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Abstract. In the present article a general technique is developed for the
cvoluation of the exact distribution in a wide clase of waiting time problems.
As an application the waiting time for the r-th appearance of success runs
of specified length in a sequence of outcomes evolving from a first order two-
state Markov chain iz systematically investigated and asymptotic resnlts are
established. Several extensions and generalisations are also discussed.
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1. Introduction

The origin of problems related to success run waiting times in sequences of
Bernoulli trials goes back as far as De Moivre’s era. Their widespread applicability
in numerous scientitic fields {psychology, meteorology, non-parametric statistical
inference, quality control ete.) caused a continuous research interest and led to
several variations, extensions and generalisations of the original concept and set-
up. Two contemporary areas wherce the application of distribution theory of runs
had beneficial influence are reliability theory {cf. Chao et al. {1995) for a review)
and start-up demonstration tests, Balakrishnan et al. (1995).

The clagsical framework for a run-related problem is the one proposed by
Feller (1968). A sequence of independent Bernoulli trials (with two possible out-
comes: Suceess (§) or failure (F)) is generated and the number of non-overlapping
occurrences of k consecutive successes i3 counted. A second enumeration scheme
is generated by the overlapping counting where an uninterrupted sequence of I > k
sucecsges preceded and followed by a failure accounts for I — &k + 1 runs. Finally
one more enumeration procedure can be initiated by counting a succession of at
least k S’s only once, irrespectively of its actual length. To fix the distinction
between the aforementioned enumeration methods we mention by way of cxamplo
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that for & = 2, the sequence FSSSFSS555FS5 contains 3, 6, 2 non-overlapping,
overlapping and “greater than” runs respectively.

The distributions of success runs of fixed length % have been termed for ob-
vious reasons as distributeons of order k. For more detalls we refer to Johnson et
al. {1992} where a special paragraph is devoted to them.

Although Feller’'s way of counting simplifies the probabilistic model (which
can be easily analysed by renewal theory arguments) it depends on the particular:
application we are dealing with, which method of enumeration is the most appro-
priate. So, in reliability theory, the non-overlapping counting is suitable for the
definition of a specific structure called m-consecutive-k-out-of-n: F system (see
Papastavridis and Koutras (1993) for a review} whereas in molecular biology, DNA
sequence matching problems are handled by counting the “coincidence” runs of
length at least k£, Goldstein (1990).

Another direction for generalising Feller's model is to drop the assumption
of independency and consider instead a sequence of trials evolving according to
a stationary Markov chain. Run-related problems under Markovian dependence
set-ups have been recently studied by Schwager (1983}, Aki and Hirano (1993),
Hirano and Aki (1903), Mohanty (1094), Uchida and Aki {1995), etc.

In the present paper we conduct a systematic study of the waiting time distri-
bution for the r-th appearance of a success run {non-overlapping, at least, overlap-
ping) of lenglli & i a sequence of Markov dependent trials. After the introduction
of the necessary notations and definitions (Section 2), some general results are
established in Section 3 which offer universal tools for the study of waiting time
distributions. This is accomplished by exploiting the Markov chain imbedding
technique introduced recently by Fu and Koutras (1994) and subsequently refined
by Koutras and Alexandrou (1995) (see also Fu (1996) where the method is ex-
tended for multistate trials and general compound patterns). In Section 4, the
exact waiting time distributions for success runs are explored and a representation
is established for each of them as sum of independent random variables. Section 5
deals with asymptotic results and finally, Section 6 discusses a number of possible
extensions and generalisations of the presented material.

2. Definitions and notations

Let X5, X1, Xa. ... be a time homogeneous two-state Markov chain with tran-
sition probability matrix
P [poa Pol}
Pio Pu1
ie.

and initial probabilities p; = P{X, = §). 7 = 0,1. The waiting time for the r-th
occurrence of a success run of length & (r, k positive integers) will be denoted
by Tr(‘i) or simply Tr(a) with the superseript pointing out the enumeration scheme
employed; a = I will indicate the non overlapping counting, e — I the “at least”
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scheme and @ = I'TT the overlapping one. For the respective distribulions we are
going to use the names type I, IT, ITI Markov Negative Binomial distributions of

order k, in symbols MNB,("‘?, MNB(H) MNBU”
Let
B (n) = P(T'¥ =n), n>0

be the probability distribution function of ’1’,5“) and

H(” Z h(m (n) r
[e'a)

gl (#,w) = Z H,ga)(z)wr

r=0

I
ot

its single and double probabilily generating functions (convention: HO )(/,) =0

For the special case r = 1 it is clear that MNB%IJ% = MNB(H) MNB(HI
and the resulting distribution will be referred as Markov Geometrzc dzstmbutwn
of order k (in symbols: MG}), its probability distribution function and (single)
probability generating function being denoted hereafter by h(n), H(z) (instead of
R (n), H®(2)).

For the henefit of typographic simplicity and when no confusion is likely to
arise, formulae and results encompassing all three enumeration schemes will be
stoted without the use of superscripts.

Evidently, for p;; = p1 = p, pio = po = 1 — p, the model reduces to the iid
framework and M N Bi o MN B(I”) coincide with the ordinary Negative Binomial
distribusions of order & (cf. Phlhppuu et al. (1983) and Ilirano et al. (1991)).

3. General results

In a recent paper, Fu and Koutras (1994) developed a unified method for cap-
turing the exact distribution of the number of runs of specified length by employing
a Markov chain imbedding technique. Koutras and Alexandrou (1995) refined this
method and expressed the distribution of several run-related statistics in terms of
multidimensional binomial type probability vectors; their approach facilitated the
establishment of exact formulae for the respective probability generating functions
in terms of certain matrices which characterise the enumeration scheme in use. In
the sequel, we are going to exploit this approach for constructing general formulae
for both the probability distribution function and probability generating function
of Markov Negative Binomial distributions of order &.

Before advancing to the main part of this paragraph, we deem necessary to
give a brief outline of the aforementioned Markov chain imbedding technique and
some of its machinery which is essential in the derivation of our results. For more
details we refer to Fu and Koutras (1994) and Koutras and Alexandrou (1995).

A discrete random variable V, defined on {0,1,...,{,} {n a non-negative
integer) will be called Markov chain imbeddable Variable of Binomial type (M VB)
if
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1. there exists a Markov chain {1%,¢ > 0} defiued on a discrele state space
£ which can be partitioned as

Q= U Cy, Cy = {C'v‘[)s Codsrres Cv,s—l}-

v>0

2. PV eCy) | Vi eC)=0forallw#v,v+1and t > 1.
3. The event V,, = v is equivalent to Y,, € €, and therefore the probability
distribution function of V, is given hy

PV,=v)=PY,cC,), v=0,1,...,1,.
The distribution of a MVBE is completely determined by the following three
quantities:
e the initial probahilities
Ty = (P(Yo = co0), P(Yo = €u1), .., P(Yo = ¢y em1)
e the within stales one step transition matrix
Af{v) = (P(Yi =cy; | Yii1 = cui))sxs
» the between states one step transition matrix
Bi{v) = (P(Y; = cop1,5 | Yic1 = €0,i))sxs-
More specifically, as Koutras and Alexandrou (1995) indicated, if
.ﬁ(v) = (P(Y;s = Cv,n)ap(yt = Cv,l)s ce 9P(Yt = CU,S‘]))

then the next recurrences hold true for all 1 < ¢t < n,

sy HO=AA0L0)
' fi(v) — fimr (0)Ad) + fior(v = 1)B(w — 1),  1<0 <1,

These relations, in conjunction with the initial conditions fy(v) = 7, 0 < v <
L, offer a very simple computational scheme for the evaluation of the probability
distribution function of V;, through the formula

PV =0)=fl)l, v=0,1,...1,

{1 ={(1.1,...,1}) is the row vector of R® with all its entries heing 1).

It is sufficient for our purposes and also of great simplicity (especially for the
statement of more compact formulae) to assume that 7, = 0, » > 1 and 7ol = 1;
this convention is in fact equivalent to the condition P(V, = 0) = 1.
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Let now T,, v > 1 be the waiting time for the r-th occurrence of the event
enumerated by V,,, i.e. T, takes the value n if and only if V,, = rand V,,_1 = r—1.
Therefore the probability distribution function h,.(n) of 7, can be written as

hr(n) — P(Yn = OT'!YH,—]. € C’f‘—l}
s—1
= XP(Yn c O'r‘ | }fn—l —_ C’i"—l,i’;)P(le—l - C-rfl,i)'

i=0

Denoting by e; = (0,...,1,...,0) the i-th unit vector of R* and by 3;(n,r)
the quantity
Biln.r) = eB,(r— 1)1, 1<i<s

we may readily verify that P(Y,_y = ¢, 13) = fu1(r — 1)ej,; and

PY,ceCriYo 1=0c14) = Z eir1Bn(r —1)e; = Bina(n, 7).
j=1

This yields the following interesting expression for the probability distribution
function of Tx

(3.2) he(n) = Z Giln, V) farlr — 1)el.

i=1

It is worth mentioning that the exact distribution of T} can alternatively be
cvoluated by maoking use of Theorem 5.1 in Fu (1996) which in fact covers much
broader waiting time problems {(multistate trials, general compound patterns};
nevertheless, the present approach offers a computastionally more efficient scheme
and on the other hand facilitates the establislunent of general formulae for the
respective probability generating functions in the event of homogeneous MVE’s
(which fortunately is the case for the models we intend to apply our general results
to). The next two theorems deal with this situation.

THEOREM 3.1. If A (v) = A, Bi(v) = B for all t, v 2 0 then the double
generating function of T, is given by

8
(3.3) H(z,w) = wame » | Gill — 2(A+wB)] €]
i=1
where 0; = e;B1', 1 <{i < s.
PROOF. A straightforward manipulation over (3.2) reveals that

& oo Iy
Hizw) = w2 (Z an(r)wrz”) %

n=0r=0
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and the final formula for A (z,w) is readily ascertainable [rom the ideutity
oo n

Z an(?“)w’”z“ =mo[l — 2{A+wB)]™*

n=0r=0

which appears in Koutras and Alexandrou (1995).

THEOREM 3.2. If A{v) = A, By(v) = B for allt, v > 0 then the probability
generating function of T.. can be expressed as

(3.4) H.(z)=2"mp iﬁi[(f —zAYT'B"THI - zA) e, vz 1.

PRrROOF. Since
I —z{A+wB)= (I — zA)[I — 2wl — zA)"!B]

it follows that

[I—z(A+wB)]~ Z[ —zA) IBY(I — zA) Y ew)
and substituting in (3.3) we can write H{z,w) as

H(zow) =m0 > 8 S0 = 247 BY(I - 24) ™ ()]

i=1  §=D

or equivalently in the more interesting form

Zz o (Zﬁﬁ —zA) ' BT - zA)“leg) w”

which manifestly yields the desired result.
Applying Theorem 3.2 for the special case r = 1 we get the following expres-

sion for the probability generating function H,(z) = H(z) of the first occurrence
time T

(3.5) H{z) = 2ma Z GBI —2A) el
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4. The exact distribution of run waiting times

In this section we are going to conduct a detailed study of the waiting time
distribution for the r-th occurrence of a success run of length k in a sequence
of Markov dependent trials Xy, X,,... defined by (2.1). Each one of the three
enumeration schemes (non-overlapping, at least, overlapping) is treated separately
and besides the probability distribution function of the corresponding variable a
representation as a sum of independent variables is established as well.

a. Non-overlapping success runs

Following Koutras and Alexandrou (1995), we define C, = {(v,7) : 0 < i <
k—1}forallv=0,1,...,[n/k] (I, = [n/k], s = k) and introduce a proper Markov
chain {Y3,¢ > 0} as follows: Y; = (v,i) if and only if in the sequence of outcomes

J“—.

leading to the ¢-th trial {say SFSSF ... FS55...5), there exist v non-overlapping
success runs and m trailing successes with m = i(mod k). Clearly, the resulting
Markov chain is homogeneous, 7y = {pp, p1,0,...,0) = pper + prez and the non
vanishing entries of matrices A:(v) = A = (aij)sxs. Be(v) = B = (bij)exs are
111 = Poo, @12 = Po1, Ak1 = P1o,

if j=1
(/1.1) a,gj = {plU 1 j . ‘ k 1
pnn i j=i+1

o
(AN
A

and bgy = p11. Thus
0 if 1<i<k~1

;= e Bl =
= {Pu if i=k

and the evaluation of the double generating function of T, ?EI) may be easily per-
formed through (3.3); clearly the only quantities we need to this end are the
determinant and the (&, 1), {(k, 2) minors of thc matrix

1 — pooz —Po1 0 -0 0

—PDio2 1 —Puz 0 0

I-2(A+wB)= TPos 0 ! 00
—P10¥ 0 0 1 —ppz

o

0

=

—(p1o + wpn)z 1 kxk

After some routine calculations we get

wp1 + (popor —Plpoo)z}(PnZ)k_l

T
H( )(ZJ?’U): 2 k: ;) k—1 k
1 — ooz — pripinz ZiE;}(pHZ)?'— — wpmpy; 2

which, on introducing the notation

P(z) = pi + (pupu1 — P1POL)Z

4.2 k .
(42) Q(z) =1 - pooz — Po1P102” 2@112)272

i=2
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takes on the more appealing form

wP(z)(pnz)*t
(=) — wpmp’fl Lok’

(4.3) HD (z,w) =

The generating function of the random variable T' = 7 for the first occurrence
of a success run of length & will be given by

k-1
(1.4) Hiz)— Pla)pn2) ™
Q(z)
as may be easily chocked either by (3.5) or more quickly by substituting (4.3) in
the obvious formula
1
H(z)= [’H(I)(z,w)jl
w w=0
Another random variable which will be proved very useful in expressing the
Markov Negative Binomial distributions as sums of independent random variables
is the waiting time T* for the first occurrcnce of a success run in a sequence of
Markov dependent trials with transition probabilities (2.1) and initial conditions
P(Xp=0) =1, P(Xp = 1) = 0. Its probability generating function is immediately
derived from (4.4) (by setting pp = 1, ;1 = 0) as
(porz}{praz)* !
Q(z)

(4.5) H*(2) =

It is noteworthy that the numerical evaluation of both T and T™’s probability
distribution function can be achieved fairly easy through the recurrences implied
by {4.4) and (4.5) Mare specifically, multiplying both sides of (4.4) by Q(z) and
equating the coefficients of ™ we may deduce the following recursive scheme

k
(4.6) h{n) = pgoh(n — 1} + mepmpi"l'zh(n —4), n>k
i=2

with initial conditions

0 i 0<n<k—1
hin) = < pipf’ if n=k-1
poporpyy  if n=k

Equally, h*(n) = P(T* = n) obeys exactly the same recurrence for n > &
while the initial conditions reduce to

hn) {0 f 0<n<k
n) =
Pm]’;fl_l if n==~
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The means of 77 and T are

_ k-1
p=E(T) = {po1 + P10) (pm;zlplpw)l)n
Po1P1oPq
(po1 + p1o) — Pmpicl"l
‘Pmpm;ﬂ’ffl

(4.7)

= BT =

as one can readily verify by evaluating the first derivatives of H(z), H*{z) at z = 1.
The higher order moments can also be deduced from H(z), but their expressions
are not very attractive. Notice that, direct manipulations on (4.6) yield some
appealing recurrence relations for the raw (about zero) moments of 7' and T*; the
details are left to the reader.

We are now ready to show that T, can be decomposed as a sum of r indepen-
dent waiting time random variables.

THEOREM 4.1, IfTr 1<j<r—1 are independent duplicates of T™ (with
probability generating function (4.5)) which are also independent of T (with prob-
ability generating function (4.4)) then

r—1
nd *
(4.8) THET 4+ T7.

=1

Proor. Expanding (4.3) in a Taylor series around w = 0 and considering the
cocfficient of w”™ we obtain the following expression for the probability penerating
function of T} (an alternative derivation by Theorem 3.2 is also feasible but since
we already have the double generating function (4.3) the power series expansion
method is considerably simpler)

P (pnz) Fpmz)(puz)k—l]r—l

(1) —
H2L2) Q) Q)

Now, in view of (4.4) and (4.5) we may write
(4.9) HD(2) = H(z)[H* ()]
which manifestly implies the representation (4.8).

The generating function formulae given above are of course consistent with
analogous results published by Aki and Hirano {1993), Mohanty {1994) and Uchida
and Aki (1995). Some slight discordances in the final expressions reflect the dif-
ferent set-up used by them for the evolution of the Markov dependent sequence
Xo, X1,X0,....

Representation (4.8) does merit a special discussion. It is well known that
the usual Negative Dinomial distribution is the r-th convolution of the ordinary
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geometric distribution by itself. On the other hand, the convolution ol r lid Geo-
metric distributions of order k gives genesis to the Negative Binomial distribution
of order k, Philippou et al. {1983), Philippou (1984). Formula (4.8) indicates that
the relation between M N Bf{,z and MGy is almost so but not quite. In this case,
instead of v uniform renewals we have at first a slight irregularity (actually gener-
ated by the initial trial Xn) until the first success run of length % is formed; from
this point on a completely regenerative procedure commences which becomes anew
every time we come up with an additional success run.

b. Success runs of length at least k

This case was tackled by Fu and Koutras (1994) by incorporating in © an
additional “waiting state” which is entered npoan the completion of a success run
of length k and is not abandoned until a failure shows up (which signals the termi-
nation of an already counted run). As Koutras and Alexandrou (1995) indicated,
we now have &, = [(n | 1)/(k | 1)], s = k + 1 and the only non zero elements of
the transition matrices are given by (4.1) and

a11 = Pao, @1z = Pol, a1 ™ Ag+1,1 = Pi1o, Al 1,k 1 — M1,
brk+1 = P11
Accordingly
0 if 1<4i<k—-1 or i=k+1
B; = Bl = { e
P11 if i —k%
and evaluating the determinant and the (k,1), (k, 2} minors of the matrix
1—poz —porz 0 - 0 0
—P10% 1 —p11% 0 0
- o e ,
—P1o2 0 0 | —Wihi12
—Po® 0 0 S 0T =puz e e

we deduce, in lieu of (3.3)

w(l — pruz) P(2)(pu2)*!

(1-pu2)Q(z) - wpoLpropty tzEH

(4.10) HUYD (2 w) =

(P(z), Q(2) are as in (4.2)). We are now ready to establish a representation of

TT(H) as a sum of independent variables, i.e. Theorem’s 4.1 analogue for success
runs ol leugih at least &.

THEOREM 4.2. Let T, T/, 1 <j <r—1 be as in Theorem 4.1 and T}*,
1< § < r—1 be vrdinary geometric random variables (defined in a sequence of #d
Bernoulli trials) with success probabilities p11, i.¢.

DT =n) = ppyt,  n> L
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If wll these varivlbles wre mulually independent Lthen
r—1

(4.11) TD L+ 3Tt + 1),
=1

Proor. Writing (4.10) as

H(II)(z,fw) - ’LUM |:1 —w Moz . @Ulz)@llz)k'—l} -1

Q(z) 1—puz Q=)

and expanding in a Taylor series around w = 0, we get the following expression
for the probability generating function of T}ID

P(z)(pnz)""!
Q(z)

Taking into account (4.4), (4.5) and the fact that the probability generating func-
tion of the 77*’s is G(z) = p1o2/(1 — p112) we may write

(rn —
B (z) = 1—puz Q(z)

T

_qqr—1
P1o= (sz)(}?lzz)k l]r

(1.12) HUD () = H)GEH ().

Representation (4.11) results immediately from the established equality between
the generating functions of TTEH) and T + Z;;i(T; + T;*)-

The rationale of (4.11) is easily elucidated by rewriting it as

r—2
d Ed £ kk
TUDS(T+ T + Y (T 4+ Tfa) + T2y

j=1

The random variable T + T is the waiting time for the first failure after the
completion of the first success run of length &£ From this point, a regencrative
phenomenon is activased which is renewed upon the appearance of the firsi failure
after a success run of length k; the associated variables 77" + 7/, ;, 1 <j <r -2,
are of the same type as T + T apart from the irregularity of the latter caused by
the presence of X;. The last random variable 177, accounts for the formulation
of the r-th success run of length k.

c. Querlapping success runs

With the imbedding technique introduced by Fu and Koutras (1994) in mind
(see alan Koutras and Alexandron (1995)) we now have l, =n—k+1, s =k +1
whereas the only non zero entries of the matrices A, B are given by (4.1) and

@1, = Pog, Gz = Po1,  Grl = Ag+1,1 = P1oy Dkl = Pk+ik+1 — Pl1-
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Hence

, 0 if 1<i<k—1
Bi =Bl = . )
pip it i=k or i=k+1,
1 —popz —ponz 0 0 0
—P1oz 1 —p112 O 0
I-2(A+wB)=| P07 0 oo 0 ,
—P1oz 0 0 -1 —wpyz
—H10< 0 ¢] - 01— Wwin1 < {(k+1)x (k+1)

and working in a similar fashion as before we obtain the next form for the double
generating function of T?«(IH)

wP(z)(pr )kt

(1 — wp112)Q(z) — wperp1opy, 2L

(4.13) HYD (2 )y =

(P(2), Q(z) are as in (4.2)). Regarding the representation of T''") as a sum of
independent variables we have the following.

THEOREM 4.3. Let T, T7, 1 < § < 7 —1 be as in Theorem 4.1 and W;,
I <3 <9 —1 be independent Bernoulli variables with success probabilities py;. If
17, W; are mutually independent and

W* =

J

1 if W,=1
{HT_;‘ if Wj=0

then T, Wy, ..., W} are independent and

T

r—1

1nd *

(4.14) THOST + Y W
i=1

Proor. It is not difficult to verify (either through Theorem 3.2 or better by
writing (4.13) as

HID (5 ) — A CIITE {1 Cw [(pnz) ¢ ) (pmz)(pl_lz)kl} }—1

Q(%) Q(z)
and expanding in power series around w = 0) that the probability generating
function of TTEHH takes Lhe form
(4.15) D) = H(z) [(pnz) + (po2)H (2)]

Due to the definitions, the probability generating function of Wis

G*(2) = (p112) + (P102) H™(2)
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whereas the independency of W, Ty, 1< j<r—1and T guarranties the inde-
pendency of W7, 1 <j <r —1and T. Accordingly, the probability generating

funetion of the sum T+ ZZ:} W coincides with H?EHI) {z); hence the result.

In the special case of iid Bernoulli trials, the results of the preseut paragraph
far overlapping success runs reduce to the ones derived by Hirano ef al. {1991).

Closing, we mention that Uchida and Aki (1995} have also given formulac
for the probability generating functions (4.12), (4.15) with a slight discrepancy in
the final expression, due to the different setup used there. Their derivation was
based on a completely different technique: the method of generalised (conditional)
probability generating functions,

5. Asymptotic behaviour

The limiting behaviour of Markov Negative Binomial distribulions as 5 — oo
is closely related to the class of Poisson-stopped sum distributions, that is to say
distributions of the sum of Poisson number of iid random variables. The definite
reference on Poisson-stopped sums is Johnson et al. (1992). Tor the needs of our
presentation we can stick to the special case of variables with finite support, thercof
obtaining a family of distributions with probability generating function

".j)(z; AL, Az, )\m) = eXp(* Z A+ Z )\izi)
=1 =1

and distribution function of the form

f(n;Al’/\Q?"' m ZGXP Z/\) J ] -

J?

where the first summation is performed over all non-negative integers y1, ¥2, .. ., Um
such that 7" ; jy; = n. Following Aki (1985) (see also Aki et al. (1984)) we
shall refer to these distributions as extended Poisson distributions of order m with
parameters A, Az, ..., Ay

THeoREM 5.1, If im, oerpop = A > 0 and lim,. oo rprg = ¢ > 0 then
the asymptotic distribulion of TTU) —rk + 1 is a mizture of on extended Poisson
distribution of ovder k with porameters

S
oo i

I
—

pa =
[ A
[A
7

and a shifted duplicate of it; more precisely

lim P(TY — vk +1=n)=pifns M ..o ) +pofn— 1A p oy p)

T
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Proor. Evidently

k

lim P(z) =py +poz,  lim r(1—0(z)) = A~ +ﬂ-gzi
3=

and therefore

. zH(z) . P(z)
1 = | —
r—oc H*(2) far s Po1

= -+ Poz,

lim {kaH*(Z))r — lim (1~ poo)"[(1 —Plo)r]k—1

00 r—0o0 QT (z)

= exp {-/\(1 —z) - ,uz(l - z“)} .
i=2

The probability generating function of the shifted random variable Tr(l) —rk+1,
by virtue of (4.9) can be expressed as

2H(z)

—rk+1 gr{7)
) = 2

P TR ()

and taking the limit as r — oo we get

k
lim »~"* T HD (2) = (p1 + poz) exp {“)‘(1 —z)—py (1- Zi)}

= (p1 + poz){z A iy ooy 1)
This completes the proof.

THEOREM 5.2, Iflim, o rPop = A > 0 and lim, o rp1o = p > 0 then the
asymptotic distribution of T oy _ p 49 is a mirture of an estended Poisson
distribution of order k with parameters A = i, N = 0, @ # k and o shifted

duplicate of it, the mizing parameters being py and pg.

PrOOF. Observe first that, on using (4.15), the probability distribution func-
tion of TUH) — k + 2 takes the form

L H(z)
r—k+2 IIr —
z - va () = PRy

Sl —pl—H @)

But ( o
. H(z) . pr P(2)
lim = lim ———7—2% =
oo "k 1 r oo Q(z)

and since



WAITING TIMES FOR RUNS IN MARKOV CHAINS 137

we also have
Jim rpio(1 = H*(2)) = (1 — ).

Combining all the aforementioned relations we deduce the limiting expression

lim 2~ P 2HIID () = (p1 + paz) exp {—u(l — 25}

[ de o
and the proof is completed.

Theorems 5.1 and 5.2 generalise the results given by Philippou et al. (1983)
and Hirano et al. (1991) for the case of iid Bernoulli trials.

It is noteworthy that, as one may easily verify through the probability gener-
ating function (4.12), the asymptotic distribution of THD asr — oo (after being
shifted to the support {0,1,...}) is degenerate with its mass placed to infinity.

A further point of interest is that the representations of Theorems 4.1 and
4.3 can be used for obtaining some simple approximations to N Bg,g, N Bfnr,f D as
r — oa. This is aceamplished hy employing the central limit theorem an the
differences T,E‘r) - T, TUH) — T which, as sums of » — 1 iid variables can be
approximated satisfactorily by a proper Normal distribution (we recall that the
numerical evaluation of the distribution of T is easily acguired by (4.6)). Note

also that, by virtue of Theorems 4.1, 4.3 we have

E(T =T) = (r = DET}) = (" = '
E(T™D - Ty = (r — VE(W;) = (r — Ulpu +pro{l + 7).

Analogous formulae hold true for the variances as well, but the final expres-
sions are rather cumbersome.

6. Conclusion-generalisations

One of the main advantages of the Markov chain approach established in
Section 3 is that it survives in much more broader framework than the one used so
far. For example, should the observed binary sequence involve non identical trials,
the exact distribution of T5™’s could be easily captured through (3.1), (3.2) after
some trivial modifications in the elements of matrices A,(v), By(v); as a matter of
fact, their basic form stays unaltered, but their non-zero entries now depend on
the index v.

Recently, Aki et al. (1996) considered a class of waiting time problems (for
firat Tin necurrences) in sequences of second order Markov dependent trials with

Pay = P(Xi =1} X; 0 =y, Xja=x)
oy = P(Xi =0 | Xj1 =9, X; 2 =)

(z,y € {0,1}). It is clear that the general machinery of Section 3 is applicable
under these assumptions as well. More precisely, in order to study the distribution
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of TT(-"‘), it suffices to consider exactly the same state and space definitions as the
ones used in Section 4, and replace the entries of matrix A by

@11 = qdon, a12 = Poo, 21 = gol, 23 = Pol-
q1 i j=1 ,

Gij — . 3§Z§k‘—1
1 if j =i+ 1

(The rest non zero elements of A and B depend on the enumeration scheme em-
ployed each time; their specification is left to the reader.} The derivation of double
and single probability distribution functions is, in view of Theorems 3.1, 3.2, a mat-
ter of may be lengthy but straightforward algebraic calculations on the resulting
matrix I — z(A +wB). It is worth noticing that with a further modification of A
and B’s non zero entries, we could effortless accommodate a higher order Markov
model.

Another possible variation of the basic set-up is created by placing the out-
comes of the trials in a circular (instead of linear) arrangement. The analysis
of such models may be performed then by combining the ideas of Koutras ef al
(1994, 1995) with the vector oriented approach of Section 3.

Finally we mention that our techniques could be routinely extended for the
study of waiting time variables arising {rom a sequence of trials with more than
two outcomes and more general {composite) patterns (cf. Schwager (1983) and Fu
{1996)).
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