..., X, is given hy

[1;_ f(X, 6)m(6)

2.1 (@) =m, (0| X1,...,Xp) = b .
1) ( | ) J[R ITim: f(Xsm)m(n)dn
Set
o A(X 0 +ujon) & o
Zp{uy = — =, Op = (0/00) log F(X,;,0,).
g f(Xu Hn) ;
The posterior density of u — oq (6 — 0,) given X1,..., X, is given by

. Z, (u)’”_(én + u/”'ﬂ.)
- T Zn(v)w(én + fv/an)dfvl

(2.2) malu) =mn{u | X1,..., Xn)

It will be shown in the proof of Lemma 2.1 that o,/n — ¢(fg) a.s. Thus by
definition of 8, it is immediate thal 7 (u) =0 fur u > 0.

In this section, we find an almost sure limit of the normalized and centered
posterior 7 (-}. The following theorem is the main result of this section and states
that the posterior converges to an exponential distribution.

THEOREM 2.1. Under Assumptions (Al)-{AB), for any prior probobility
density m{-) over © which 18 positwe and continuous at 6y, we have

(2.3) lim ju‘%hr;‘f,(u) —a*(u)ldu=0 as.,

T—00
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where i (u) = mi(w | X1,...,Xp) is the posterior density of u = oy, (6 — by, ) given
the observations X1,..., X, and w*{u) = e*T{u < 0}.

We first prove the following lemmas.

LemMa 2.1, There ezists & > 0 such that with probability one,
log Z,,(u) <uf2, —md<u<,
for all sufficiently large n.

LEMMA 2.2. For any & > O, there exists ¢ > 0 such that with probability
one,
log Z,(u) < —ne, uw < -—nb

for all sufficiently large n.

Proor or LeMMA 2.1. Expanding by Taylor’s theorem we have

T

on/n=mn"1 zﬂ:(a/ae) log f(Xi,00) + n™ (Br — 60) > (6°/06%) log f (X, 0,,)

i=1 i=1

where @}, lies between #y and 8,,. Since #,, — # a.s., by (A3) and the Strong Law
of La,rge Numbers (SLLN), o,/n — c(fp) a.s.
We now use the Taylor expansion once again to get

(24)  log Zn(u) = Z{a/da )log f(X;,6,) + 503 282/892)108 FIX,00)

where 87 lies between 6, and 0, + w/oy. Since o, /n — ¢(6) a.s., we can choose
& > 0 such that for all o in {|ju| < nd}, #* & Ny . Now the first term on the
right hand side (RHS} of (2.4) is equal to 4. The second term in absolute value is
dominated by (Julnéd/o2) 3.0, H(X;) for all u satisfying |u} < né. Thus we can
choose § so small that the sccond torm ie dominated by |u!/2 for all —né < uw < 0.
The result now follows. O

Proor or LEMMA 2.2, The idea of the proof given below is essentially due

to Wald (1949). We write

-1 —-L f()('h én + u/au -t f()(“ 9”)
(2.5) n” " log Zn(u Zl 10X 00) — Zl gf(Xz,()D)

= A, + Bn (sav).

It is easy to prove that B, — 0 a.s. Also, for u < —nd, we have b, + ooty — 0 <
—8/(2c{8,)) and therefore,

f(Xi,0)
2.6 A, < n! E lo L2
(2:6) " e, 5/(.2c(90)) ¥ (X 00) (Xq.()n
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By Assumption (A4) we can get Ay > 8/{2¢{flp)) such that

f(Xlrg)
2.7 E 1 < 0.
(2.7) " | P OB 1K, 00)

Set By = {82 ©:0 < B —X}and Oy ={Ac 00— o <8 <bo~5/(2(6n))}.

For each 0 € O, we can get pg > 0 such that Eg, log f(X7,0,p9) <
Eg, log f(X1,60) where f(x,8, ps) is as defined earlier (see (A5)). This is possible
by (A5) and the fact that Eg, log f(X;,0) < Eg, log F(X1,00) for 8 £ B,. Since
the set ©, is compact, there exist a finite number of points #1,6,,...,0;, € 6
such that U?=1(9j — pyg, .05 + ps,) covers ©1 and

(2.8) Ego[logf(Xl,Bj,png < an [lng(Xl,ﬁo)], j = 1,2,...,k‘.
Now for all 1 < —né, we have from (2.6)

n X’“ k
A, <supgn 1210g X Bo) 10 €6y U U(Qj—pgj,ﬁj-{-pgj) }

i=1

< max{n Z sup {log f(Xi,Ho)} ,

Ge@)o

F (X,
n- max{Zlo Xjﬂpi)’3_1’2""’k}}'
i V0

Using the inequalities (2.7) and (2.8) and the SLLN, we can get ¢ > 0 such that
with probability one A,, < —¢. This proves the result. O

PrOOF OF THEOREM 2.1. From (2.4), by Assumption {A3) and an appli-
cation of the SLLN, Zy,(u) — e a.s. for each fixed u < 0, while Z,(u) = 0 for
u > 0. We write

(2.9) _/[; Iw(én + S ) A (1) — m{Bo)yn ™ (u)|du

0
_ f (6 + ] 0) Zn12) — (B0} du

—nd

+ /“” |7 (B + 1/ n} 2 (u) — w{bo)e™|du

— G

=TI+ 1z (say),
where § = 0 is as in Lemma 2.1. Now
0

U o~
le < f Zon(w|mw(Bn + ufon) —wlfo)|du +[ 7(00)| Z (1) — e*|du.

—nd —-né
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By Lemma 2.1 and the dominated convergence theorem both the above integralg
converge to zero a.s. (for sufficiently small §). Also we have

—nd

(2.10) L, E/MZ (u)rr 9 +u/an)du+f 7 (6p)e" du.

50 —oo

The second term on the RHS of (2.10) obviously goes to zero, while the first term
goes to zero a.s. by Lemma 2.2. Thus we have

(2.11) lim : |70 + 10/ 00) Zn (1) — w{fo)7* (u)|du =0  as.
Therefore,
(2.12) D, — fR-n(ﬁn + /oy ) Zn(u)du — —/[R'Jr(ﬁg)ﬂ*(u)du =u(fo) as.
and hence
/ 7 () - 7 ()| du < /D U Zo () (B + 1) — (B0 )" () |
+ fR 1D, tr(8p) — 1|n* (w)du
and these two terms converge to zero a.s. by (2.11) and (2.12). O

Before we end this section, we indicate an alternative way of proving (2.3).
&
8 + 7 (0)d8, & > 0. As noted earlier,

T () = 0 for 6 > 8, where 7, (0) is the posterlor density as given in (2.1). For
A, — 6 <8 <40, wewrite

Consider the posterior probability P, s =

1 (8) = 7, (6,,) exp{log 7, (8) — log wn(8,)}

= Tn(0n) exp{(8 — 6,) Y _(8/00) log f(X;,8,,) +logx(8) — logm(6,)},

i=1

where 8/, lies between # and f,,. Then proceeding as in Chen (1985), we can prove
the following.

LEMMA 2.3. Assume (A1)-(A3). Then P,s — 1 a.s. for all § > 0 if and

only if 7, (8 n)Jﬂ 1—1 as

It is well known that under a very general set up, the posterior is consistent,
i.e., the posterior probability of the set (0 — 6, 0y + &) goes to one a.s. for all & =» 0,
Ghosal et al. (1995) presented a proof of this result under certain conditions which
were referred to as Conditions (IH) (after Ibragimov and Has'minskii {1981)).
Ibragimov and Has'minskii ((1981), Chapter V) considered densities with jumps
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and gave suflicient conditions for Conditions (IH) to hold. Thus, under those
conditions, we have posterior consistency and since #, — 8 a.s., this implies
Pus — 1 as for all § > 0. Therefore, by Lemma 2.3 we have 7, (68,)0,. 1 — 1 a.s.
Now

log 7o (B —(;u)/on) = Z log f(Xi? f?_f}___iu/an) + log m(dn + u/oy) — log N(OAn)
Tnl\Un i=1

f(Xia Hn)

— uo:;l 2(3/39) log f(}('i: 9#)

i=1

+ log W(én +ujoy,) — log n(én)

where 8 lies between B, + u/oy, and f,. Thus for any © < 0, Iog(wn(én +
w/0n) /7 (8,)) — u; consequently with probability one 7 (u) — €* for cach fixed
u < (). An application of Scheffe’s Theorem now proves the result. O

3. Asymptotic expansions of posterior distributions

We consider the set up and assumptions of Section 2. In addition to (Al)
(A5), we also make the following assumptions.

(A6) For each z, log f(x,6)} is (r + 2) times continuously differentiable in 8
on {a1(f) < z < az(8)}. Further, there is a neighbourhood Ny, of fy and Py, -
integrable funetions Hy(z), &k =2,.. .. r + 2, anch that

(0% /00% ) log f(x,0)] < Hp(z), k=2,...,r 12,

for all 6 € Ny, and z € (a1(0), a2(6))}.

(A7) The prior density =(6) is (r + 1) times continuously differentiable in a
neighhonrhoad of 8y and w(f) > 0.

The following theorem gives an asymptotic expansion of the posterior distri-
bution.

THEOREM 3.1. Under Assumptions (A1)-(AT), we have

Q T
/ () — e Cyt Y Jaw(u)nFldu =0~ as.

W e k=0
where Co, = 3o (—Diam{l + 2m)in™aglu) = ap(u,®) =
Zf;:{] Ch T e = am(®), ILm = 0,1,..., are constants as defined in

(3.10) below and ® denotes the sample sequence.

Remark 3.1. Considering the quotient series C, ' >, ap(u)n*, the the-

orcm can be rostated os

] r
f i (u) — Y yplun Fldu = O(n UV as.

—oe k=0
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where the functions v, (u) = v, (u, ) are obtained successively from the relations

(1) = X25_o vi(w)Bk—j and By = Be(@) = g, o~ 1)* " chmm(k + m)!. This
expansion of ¥ {u) 1s theoretically raore appealing since it gives us an expansion
in the powers of n~". However, the form presented in Theorem 3.1 is simpler for
computational purposes.

Qur proof is similar to that of Johnson (1970). Expanding in Taylor’s series
we have

T

(31)  log Za(u) = (ufon) > _(8/80)log f(Xi,60,)
i=1

T

N %(u/anf $(0%/06%) log £ (X, ) +

i=1

T ) (/o) S (0007 log (X, )
=1

+ T i i (u/on) > (072007 %) log f( X4, 07)

=1
r+1

_u-l-nZa,-m Wawfon)* + napon (02 (w/o,) 72,

where 07 lies between 0, and 0, +u/o, and

(3.2) apn(0) =n~* i(@k/aﬂ’“)logf(Xi,H)/k!, k=2.3,...,r+2
i=1

We denote the first £+ 1 terms of the Taylor expansion of #(f) about 0, by 71(8),
ie.,

Tk (6) = 7(Bn) + (0 = 6,)7 " (Gn) + -+ (i%cww(“(én),
where 74 (8) denotes the j-th derivative of 7(#). Then
(3.3) (0 + 1/0) = 70 (B + wfon) + (ufon) T a D (00)/(r + 1)1,
By, lying between 8, and 6, + u /o, We first prove the following lemma.

LemMmA 3.1, There exisis & > 0 such that with probability one

0 r+1
f_ ) | Zp ()7 (B + ufoy) — exp {u +n) akn(én)(u/rfn)k} 1 (B, + ufo,)ldu

S Mlnf (r+1)

for some My > 0 and for oll sufficiently lurge 1.
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Proor. The left hand side (LHS) of Lhe desired inequality is dominated by

0
(3.4) f (B + 14/ 00) = 70 (B + 0] ) Zon(10) A

—nd

+ / ' 170+ /o) du.

—n

' r+1
Zp(u) — exp {u +n y: akn(én)(u/(fn)k}

k=2

Since oy /n — ¢(fo) a.s., by Lemma 2.1, with probability one for sufficiently small
&, the first term in (3.4) is dominated by

o]
(3.5) / (/o w0 (8,) /(5 + D 2 (w)du

—né

MI 0

< _l__ﬁ/ |u|r+18u/2du
nrti(r+ D Jl

o A 10Tt
= M{/n"T",

where M], M are some coustants. Using the inequalisy |e* —c¥l < |z — yleteluzl
and Lemma 1, we have the following upper bound for the second term in (3.4):

0 -~
66 [ imla v Inare a0 ufon) e
J—né
exp{Inapaa.0(63) (/) Hdu
6]
< nf(rﬁ-l)Bl / |u|T+26u/2 exp{n—-(r—i—l)B”u‘r"f—‘Z}du
—nd
0
< p B, f |2 explu/2 + B16" 1 uf)du
—nd
< ﬂ_(r_‘_l)Bg.

Here we use (A6) and choose § appropriately small; By, By are constants. Com-
bining (3.4), (3.5) and (3.6) we have the desired result. O

PrOOF OF THEOREM 3.1. Setting o), = 0,/n we have

r+1

(3.7) exp {u +n Z akn(én)(u/(;n)k} T (O + /o)

r+1
e lﬁr(én + o'~ (u/n)) exp {(vﬁ/n) > akn(én)(u/n)’“‘g/aﬁ“” :

For fixed n and sample sequence 2, the second factor on the RHS of (3.7) is a
particular evaluation of the entire function

r+1
(3.8) P (z,w, ) = 7. (B, + 2/0L,) exp {w Z akn(én}zk#‘?/af}

k=2
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of two variables z € € and w & C, where € is the set of all complex numbers.
Thus we can write

(3.9) P.z,w,x) = Z Z (@ z w”

=0 m=0

where the series converges for all z, w € €. The coeflicients ¢}, = ¢ () are given
by

(3.10)  Nmley, = (87 /020™w) Pz, w, @) om0, L,m=0,1,2,....

Collecting appropriate coefficients, it i3 easy to observe that |epm{®)| < My, < oo,
where My,,,’s are constants. Using these estimates, for a given compact subset K
of C%, we can find constants Ay and As such that

\Pz,w, =) qum ™| < Ayl 4 Aglw[™TY for (z,w) € K.

ttm<r

We denote the truncated series 3537, cm{®)z'w™ by P}(z,w,2). Thus for
any K > 0, there exist Ap, Az > 0, such that

0 R r+1 R
(3.11) /;K . |7r (O + u/0n) eXp {u +n Z akn(ﬂn){u/gn)fc}

k=2

— eI u/n,u?/n, x)|du

0
= / e“|P{u/n, u? /n, 2) — Pu/n, v’ /n. z)|du
_Knl/z

0

< f (A lu/nl™ 1+ Aol /| )
—Knt/2

< Mo+

for some constant My > 0. From (3.11) and Lemma 3.1 it follows that there exists
a constant M3 > (0 such that with prohability one,

0
(3.12) / |7 (6 + w/0,) 2 (1) — e* Piufn, u?/n, @)|du < Man~ 71,
—Knl/2

Now by Lemma 2.2, with probability one,

—b

(3.13) /'_'“sw(én+u/on)zn(u)dus | b ujoe

oG — 00

= O(n~{r+lhy,
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From Lemma 2.1, we also obtain

—Kn'/?
(3.14) f (B, + ujfon) Zn(u)du
—nd
~Kn'/?
< exp[-Kn'/*/2] f 7(0y, +u/o,)du
—nd

=0(n=")  as.

Also, it is easy to see that
—_EKnl/?
(3.15) [ e"Pllufn,u?/n,2) = O(n TTY)  as.

Combining {3.12)-(3.15) we have with probability one

0
(3.16) / 170 + w/00) Zn (1) — €*PE(u/n,u? 0, 2)|du < Myn =T,
for a constant M,y > 0. i

Set C, = ffoo e“Pt(u/n,u?/n,x)du and D, = ji}o T(0n + w/on) Znu)du.
From (3.15) we have

(3-17) |C,, — Dn' < M4n7(r+1)-
Also putting » = 0 in (3.16) and noting that Pi(u/n,u?/n, @) = m(0,), we have
(3.18) |D,, — 7(6r)| < Myn™t.

Now

0
/ [nx{u | e} — O e Pl {u/n, u? /n, @)|du
_ i A
< D«:lf (B + w00 Zn () — e Pl{u/n, u?/n, 2)|du
— 00
0
+ / e*Ptu/n,u? n, ®)|C;t — D, du

— 0

which, by (3.16), (3.17) and (3.18), is dominated by Mn~=0+1 for some constant
M. Thus we have with probability one,

0
{(3.19) f |7 (u | )~ O et Pi{u/n, v? /n, ®)|du < Mn~U+D),

— 00
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From (3.9) we have

{3.20) Piufnlfna) = 3 gpultimpmitm)
+m<r
r k
k=0 \m=0
and hence
(3.21) Cp = Z (— D) e (I + 2m)ln~m,
I+m<r

Combining (3.19)-(3.21), we have the result. ]
Below we give the expressions for the first few ¢;,,’s.
coo = 7(6,), e = ﬂ'(én)aZn(én)/gfs Cri = W(k)(_én)/a;ka 1<k <

coz = 1(6n)a3,(0.)/(2071),  enn = (m(Bu)asa(Bi) + 7' (Br)aza (8n))or, .

From I'heorem 3.1 we immediately have the following expansion for the pos-
terior distribution function Fy(u) = F,(u, 2} = fuco o (E)dt, uw < 0.

THEOREM 3.2. Under the assumptions of Theorem 3.1, we hove

r
(3.22) Fo(u) = C;1 Z n~E O (w)e* + Ot~ U YY) ws uniformly in u,
k=0

where  Gp(u) = Geplu,w) = Efnzg Chm,m@rtm i)  and @Qs(u) =
Zfzo(fl)s“iu‘lslfl!.

4. Expansions of moments and quantiles

In this section we study the moments and quantiles of the posterior distri-

bution of u = o,(¢# — 6,). We first consider the posterior moments. We use the
following result whose proof parallels that of Theorem 3.1.

THEOREM 4.1. Let H(u), u < 0, be o nonnegative function such that
(i) for all 6 > 0, f—om H(uw)ettdu < oo
(i) for some Ko > 0,

—Kant/? N
7Zh_»nrolo exp[—Kon'/?] / H{wyw(l, +ufon)du=0 a.s.

Then under the conditions of Theorem 3.1, we have
(a) [°, H{w)imy(u) — Cr Tipon(wyn*du = O(n=+1) as.
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(b) JEoo H(u)my (u) — e 30 o m(wn™%du = O(n= 1) .,
where Cp, ar(u), ve(u), k =0,...,r, are as defined in Theorem 3.1 and Remark
3.1.

If H{u) = |u|*, s > 1is an integer, a sufficient condition for (ii) in Theorem 4.1
is given by

(4.1) f@ 161°7(8)d6 < oo,

Thus if (4.1} is satisfied and {(A1}-(A7) hold, from Theorem 4.1 we have

0 ¢
(1.2) / w s (u)du — ] ute" O E ap(uwn Fdu = On~ Uy a4
o e —

which yields

r k

0
{4.3) f wrh (u)du = C ! Z (=1)P "k L m 4+ 8) ey mn®
s A

0 m=

k=
+O0nR~UTYY a4

Taking s = 1 in {4.3), we obtain the following asymptotic expansion for the pos-
terior mean 8, = g O, (0)d0:

(4.4) 0y, = by, (Cpnon)™ Z Z( DF e mlk+m+ Din™*

k=0 m=0
+O0(n~UT2y 4.

In particular, we get the following explicit one term expansion for the posterior
wean by taking r =1 in {4.4):

b =0, — (7(0n)on — 7' (B) + 20, (0 azn (8,))
% (w{0n) — 20, 7' (0,) + 6no 27 (0, aon (0,)) + On=3) as.

Similar explicit two term expansion can be obtained using the values of Clem Elven
above. An asymptotic expansion for the posterior variance can also be obtained
from (4.3) with s = 2.

We can also have the following results analogous to Theorems 4.1, 5.1 and 5.2
of Johnson (1970). Arguments involved are almost similar and hence the proofs
are omitted.

THEOREM 4.2, Let n,(§) = log F,(&), £ < 0. Then under the assumptions
of Theorem 3.1, there exist functions wi(€),w2{€), ..., all polynomials in & with
bounded coefficients, such that

() =&+ ij (EOn~ + O~ Uty g,
=1
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uniformly in £ belonging to compacts. The cocfficients wy(§) may be obtaincd
formally by identifying coefficients of n™1, § > 1, in the identity Y p_, Bx(E)nF =
exp(d o Wk (€)n~*), where By (w)’s are as defined in Theorem 3.2. (For example,

w1 (&) = B1(8), wa(&) = B2(8) — wi(€)/2, etc.)

THEOREM 4.3. Let £,(7) be the solution of F,,(£n(n)) = €7, n < 0. Then
under the assumptions of Theorem 3.1, we have the following expansion:

r
(4.5) Enlm) =01 > _mi(mn™d + On~IY)  as,
i=1

uniformly in 1 belonging to compacts. The coefficients v;(n) — 7;(n, &) are poly-
nomials in 1 and can formally be obtained from the identity

=Y _mmn T+ w [ D o mlmn? |
=0 k=1 =0

by identifying the coefficients of n=%, k > 1.

THEOREM 4.4. Let 0 < o <1 and n = loga. Then under the ossumpiions
of Theorem 3.1, we have

4.6 EAn+Y ripn7 | =a+0Hn D a.s.
i
=1

The expansions obtained in Theorems 4.2, 4.3 and 4.4 are of theoretical in-
terest. It may be easier Lo find an approsimation of the posterior p-th quantile by
solving the equation F(u) = p numerically where F(u) is the approximation for
the posterior distribution function F,(u) obtained from Theorem 3.2.

5. A simulation study

We now illustrate the uselulness of the theoretical results obtained ahbave
by means of a simulation experiment. For this we consider i.i.d. observations
X1, ..., Xy, from a uniform distribution over 0,8] and a prior density 7{§) = e,
§ > 0. In this case 0, = X(,), the maximum of the obscrvations and o, =
—n/X(yn). The actual posterior distribution of v = o,{# — 6,) = n(l — 8/ X))
is given by the deusity 73 (u) = B, 'n™" X(_n()n_l)(l —ufn)" exp[—X(n)(l —u/n)]
where B, = f;m e~ 0d0.

From Theorem 3.1 (with a reparametrization —#) we obtain the expression
for the one- and two-term expansions 77, (u) and n3, (u) of the posterior density

by putting r = 1 and r = 2 respectively. In our experiment, i.i.d. observations
are generated from a uniform distribution with @ == 1. For different choiees of
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Table 1. Awverage L? distance of the posterior approximations from the exact posteriur density
based on 10 replications for different cheiccs of the sample size n.

Average distance (from the
exact posterior) of

Sample
size limit wune-teL Lwu-Lerin

cxpansion  expansion

n=>5 0.07585  0.05295 0.04291
n=10 0.04625 0.01477 0.01094
n=15 0.03254 {.00688 0.00499
n=25 0.02008 (.00259 0.00187
n=2>50 .01060  0.00066 0.00046
n=100 0.00531 0.00017 0.00012

the sample size n, we find the expressions for 7% (u) and its approximations 7 (u),
min (1) and 73, (uw) and also the corresponding posterior means, medians and vari-
ances of . For the cxpansions, posterior means and variances are computed using
relations (4.3) and (4.4) while the medians are obtained by solving the equation
Fr(u) = 1/2 numerically, £ (u) being the approximation of the posterior distribu-
tion function F,.{u) obtained in Theorem 3.2. The whole experiment is replicated
10 times.

For comparison of the successive approximations 7%, n}, and =}, with the
exact posterior density =}, we compute the L' distances of cach of the approxi-
mations from 7, for all the replications with different choices of n. It is observed
that the approximations are pretty good even for a moderate sample size such as
n = 10. Further, in all the replications end for all (he choices of n, Lhe approx-
imations improve as we increase the order of expansions. We present in Table 1,
the average (based on 10 replications) L!-distances for different sample sizes. For
computing the L'-distance, we use Simpson’s rule on the interval [~ 10,0] with
grid length 10™*. We also plot separately each of z*, 7, and 5, together with
7y, For a typical replication with n = 10, these plots are shown in Figs. 1-3. For
larger sample sizes like n = 25, the approximations are visually indistingunishable
from the exact posterior,

Examining the valtues of the posterior means, medians and variances and the
corresponding approximations (these are not presented here to save space), we
find that the values obtained from the limit are generally underestimates of the
actual values. There is a remarkable improvement in the one-term expansion which
performs almost equally well as the two-term expansion in this regard.

In our experiment we have chosen the model U0, 0] so that we are able to
compute the exact posterior and compare it with ite approximations. Far maore
complicated models, the actual posterior may be awfully complicated while the
approximations can be computed even without the help of a computer.
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