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Abstract. Consider a sequence of n independent Bernoulli trials with the
j-th wrial having probability p; of sucecss, 1 < 7 < n, Let M(n, K} and
N(n, K) denote, respectively, the r-dimensional random variables (M (n, k1),
oo, Min, k. )) and (N(n,k1),...,N(n, k-)}, where K = (ki,k2,..., k) and
M(n, &) [N(n,s)] represents the number of overlapping [non-overlapping] sie-
cess runs of length s. We obtain exact formulae and recursions for the probabil-
ity distributions of M{n, K) and N(n, K}. The technigues of proof employed
incliide the inclusion-exclusion principle and generating function methodology.
Our results have patential applications to statistical tests for randomness.

Key words and phrases: Overlapping and non-overlapping success runs, dis-
tributions of order k, generating functions, tests for randomness, inclusion-
exclusion.

1. Introduction

Let X;,Xs,..., X, be n independent Bernoulli random variables such that
PX; = 1) =p;, | <j<mn andlet M = M{n,k) and N = N(n,k) de-
note, respectively, the number of overlapping and non-overlapping success runs
of fixed length & > 1. For example, the sequence FSSSSSF corresponds to
M(7,2) = 4 and N(7,2) = 2. The exact distribution theory of M has been stud-
ied (just to mention some of the more recent literature) by Ling (1988), Godbole
(19925) and Chryssaphinou et al. (1993), while asymptotic results may he fornd
in Chryssaphinou and Papastavridis (1988), Godbole (1991, 1992b) and Barbour
et al. (1992). Previous work on the exact and approximate distribution theory of
N can be found in Hirano (1986), Philippou and Makri (1086), Godbole (1990,

*The research of the first and third-named authors was partially supported by National
Science Foundation Grants DMS-9100829 and DMBS-Y200404.

141



142 ANANT P. GODBOLE ET AL.

1991, 1992a), Papastavridis (1990) and Barbour et ol. (1992). Different but al-
lied random variables have been studied by Panaretos and Xekalaki (1986, 1939},
Philippou et al. (1989) and Xekalaki et al. (1987).

Agin and Godbole {1992) exhibited the fact that a non-parametric statistical
test based on N can be significantly more powerful than standard criteria in de-
tecting certain kinds of clustering; also, a preliminary check (in the same paper)
indicated that a multivariate test based on several values of k gave an even higher
empirical power than the univariate test. This is the primary motivation for our
studying and laying down, in this paper, the distribution-theoretic foundation of
multivariate random quantities based on the variables M and N: For any » inte-
gers ki, ko, ..., kp, let K = (ky,ka,... k), M(n,K) = {M(n,k1),..., M{n, k)
and N{n,K) = {(N(n,k1)....,N(n, k.)), where M(n, k;) and N(n,k;) are each
defined to equal zero if n < k; for some 7; we shall call the distribution of the vari-
ables M{n, K) and N(n, K) the overlapping binomial distribution of order K and
the binomial distribution of order K respectively. These distributions reduce to
the well-known and similarly named univariate quantities on setting r» = 1. Exact
formulae and recursions for M(n, K) and N(n, K} will be provided in Sections 2
and 3 rcspectively. The inclusion-exclusion principle will be the method of choice
in Section 2, while generating function methodology will vield several recursions
(notably for unequal p's) and exact formulae in Section 3. The latter technique
has been used, e.g., by Koulras and Papastavridis {1992).

Since K does not change through the paper, we will often denote the variables
M(n, K) and N(n, K) simply by M(n} and N(n) respectively.

2. Exact formulae

We gtart by proving a result that extends the univariate Theorem 2.1 of
Philippou and Makri (1986). We note, however, that our proof employs geometric
variables truncated at the level (n — 1) as in Ling (1988)}; the original method
used by Philippou and Makri (1986) truncates these variables at the value (k— 1),
where k is the success run length. However, this procedure does not permit an
efficient multivariate generalization.

THEOREM 2.1. Let X, X5,..., Xy, n > 1, be i.i.d. Bernoulli (p) random
variables. Then for any v positive integers ky, ko, ... ky, and with X = (21,24, ...,
), we have:

(2.1) P(N(n)_X):qupn_yzz(2}1,?#_),?..,2}”),

i=0 3

where 35 is over all non-negative integers {y;}7_, satisfying the conditions

(2:2) ddviti=n;

i=1
Ti

(2.3) > ui=u;
i=1

and
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(2.4) L:J'Jr Zn: [j’,;l}yj—x; (1<1<r).

J=k+1

Proor. Following the combinatorial method established by Philippou ef al.
(1983), we note that any elementary event in {N{n) = X} can be described as
follows: Let y; (j = 1,2,...,n) and ¢ (0 < ¢ < n) represent, respectively, the
number of arrangements S5 - -+ SSF (j -1 S’s) and the number of successes after

the last failure in the sequence. Then it is easy to see that N{n) = X if and only
if {2.2) and {2.4) hold. Thus

= Vit ya g
(2,5) P(N(n) = X) e Z Z (Jl o ’ JTI) ngl:l y.ipniz_;}zl y_r';’
i=0 2 ylrst”-sgn

where ), is over all non-negative integers {y; }7_, satisfying (2.2) and (2.4). (2.1)
now follows on conditioning on the number y of failures, which clearly equals
Z?:] yJ' U

The next result follows on using methods similar to those above; it extends the
result of Ling (1988). We mention that the recursive techniques of Section 3 will
provide an alternative formula that involves just a double summation. Theorem
2.2 is important in its own right, however, and will be used, furthermore, as a
starting point for the proof of the exact formula in Theorem 2.3.

THEOREM 2.2. Let X1, X5,..., X, n > 1, be ii.d. Bernoulli (p} random
variables. Then for any r positive integers kv, ks, ... k., and with X = (x1,29,. ..,
z,}, we have:

(2.6) PMn)=X)= qup”_y Z Z (yhyzy,. . yn)’

y=0 i=0 3

where y 4 is over all non-negative wntegers {y;}/=, satisfying (2.2), (2.3) and

n
(2.7) max{0,i— ki +1}+ > (j-k)y;=wm (1=1=<0).
J=ki+1

Representations (2.1) and (2.6) can be used as the basis of a computational
procedure, but searching for the solutions of the integer equations (2.2}, (2.3),
(2.4) and (2.7) exhausts a large amount of computer time, even for moderately
large values of n. For this reason, as well as to explore different methodologies,
we scek alternative formulae for the probability density functions of M{rn, K') and
N(n,K). One of thc combinatorial procedurcs that can be employed towards
such an end, and which results in a representation entirely in terms of binomial
coefficients, is illustrated in the next result. For simplicity we state and prove
Theorem 2.3 below ouly [ur the case of overlapping runs and only for r = 2.
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Although the statement of Theorem 2.3 below looks cownplicated, a careful glance
will reveal that from the standpoint of both mathematical depth and numerical
efficiency, it is far above the simpler looking Theorem 2.2.

THEOREM 2.3. The joint p.d.f. of the numbers of overlapping runs of two
different lengths k1 = k and ko = | has an alternative representation entirely in
terms of binomial coefficients, as follows:

P(MK) =X, M) =Y)

2o (2 ()
{0

g

T )

m

Sy (it 1) (n - X - k(ty —t) - kr)

T

Ly C) (n - X k(ty:lt L1y - jk)

-Z(_l)r(”“ (X“’f)'w—Y—l—r(Z—k))
B

b

(S (XY e 0-1)
e (T

5

PROOF. Assume, without loss of generality, that k < [. We start with (2.6)
and note that {2.2) and (2.7) can be rewritten, with X = z; and ¥ = x3, as

k
(2.8) Sgyj=n-—i- X~ k(y—t)+max{0,i - k+1}
i=1
1
(2.9) N oy =X+kly-t)-ly—v-1t)-Y
F=k+1

—max{0,i — k+ 1} + max{0,i —{ + 1}

and
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(2.10) Z Jjyi =Y +iy—v—1t) —max{0,i — I+ 1}
J=I+1

where

k
(2.11) t=>u

5=1

I

(2.12) v=>_

j=k+1
and
(2.13) w=y—v—1t= Zyj.

=i+l

Conditioning on 2 and £ thus yields
(2.14) P(M{k)=X,M{I)=Y)

T TR0

v
(o w
2025: (w,yz, yk) 2 (’!ﬂwh o v”‘ﬂ) ZT: (y”l’ " ’y”)

where 37, 3, and 3, are over non-negative integers satisfying (2.8) and (2.11);
(2.9) and (2.12); and (2.10) and (2.13) respectively. On splitting the sum over 4
into three components, (2.14) reduces to

(2.15) P(M#) = X, M(l) — Y)

-z e ()T()
{ZZ(M o) E )

=0 H

w
. 721 (?Jt+1, s ,yn)
i—1 v
+ ZZ (U1,'U‘) ..... :u,'c) ; ('Uk—l—la o ,lf:I)

1—k 52

W
Z (yl-‘rla-":yn)
)
+ZZ(’£I1,JQ,-- ,yk); (yk+la---a?}l)

=l By

Z( w )
—~ \Yir1see s Yn/ |
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The truncalion employed above enables us to consider sums over sets of integers
that are related to those in (2.8) through (2.13}, but which do not involve equa-
tions with terms of the form max(s,#). For example, the sum 5, is over integers
Y1, - - - Ui satisfying the conditions (2.11) and

(2.16) ijj—nfi-—X—k(y—t)
j=1
whercas the sum 83 i over yxi1,- - -,y satisfying (2.12) and
(2.17) N ogu=X+kly—t+1) —ly-v—t+1)—
j=k+1

We shall now need to use the following

LEMMA 2.1.

(2.18) Z (:.91, ;n:. . ,zr:r)

T4 TSR 22 T T =T
Z m—jr—1
B s—1 ’

ProOOF. Omitted. See, e.g., the proofs of Lemmas 2 and 3 in Godbole
(1990). O

Using Lemma 2.1 and the easily verified fact that the six sums 53, 53, 61, 63,
71 and 75 do not depend on 4, {2.15) can be reexpressed as

(2.19) P(M{k) = X, M(1) =Y
—Zﬂ%" yZ() (’y )
'{5}(‘ PO e
S ()0
. SZ(—l)r(:) (n . k(yr,——t)l_ i—1- kr)
+> (1) (D (” —X - kgy_—lt +1) - jk)

e () ()
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ZZ ()(X—(l~k)w——Yv+“kl2~i—r(l—k))

=k 7

()
S =™ (;) (X - Y- ('wvt'f;b)(l — k) — 1)

m

. g;(d)’" (L:) (}r -2 ;;-En; 0 — i) }

As our linal step, we simplify the summations that depend on %; towards this end,
we state

LEMMA 2.2
(2.20) 2%( 1)’“@) (n—z_ k(y;i)f Mk 1)
Z (v-i—l)( mk(y—v)—mk)

m

Proor. Omitted: contained in the proof of Theorem 1 in Godhole (1990). M

Assuming, without loss of generality, that ¢ < n — 1, (2.19) and Lemma 2.2
now yield the following representation for the joint p.d.f. of M{n, k) and M(n,D:

(221) PMKk)=XM(I)=Y)

_Zfl P ?”Z( )Z(y—v)

iy SE
(= ;) (Y - mugwi_lz) _ 1)
.Z(_l},(ttl) (n - X mk(ty_t) kr)

+ > (-1 G’) (’”—X— k(ty_—ltﬂ) —-jk)
Do)
.Z(_l)r(UJrl) (X (I—kw-Y -1 k))

T
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+ %:(—1)Ji C) (" X kgy:lt +1) - jk)
: X(—l)m (f:;:,) (X —-Y — (wvtwiz)(l — k) — 1)

kit]

_g(wl),_(wjl) (Y»—'r'(nw— I — 1)}

This completes the proof of Theorem 2.3. O
3. Recursions

We begin by deriving a recursive formula for the distribution of M(n) =
M({n, K) that is valid even in the non-i.id. case. Assume, then, that the prob-
ability of success at the j-th trial is p; and set ¢; = 1 —p; (1 £ j < n). By
convention, we let py = 0. For ease of exposition, we write P(M(n) = X) as
P{n,z,,22,...,2,), and set, for n < 0,

(3.1) P(n, .7,'1,...,93‘?«) = 5|m1|+|z2|+---+|mr|,0&

where the Kronecker delta &, ; equals one if i = j and zero otherwise. Forze Z,
let 2t := max{0,z}, where .=’ means “equal by definition”; throughout this
paper we will use the standard notation N = {0,1,...}, Z+ = {1,2,...} and

Z = {0,+1,42,...}.

THEOREM 3.1. Given n > 1 independent Bernoulli trials X1, Xg,..., Xn,
with P(X; = 1) = p;, we have

(3.2)  P{n,z1,Z2,...,2r)
= an('n,— 1,331,...,277-)

+ Z Gn—iPn—i+l " " Pn
=1
Pn—i—1l,xy— @~k + 1), e — (i ke 1)

PRrROOF. The event under consideration splits into two subevents, according
as the last trial is a failure or a success. If X,, = F, we get the first term on the
right hand side of (32). On the other hand, the event X, =5 can be further
subdivided into n subevents, depending on the length ¢ of the (maximum) final
run of successes, 1 < i < n. This accounts for the sum on the right hand side of
(3.2). O

Remark. Theorem 3.1 provides a recursion of order n in the non-i.i.d. case,
and can easily be extended (o provide a (direct) recursive formula for
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PMn,K) > X) := P(M(n, k) > ®,...,M(n, by} > xr). Such a formula
would be of greater interest from the viewpoint of statistical applications.

We next consider the i.i.d. case and derive a simpler recursive formula than
that given by Theorem 3.1; this recursion will be seen Lo be ol (smaller) order
min;(z; + k; —1). If X = (z1,...,2,), where 2; € N, (i = 1,...,r}, then we shall
say that X > 0if 2; > 0 Vi. Let r > 1 and consider the r-tuple (kq,..., k) of
positive integers. If k € Z7T, then yy : N — N is defined by

(3.3) pr(n) = (n—k+1)"

Next, define pp: N — N”™ by

(3.4) W) = (e, (1), 5 i, ().
Finally, let z1,..., 2, be formal variables independent over the ring Z, and, with
Z = {21, %), X =(21,...,2), let Z denote the quantity z;* -+ - 257,

DEFINITION. Let n € N, m € Zt, X € N”. Then Q(n,m,X) is the

number of m-tuples {ny,...,7y) in N™ such that ny +- -+ n, = n and p{ng) +

-+ p(ny) = X, where addition in N7 is defined componentwise. By convention,
let Q(n,0,X) =0, and Q(n,m,X)=0ifn <0orm < 0orz <0 for any <.

Defining the formal series A(t, Z) by

(3.5) Alt, z) =Y 1z
nz40
we have
LemMma 3.1.
(3.6) (@) Y. QnmX)"z¥ = {A@t, 2)}"
n,X >0
(3 m X 1

Proor. (3.7) follows immediately from (3.6) and the fact that Q(n,0, X) =
0, while {3.6) can easily be seen to be true from the relevant definitions. O

LEMMA 3.2.

(3-8) P(M('n,): Lan m+1, X)pmnm

m=0

PROOF. Similar in spirit (but not in substance) to the proof of Theorem 2.2:
we condition on the number of successes (not the number of failures), and note
that n — m + 1 spaces are generated between the n — m failnrea. We let n; be the



150 ANANT P. GODBOLE ET AL.

number of successes in the j-th space (1 <4 < n —m + 1) to obtain the required
formula. O

By Lemma 3.2, we have

> P(M(n) = X}t"2*

= Z Q(m,n —m+ 1, X)pmg ™ Z2%
n.m.X>0

= Z Q(m,n+ 1, X)pmg ™z
n,m,X >0
(On replacing n —m by n)

= Y Qmn+1L,X)(pt)"(g)" 2%

(1 i, n, X =0

1 { 1 1}
gt | 1—qtA(pt, Z)
(on using Lemma 3.1 with the roles of m and n interchanged)

_ Apt,Z)
1 — qtA{pt, Z)
s0 that
(3.9) (1—qtA(pt, 2)) Y P(M(n) = X)t"Z% = A(pt, 2).

1, X >0

On equating coefficients of " Z* on both sides of (3.9) and recalling the definition
of A(t, Z) we obtain

THEOREM 3.2. Given n i.i.d. Bernoulli (p) random variables, we have the
TeCursion

P(M(n,K) = X) = Y qp P(M{n =1~ 8,K) = X — pls)) =p"  [X = uln)]
s>0

=0 [X#un)

The recursion in Theorem 3.2 is not just a special case of that in Theorem 3.1.
As pointed out earlier, it vields a deeper result for the i.i.d. case. We now derive
an exact formula for P(M(n) = X}, alternative to that given by Theorem 2.2,
also expressed in terms of multinomial coefficients, but containing only a donhle
summation:

TuroreM 3.3. Under the conditions of Theorem 3.2,

= m+1 T T 1T
(3.10) P(M(n) = X) = 86, xq" +22(t0 b )p g,

in
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where & is the Kronecker delta and the sum Yy o warics over all m | 1-tuplcs
(toy ..., tm) satisfying the conditions

(3.11) to+t1+ - +ty,=n—m+1
(3.12) A2+ +mi, =m

and

(3.13) trp(l) +top{2) + - +tppim) = X,

Proor. Using Lemma 3.1(a), for m > 0,

e

(314) Z Q 11, 17, X)thX (A Ztnz,u n)

7, N >0 720

so that for m,n > 0, Q(n,m, X) is the coefficient of t*Z% in (A(t, Z))™; in other
words,

m

3.15 Qln,m, X)=> ( )
( ) ( ) L}-J TG T, - T
where 3, varies over all (n + 1)-tuples (ma. ..., m,) satisfying the conditions

T
(3.16) Zmi =m

i=0

T
(3.17) Z:%m2 =n

i=1
and

T
(3.18) > mipli) =

i=1
It tollows from Lemma 3.2 that

T
PMr)=X)=Q(0,n+1,X)¢" + Z Q(m,n —m+ 1, X )pmg" ™™
m=1
n—m+1
e 6 T, T — T
o+ 3T (to o m)p 7

m=1 2

as asserted. M
If » = 1, then Theorem 3.3 provides a double summation formula for

P(M{n) = X) which is essentially equivalent to the triple summation expression
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of Ling (1988). 'I'heorem 2.3 provides an exact formula, but only for » = 2. Theo-
rem 3.3 is a general result, therefore, that is valid for all values of r. We now turn
our attention to developing recursions and exact formulae for P(N(n, K) = X). It
turns out, however, that all the hard work in this direction has already been done;
the approach used to analyze overlapping runs carries through with few changes.
Specifically, if we define

(3.19) uln) = (["H ’ U:j LH)

and suitable modify the definitions of Q(n,m, X) and A(t, Z), then it easy to see
that the following results hold:

THECREM 3.4. Given n > 1 independent Bernouwlli trinls X1, Xa, ..., X,
with P{X; = 1} — py, we have

{3.20) P(N(n) =X):= P(n,x1,22,...,2;)
= quP(n— L,21,Za, ... &) + P1D2  Prl{n/iy),[n/ k], 0/ k1), X

n—1 . ]
. i 3
+ S Grn—iPn—it1 " PP (né'w— 1,21 — h—l] ey g — [—}) .

i=1

’roor. Exactly the same as that of Theoram 3.1; for varicty, we split the
required probability into three subevents, however, according as the last trial is a
failure, all the trials are successes, or the last i are successes (1 <i<n—1). O

THEOREM 3.5. FEguations (3.6) and (3.7) hold without any changes, using
the modified definitions of Q{n,m, X) and A(t, Z). Also, P(N(n) = X) is given,
in the i.i.d. case, by an equation wdenticel to (3.8), from which one can deduce
a recursion that is the same as that given by Theorem 3.2. Finally, the exact
formula (3.10) of Theorem 3.3 translates verbatim into one for P(N{n) = X}, but
with p{n) being defined by (3.19). More specifically, we have

n o 1 ‘
(3.21) P(N(n)=X)=boxq" + »_ D ( n—mt )pn,qr,,,,,,’

m=1 2 to’th'”’tm

where & is the Kronecker delta and the sum Yy, varics over all m | 1 tuples
(ta,....tm) satisfying the conditions

(3.22) o+t ttm=n—m+1
(3.23) i1+ 2t + -+ mty, =m
and

(3.24) Bk + ta2/k] 4+ k] =7 (L<I<T),
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