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Abstract., The problem of identification of uniform mixtures via posterior
means is studied. For linear posterior means a complote solution is given. [t
determines a family of prior distributions involving beta of hoth kinds and
gamma. Identifiability via any consistent posterior mean is also investigated.
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1. [Introduction

Let {X,Y') be a random vector and let jzx|y be the conditional distribution
of X given Y. In such a setting X {or its distribution px) is called a mixture with
respect to Y (or its distribution py ).

An mmportant aspect of theory of mixtures is a question of identifiability of
the model. Originally it was considered as the problem of one to one correspon-
dence between px and gy . Foundations of such an approach are given in Teicher
(1961}, Barndorfl-Nielsen (1965) and Patil and Bildikar {1966}, wherc many spe-
cific examples are also provided.

Another identifiability question arises when, instead of marginal distribution,
the posterior mean E(Y | X) is taken into account. Beginning in mid-seventics
many papers were devoted to this subject, see for example: Krishnaji (1974),
Korwar (1975), Cacoullos and Papageorgiou {1983, 1984), Papageorgiou (1984a,
19845, 1985), Arnold et al. (1993), Wesolowski (19954, 19956). These papers are
concerned with two problems:

o Identification of a mizture: What is the joint distribution of (X, Y) for some
given posterior mean?

» [dentifiubility of o misture: Is tho joint distribution of {X,Y") uniquely
determined by any (consistent) posterior mean?

If the answer to the second question is positive then in many cases the first
one may be settled by educated guessing. However, in general, these are separate
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problems. Sometimes to solve the second one some additional information is nec-
essary (as it is in the case we consider here; see also Papageorgiou (19840, 1985),
where infinite integrability and moment identifiable distributions were additionally
agsumed ).

In this paper we are interested in uniform mixtures. In Section 2 we are con-
cerned with the identification problem involving any linear posterior mean. The
family of probability distributions arising as the solution of the problem consists
of beta of both kinds and gamma with parameters depending on the coefficients of
Hnear form defining the regression function. The family has an intriguing continu-
ity property allowing to approximate gamma density by beta type densities. Also
a special form of the second posterior moment is studied. Section 3 is devoted to
the identifiahility question nnder an additional assumption that priors are abso-
lutely continuous. Let us emphasize that we do not make use of identifiability of a
mixture via the posterior distribution which was often applied in earlier papers—
soo for oxample Cacoullos and Papageorgiou (1984). (Recall that Teicher (1961}
pointed out that identification of some uniform mixtures by posterior distribution
is not possible.) Instead we are interested directly in deriving the distribution of
the price. Obviously the joint distribution is identified if the prior is known. In the
closing Section 4 » uniform mixtures with the homoscedasticity of the posterior
distribution is congsidered.

2. ldentification

Let X =Vy and ¥ = V] + V5, where Vi, V5 are i.i.d. exponeniial r.v.’s with
the mean b. Then it is not difficult to observe that X is a uniform mixture of ¥
of the form

(2.1) pxyy = U(0,Y),
i.e. the conditional density fx|y of X given ¥ has the form

1

_fX\Y:y(w) — {y 0<£E<yu
0 otherwise.

The first two posterior moments have the forms

EY|X)=X+b,

2.2 ,
(2.2) E(Y?|X) = X?+2bX + 2b°.

Here we are interested in the converse of the abave observations without assuming
the summation scheme.

At first let us consider the question ol ideutification of the unilorm mixture
(2.1) via a general linear form of the posterior mean

(2.3) B(Y | X) — uX +b,

where o and b are some real constants. When px |y is known it suflices to know
the prior distribution to determine the bivariate measurec.
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Such problems, involving linearity of regression, were discussed for other mix-
tures: binomial and Pascal in Korwar {1975), quasi-binomial in Korwar (1977),
normal in Cacoullos and Papageorgiou (1984), Pareto in Wesolowski (1995a) and
second kind beta in Wesolowski (1994).

From (2.1) observe that E(X) = 0if E(Y) =0l P{X =Y =0) =1. Hence
to get rid off that degenerate case we will assume that E(X) is non-zero.

THEOREM 2.1. Let (X,Y) be a random vector satisfying (2.1) and (2.3) for
some constants a and b. Assume additionally that 0 < E(X) < o0, Then b > 0
and only the following cases wre possible:

(i) 1 <a<?2andY has a second kind beta distribution with the density

(2a—1)/(1—a)
a—1
( )y] I(y > 0);

(2.4 oty =ab 2y 1+ 25
(i) a=1 and Y has a gamma distribution with the density
(2.5) gy) = b ye ¥ I(y > 0);

(iii) 0 < a <1 and Y has a first kind beta distribution with the density

(2.6) ha(wzfa(y)f(w d );

l—a
(iv) a=0and P(Y =b) = 1.
Proor. Linearity of regression (2.3) via integrability assumption implies
(2.7) E(Ye %) = E(B(Y | X)eX) = b () — adlx (1)

for any ¢ > (), where ¢x denotes the Laplace transform of X. On the ather hand
observe that the r.v. {1 — e7*%)/X is integrable for any ¢ > 0 since it is bounded
by ¢. Consequently (2.1) yields

(2.8) tE(Ye ")y =1 -¢y(t), t20,

where ¢y is the Laplace transform of Y. Again from (2.1) we have

(2.9) tox(f) = B (%) i

Denote the function on the right hand side of (2.9) by H. We want to compute
derivative of ¢x. To this end we must know that differentiation on the right hand
side of (2.9) is possible. Consider for any small |h| the expression

{E ({1 — e_(;:h)y)/y) — B (———(l — C’:Y)/Y) — ¢y (1)

_ }E (e_ﬂ, —e P 1 - hY)‘ I

5% 5 E (¥).
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For a € (0,1} the solution of (2.11} has the form

ft u/(i—a) eb/(lfa)udu

— 40
W) = famsara-ang —qp 120

Consequently

o 1 , a4+ bt fgua/(lva)eb/(l—a)udu
¢Y( ) T 1—g - (1 _ Q)t tof/{1=0) gb/(1—a)t !

t>0

bl

which is the Laplace transform of the first kind beta density given in {2.6).
Now take o = (. Then {2.11) has a simple form

H'(t)+bH(t) =1, >0,

Hence H{#) = b1 + ce ", which yields ¢v(t) =e %, ¢t > 0. Thus Y =b a.s.

Finally observe that for a < 0 the equation (2.11) has no solution valid in
the whole interval (0, 0o} since in this case the function G(u) = wal(1-a)gb/(1-alu
u > 0, is not integrable in the intervals (0,€;) and {es3, oc) for any positive reals
€1, €2. 0

Remark 1. From the viewpoint of Bayesian estimation theory the following
immediate corollary of Theorem 2.1 may be of some interest: The Bayes estima-
tor th of E(Y) based on an observotion of the uniform mizture (2.1) under the
quadratic loss function has the form m(X) = X + b iff the prior distribution is
gamma with the scale parameter b and the shape parameter 2,

Remark 2. Observe that the joint distribution of (X,Y) determined by (ii)
of Theorem 2.1 {also in Theorem 2.2 beneath) is a special case of multivariate
gamma law discussed thoroughly in Mathai and Moschopoulos (1992).

Remark 3. The part (ii) of Theorem 2.1 may be restated as follows: If X/Y,

Y are independent, X/Y 4 U, where U has the uniform distribution on (0,1), and
EY -X|X)=>bthen X andY — X are 1.i.d. exponential r.v.’s. In this context
we would like to recall Kotz and Steutel (1988) characterization of the exponential
law, in which also independence and uniform distribution are involved: If X, Y —X
are id.d. r.v.’s and X 2 U Y, where U is as above and additionally independent of
Y, then X is exponential.

Remark 4. The family of densities we arrive at in Theorem 2.1 has an in-
teresting continuity property. It is easily seen that for any positive x

lim h,(z) = g(z) = lim f(z).

u—r1l— u—1+

It means that the gamma distribution with density (2.5) may be approximated
by first or second kind beta. An interesting question is if such approximation
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involving beta type distributions are also possible for gamma distributions with
the shape parameter different from 2 (including exponential distribution). It seems
that the scale parameter of the gamma law is not important in such problems.

Remark 5. Let us point out that for ¢ = b = 1/2 the joint distribution of
(X,Y), obtained from Theorem 2.1, is uniform in the triangle {(z,y) : 0 < z <
y <1}

Remark 6. The distributions of X’s in respective cases of Theorem 2.1 can
be immediateiy derived:
(i) X has a Pareto type distribution with the density:

o/ (1=a)
fx(x)—l(l—ka_lm) Iz > 0);

b b

ii} X has an exponential distribution with the density:
¥
fx({ax) = ge 1z >0}

(iii) X has a first kind beta distribution with the density:

a/(l—a)
1 1—a b
fX(m)—z(lm 5 JL) I(0<m<l a),

(iv) X has a uniform distribution with the density:

fx(z)= %I(U <z < b).

Now let us turn our attention to the second posterior moment. Here we want
only to indicate that such a characteristic may also determine the uniform mixture.
Therefore we consider only one special form of the second posterior moment.

THEOREM 2.2, Let (X,Y) be a random vector satisfying (2.1) and (2.2) for
some positive constant b. Assume additionally that X iz squarc integrable. Then

(X,Y) g(Vi,‘[/'l + V3), where V1, Va are i.4.d. exponential r.v.’s with the mean b.

PROOF. Without loss of generality we may take b = L. Consider (2.2).
Applying similar argument as in the proof of Theorem 2.1 we easily get the identity

(2.13) %ﬁ = (1+t+))E (#) 1+ ey (), t20,

where m = F(Y). 'L'hen rewrite (2.13) as

mt>

H{HH1 +t) - HE(L +t +2) — 5

, =20
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{the function H is defined in tho proof of Theorem 2.1}. This is a first order
ordinary differential equation and its solution is of the form

mi 1 . £>0

H(t) = -
O=5ag T 120

where ¢ i1s a constant. Consequently

1

Py (t) = AT

(S +eett+t+), 120

Since ¢y is the Laplace transform, we must have ¢ = 0 and m = 2. Consequently
Y is a gamma r.v. with the mean 2. Now the final result follows by (2.1). 0O

If instead of (2.2) it is allowed that the second posterior moment has a general
quadratic form, i.c.

EY? | X)=aX?®+bX +¢,
where a, b, ¢ are some constants then under (2.1), similarly as in the proof of
Theorem 2.2, it follows that
mt? = (a— DEH" () — Do+ b)tH' (#) + Qo+ bt +c£2)H{E), >0

However its solution seems to be far more complicated than the earlier one (under
a — 1 it becomes a first order equation) and we do not follow this path here.
Instead more general approach is proposed in Remark 11, Section 3.

3. ldentifiability

Here we are concerned with the problem of unique determination of the uni-
form mixture (2.1) by any consistent posterior mean. Since in such an approach
Laplace transform dees not work well, to be able to work with densities we assume
additionally that the prior is absolutely continuous.

The main result of this section gives

THEOREM 3.1. Let (X,Y) be a random vector satisfying (2.1). Assume ad-
ditionally that Y s absolutely continuous with the support [0,T], (0 < T < o00).
Then T', the prior distribution and, consequently, the mizture are uniquely deter-
mined by the regression function m{x) = E(Y | X =z}, x € (0,T").

Proor. From the Bayes formula

T T
(3.1) m(z) f Y F )y = [ f)dy, we(0D),

where f denotes the density of Y. Hence it is easily seen that

T =int{x:m(z) =z, = > 0},
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m(x) >z, x >0, and m is differentiable. Upon taking derivatives of both sides of
(3.1) we get

(3.2) wr () [ )y = (m(z) — o)fz),  z € (0,T).

Now divide (3.2) by zm/(z) {observe that (3.1} implies that m is strictly increasing
on (0,7)) and then differentiate both sides to obtain

mx) — =z !
————f(z)
i | 1)
z—mlzy  mx) -z . 2 €{0.7).

f(z)

zm!(z)

Hence the density of the prior is given by the formula

(3.3) f(az>=c-m'('2)cxp(f e ) v (0,7),

x—m( x — mix)
where ¢ is a norming constant. O
Remark 7. Observe that we have got not only the unigueness result but also
for given m we can ecaleulate the dengity of ¥ hy formnla (3.3). For example taking
m{z) = 2+ 1 (i.e. m'(z) = 1) we obtain T = oc and by (3.3) the prior has the
gamma density (2.5) with b= 1.

Remark 8. As another example consider the regression function of the form

_ 2x” +x+1)

r)=—Y—" : 0,7).
m{x) 3 1) ze{0,T)
Hence 7" = | and simple calculations lead 1o
2a(z +2) (x+2{z-1)
' — O L ST S r e (0.1).
m(m) ———3(3?4*1)2’ TTL(.T) x 3($+1) , s ﬁ( ; )

Consequently the formula (3.3) implies f(x) = 322f(0 < z < 1), which means
that ¥ has a power function distribution.

Remark 9. Obhserve that in the course of the proof of Theorem 3.1 we ob-
tained the following necessary consistency conditions for the regression function
me

e m has to be strictly increasing in (0, 7);

e miz) >,z (0,7

e 1t has to be differentiable;

o m(T) — T
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Remark 10. If a linear posterior mean m(z) = ax + b, < (0,7), is consid-
cred in the setting of Theorem 3.1 then ¢ > 2 is also possible. (It is not allowed in
Theorem 2.1, where integrability assumption is imposed.) In this case Y has the
density (2.4), but its mean does not exist {hence X is not integrable).

Remark 11. Similar argument as in the proof given above may be applied if
instead of the posterior mean we are interested in other posterior characteristics
of the form E{G(Y) | X): Assume that the function n{z) = E(G(Y) | X = z),
x e (0,7, is known. Additionally let (V) he integrahle. Then mimicking the
proof of Theorem 3.1 we obtain the following formula for the density of ¥’

n’(

(2 Zc&ex - m_”,(;)m .
7@ n{z) — G(z)| p( /G(x)—n(m)d>’ € (0,7).

4. Homoscedasticity

We end our considerations with another approach to the initial examnple of
Section 2: X =V, Y =V, + V5, where V; and V, are i.i.d. exponential with the
mean b. Instead of considering conditional moments we observe that the posterior
distribution is homoscedastic, i.e.

(4.1) Var(Y | X) = b2

As a converse we obtain an analogue of Theorem 2.2, but this time we need addi-
tional smoothness condition, which enables us to use methods developed through-
out Section 3. On the other hand integrahility condition can he omitted.

THEOREM 4.1. Let (X,Y) be a random vector satisfying (2.1) and {4.1) for
some positive constant b. Assume additionally that Y is absolutely continuous with

the support [0,T] (0 < T < o0). Then (X, Y)i(Vl,V] + Vo), where V1, Vo are

1.%.d. exponential r.v.’s with the mean b,

Prooyr. Similarly as in the proof of Thecrem 3.1 we easily get

(4.2) LT v g(u)dy ‘/TT gly)dy — (LT yg(y)dy) 2 = b? ([T g(y)dy) 2 :

for any T > 2z > 0, where gly) = ¥y~ 1f(y), T > v > 0, and f is the density
of ¥. Then upon teking derivatives in (4.2), then canceling g at both sides and
differentiating the resulting equation once again, one gets

b2gli =gq.

Hence g(z) = Kexp(—z/b)1(0 < & < T) which, upon inserting it in (4.2), yields
T =o00.U
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