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Abstract. To clarify the advantage of using the quasilikelihood method, lack
of robustness of the maximum likelihood method was demonstrated for the
negative-binomial model. Efficiency calculations of the method of moments
and Lhe pseudolikelibhood method iu the estimmation uf extra-Poisson parameters
in a negative-binomial model were carried out. Especially when the overdis-
persion parameter is small, both methods are relatively highly efficient and
the pseudolikclihood catimate ia more cfficient then the method of momoents
estimate. Two examples of the quasilikelihood analyses of count data with
overdispersion are given. The bootstrap method also is applied to the data to
illustrate the advantage of the method of moments or pseudolikelihood method
in the estimation of the standard errors of the mean parameter estimates under
the negative-binomial model.

Key words and phrases: Method of moments, negative-hinomial, overdisper-
sion, pseudolikelihood, auasilikelihood.

1. Introduction

Poisson models are widely nsed in the regressinn analysis of connt. data oh-
tained experimentally (e.g., Fisher (1949)) or epidemiologically (e.g., Frome
(1983)). It is common that putatively Poisson data will have overdispersion when
the mean is large, since the coeflicient of variation for the Poisson distribution with
mean p is 1/,/p. A natural model to consider is the negative-binomial, resulting
from a compound model where p has a gamma distribution {e.g., Margolin et al.
{1981)). ITowever, maximum likelihood methods in this model are inconvenient
and may suffer from lack of robustness within the class of models having the same
mean-variance relationship as the negative-binomial. There are two quasilikelihood
methods that are more convenient and robust, quasilikelihood /method of moments
(QL/M) (Breslow (1984)) and quasilikelihood/pseudolikelihood {QL/PL} method
(Carroll and Ruppert (1982, 1988)). Here, we study the loss in efficiency under
the negative-binomial model when using these in place of maximum likelthood
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(ML). Furthermore, in the estimation of standard errors, the bootstrap method
is compared to the method of moments and the pseudolikelihood method.

In Section 2, we introduce the negative-binomial maximum likelihood method
and the alternative methods, the method of moments and the pseudolikelihood
method. In Section 3, we compare the asymptotic relative efficiency of the two
methods under a negative-binomial distribution; in Section 4, we give a robustness
congideration of the QL/M and QL/PL methods and the asymptotic bias of the
negative-binomial ML estimate of the extra-Poisson parameter when underlying
distribution is a Poisson-log-noermal distribution; in Section 5, we give two exam-
ples; and in Section 6, the bootstrap method is applied to one of the example data
sets,

2. Estimation for a negative-binomial model

Let Y be the response variable with a Poisson distribution having the mean
pu(z), Y ~ Poisson{p(x)). If ¥ has cxtra-Poisson variability, a negative-binomial
model is often used since it has mathematical flexibility and tractability. If the
distribution, given v and x, is Poisson(ru(z)), when the distribution of v is gamma
with index k& = o7t f(v) = k*vFle=®/I(k), the marginal distribution Y is
negative-binomial. We denote this as ¥ ~ NB(u{z), ). Lawless {1987) discussed
NB(u, a) in detail.

The negative-binomial likelihood can be written

_ CTly+a ) apz) \Y 1 "
(2.1) Priy =y [ z) = Y T(a 1) (1 + a,u(m)) (1 + a,u(m))

The moment-generating function can be written

1

(2.2) M(t) = E(e) = {1+ (1 - eanlz)} ™ .

The mean and variance can be given as
B(Y | 2) = p(a)

(2:3) r (Y | ) — 2

Var(Y | 2) = p(z) + ap(z)®.

Note, from (2.2), when « tends to zero, the distribution of ¥ becomes a Poisson
distribution with mean g. In this sense, the parameter o can be called the extra-
Poisson parameter or overdispersion parameter of the negative-binomial model.

Let Y; ~ NB(p;, @), 1 = 1,...,n be independent with p; = exp(x;3), and z;
be the p x 1 covariate vector. The likelihood score equation of 3 in the negative-
binemial model is

ﬂwi”g yi — i Opi Vi Hio
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where [ is the negative-binomial log-likelihood of {3, a). When « is known, the
likelihood score equation of 5 is hoth a quasilikelihood equation and weighted least
squares equation (McCullagh and Nelder (1989), Breslow (1984)). The likelihood
score equation of o in the negative-binomial model is

25 Z f I o log(1+ ) - T L
5 — = a “lo ;) — 2y =0,
O = | = 14+ af 8 i L+ expe;

We can estimate the negative-binomial parameters by the Newton-Raphson meth-
od using the score equations (2.4) and {2.5) and observed Fisher information ma-
trix {Lawless {1987)).

The Fisher information matrix 7(3, «) has the entries

T

14 T
2.6) I8, a) = — i,
(2.6) Ii(8,a) ;1+<mi““
(‘2.7) I12(ﬁ,a) - 121(33 @)T — 0,
and
Tt yi—1 o
28 Ioo(H, ) =a”t B Yy i) - — N 8 a).
(2.8)  Iop(f.q) =« Zj JZ{ 7) et (el

I>»(3, @) is most easily obtained by rewriting I in terms of 7 and k = o}, calcu-

lating 3%1/3k% and then noting that F{—3%l/0a?) = o 1E(—0°1/0k®) (Lawless
(1987)). The i-th term of the expectation J2a(3, o) is equal to

o 8}
a [ D e Py > 1) —
i=0

(8435
i + ol

Asguming « > 0 and mild conditions on the z;'s to ensure that n~"1(3F, @)
approaches a positive definite limit as n tends to infinity, /n(8 — 5, & —«) tends to
normal distribution under NB(y, o), with mean 0 and variance-covariance matrix

s (8, a7t 0
(2.9) nI{3,a) ln( II(OT) i(fi’,o“z)”l)'

Note that parameter 3 and « are orthogonal, i.e., estimates of 5 and « are asymp-
totically independent, so the estimation of a has little effect on the estimation of
3 {Cox and Reid (1987)}. We call the variance function, Var{Y) = u{l + ap),
the negative-binomial variance function. There 18 another parameterization of the
negative-binomial model, the McCullagh and Nelder (1980) type variance func-
tion, i.e., Var(Y) = (1 + «)u(3), in which variance function the parameters a and
{3 are not orthogonal (Manton et al. (1981)). Further, the score cquation for 3
does not become a quasilikelihood score equation.
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The likclihood score cquation of o is a little complicated. There are two
alternative methods to the maximum likelihood method in the estimation of c.
Breslow (1984) suggested that, given estimate fi, we estimate o by solving the
moinent equalion

Ti

"L (g — i) _ (v — f1)? _
(2.10) ;—fa)—(n—p)f;mm(n—p)—o,

where V (g, &) = p(l + ape). Carrall and Ruppert (1982) suggested another un-
biased estimating equation, originally derived from the score equation of the ap-
proximate normal log-likelihood, i.e., the pseudolikelihood equation,

Tt

(yi — :)? = V{js, ) OV (s — ft)? — (1 + afis)
(2.11) Z QV“ )2 805( fri, ) = @Z; 21 + i )2 =0.

This is an approximate quasilikelihood equation for (¥ — 1) by using the relation
F{(y — )2} = V(u, o) and Var{(y — u)?} = 2V3(8,0)(1 + 72/2) = 2V?(8, ),
where 73 is the kurtosis of ¥. When p is large relative to n, we use an adjusted
pseudolikelihood equation (Davidian and Carroll (1987)),

: — i RV {j, ) OV
(2.12) Z(y ugv(# Q)z{# )%(ﬂi:&)

Zn: yi — fii) _h*ﬁ%( — afii) -0
— 2(1 + aji;)? '
where hY = 1—h; and h; is a i-th diagonal clement of Q(QTQ)~*Q7, the leverage
of the i-th data point, where (Q is an n x p matrix with i-th row (1/;‘1/2)(6%-/883").
To obtain the estimates of 4 and a, we use the quasilikelihood equation
dl/88 = 0 and the moments equation (2.10) or the pseudolikelihood equation
{2.11). Thesc cstimates are obtained by solving 81/83 — 0 after which the equa-
tion {2.10) or (2.11) is solved. These procedures are iterated back and forth to
obtain the final estimates. We call each of these procedures the QL/M method and
the QL/PL wetliod. Both estimates are consistent estimates. Asymptotics of the
estimates obtained using the QL/M and QL/PL methods are given in Appendix.

3. Efficiency comparison of the method of moments and the pseudolikelihood
method

The estimate [ obtained from the QL/M or QL/PL equations is asymp-
totically equivalent to the maximum likelihood estimator ﬁ, and its asymptotic
covariance matrix is consistently estimated to be I11( 6 @)~*. There is, however,
some loss of efficiency in the estimation of « using & and d PL, which are the
solutions of the method of moments equation (2.10) and the pseudolikelihood equa-
tion (2.11), respectively, eompared to the maximum likelihood estimate &. The
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Fig. 1. Asymptotic relative efficicncy for the mothod of moments (AREjs) and the
psendolikelihood method {AREer) in the case of (a). w; = 10 - explz;), (b} ps =
10 - exp(D.5 - 25), and {¢). p; = 50 - exp(0.5 - %3} for 2; = —1/3, 0 and 1/3. The thick
line is the method of moments and the thin line is the pseudolikelihood method.

asymptotic relative efficiencies (ARE) of iy to & and dpy, to & are given by

asvar(y/n(d — a))

- E =
(3.1) AREy asvar{y/n(dy — a))
B i*(8,0)”"
bt pet (.11 — D4 T (B, 0) " Lbar)
and
(3.2) AREpr = arvar(Vild o)

asvar(y/nléapr — o))
i*(8,0) 7

I_ji,pH(CPL,pH — b5, IH (8, ) YbpL)

where 1*(3, a) = limy— oo (1/n)i(3, @), and bar, barp+1s Carpr1s brL, bprp+1 and
cpLp+1 are given in Appendix. Detail of the calculation of the ARFE arc shown
in Appendix.

Three cases are considered for AREyr and AREpr, p = 2, t; = exp(Bo+iz;)
and one-third of the ;s each of —1, 0, 1: (a) exp(3p) = 10, 5, = 1, (b) exp(Fo} =
10, 8y = 0.5, and (c) exp(Jp) = 50, 51 = 0.5. The results are shown in TFig. 1.
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Similar comparisons have been made in Dean et al. {1989). If o is rclatively large,
e.g., 0.3, the efficiency loss of the QL/M and QL/PL methods are scvere. The
pseudolikelihood method is always preferred to the method of moments especially
for a small value of «. Further, by calculation of AREp;, /ARE);, which is eagily
calculated, we found that the pseudolikelihood method is superior to the method
of moments, especially in small Jy and in large F. Note that if no covariate exists,
i.e., iid case, then ARy = AREpy.

4. Robustness consideration

In general, the distribution with the mean-variance relationship (2.3) can be
derived as follows: when v is a positive random variable with mean 1 and variance
o, assume that given v, the distribution of Y is Poisson{ry), then E(Y) = p and
Var(Y) = E(Var(Y | v))+Var(E(Y | v)) = E(vp)+Var(vp) = ptapu®. Therefore,
the marginal distribution of ¥ has a mean-variance relationship of (2.3). In some
special cases, if v is a gamma distribution then Y is distributed as a NB(g, a), as
stated in Section 2: if v is an inverse-Gaussian, then Y is distributed as a Poisson-
inverse (Ganssian {P-1G) {Dean ef al. (1989)). If v is a log-normal, ie., log(v) is
digtributed as a normal with mean —log(l + «)/2 and variance log{1l + «), then
Y is distributed as a Poisson-log-normal {(P-LN) (Hinde (1982)), where the P-LN
distribution has a heavier tail than the P-IQ distribution with relation (2.3). Even
in these more general situations with relation (2.3}, the estimate obtained using
the method of moments, &y, and the estimate obtained using the pseudolikelihood
method, @y, are consistent estimates of «, and /n(éy — a) and n(dp, — o)
have asymptotic normal distributions. Further, by similar arguments as noted
in Appendix, the pseudolikelihood estimate is more efficient than the estimate
obtained using the method of moments.

Wo simulated the asymptotic bias of the solution of negative-binomial likeli-
hood score equation for a, equation (2.5}, Lawless {1987) showed that the negative-
binomial ML estimate of o results in a negative asymptotic bias under P-1G distri-
bution which has a heavier tail than the NB distribution. We assume YV ~ P-LN
with mean-variance relationship (2.3). Then, from White (1982), the solution of
the score equation (2.5), & tends to of which satisfies

Ep-rn (—dl(;:;fl)) -0,
1

where Fp_rn(-) means the expectation under Poisson-log-normal with mean-
variance relationship (2.3). Table 1 shows the aj’s for various a’s. The simu-
lation suggests that the negative-binomial MI: estimate of o results in a negative
asymptotic bias under the P-LN distribution.

The above argument suggests the robustness of the method of moments and
the pseudolikelihood method. In this sense, both methods can be called semi-
parametric methods. The negative-binomial maximum likelihood method is not
robust if the underlying distribution is not negative-binomial even if relation {2.3)
holds, and the variance estimate of J would be biased. The method of moments
and the pseudolikelihood method give a consistent variance estimate of [;’ as long
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Talle 1. Asymptotic bias of the solution of the ML cquation {2.5) under Poisson log normal

(1 ).

oo o7 eforl o @l

5 0.5 0.422 10 0.2 0.185

5 0.1  0Q.09%0 10 0.1 0.0969
20 0.1 0.0960 10 0.01 0.00999
20 0.0l 000999 20 0.2 0.182
2

50 0.1 0.0949 20 0.1 0.0959
50 0.01 0.00998 20 0.01 0.00699

@), = exp(By + x) where z = —1/3, 0, 1/3.

as relation (2.3) holds. Furthermore, the pseudolikelihood variance estimate is
more efficient than the variance estimate from the method of momenis as shown
in the previous section.

5. Examples

Two sets of data which are employed by Breslow {1984) will be examined to
illnstrate some points discussed above.

Ezample 1. (Ames salmonella assay data) Margolin et al. (1981} presented
data from the Ames salmonella reverse mutagenicity assay. We will work with
an approximation to Margolin et al.’s “single hit” model which is considered by
Breslow (1984):

E(Y; | ;) = pi = exp{ B + fra; + B2 log(z; + 10)}.

We did score tests for the variance functions; for a McCullagh and Nelder {1989)
type variance function, i.e., V = (1 + a)p, the adjusted score test statistic for
small sample data set, which is the test PS5 in Dean ((1992), p. 453), was 6.16 and,
for a negative-binomial variance function, the adjusted score test statistic, which
is the test Py, in Dean {(1992), p. 453), was 6.24. Test of H: 8 = 0 is of special
interest, with s > 0 representing the mutagenic effect. Fitting Y; ~ NB{(j, @)
using maximum likelihood, using QL/M and using QL/PL with adjustment (2.12],
yields the estimates (standard errors)

& = 0.0488(0.0275),  Fo = 2.198(0.321),

By = —0.000980{0.000381}, B2 = 0.313(0.0868);

Gy = 0.0718(0.0308),  Faro = 2.203(0.359),

Bary = —0.000074(0.000430),  Bare = 0.311(0.0974);

Gpy = 0.0533(0.0323),  fApro = 2.199(0.333),

Bpra = —0.000979(0.000397),  Hpre = 0.312(0.0902).
These standard errors (s.e.’s) are model-based s.e.’s. The Huber-White “sandwich”
robust s.e.’s (e.g., White (1982}, Liang and Zeger (1986)) for QL/PL aualysis were
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Tahle 2.
data.

Estimates and standard errors (s.e.) of parameter estimates for prostate cancer death
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Method of analysis

Parameters
Estimated Poisson ML®  NB MLP QL/M®) QL/PLY
Grand mean —8.625 —8.642 —8.645 —8.642
Age group (y)
50-54 {0.0) {0.0) (0.0 (0.0)
55-59 0.819(0.029)  UD.B22(0.039)  0.823(0.045) 0.822(U.040)
60-64 1.553{0.028)  1.549(0.039) 1.549(0.045) 1.549{0.040}
65-69 2.133(0.028) 2.128{0.039) 2.128(0.046) 2.128(0.041)
T0-74 2.687(0.028) 2.695{(0.041) 2.696(0.048) 2.695(0.042)
75-79 3.134(0.029)  3.166{(0.043) 3.172(0.050) 3.168(0.044)
80-84 3.455(0.031)  3.472{(0.046) 3.474(0.053) 3.472(0.047)
Birth cohort
185559 (0.0) (0.0 (0.0} (0.0)
186004 0.565(0.109)  0.357(0.123) 0.353(0.133)  0.356(0.123)
186569 0.523(0.102)  0.520{0.116} 0.519(0.125) 0.520(0.118)
1870-74 0.773(0.100}  0.775(0.113) 0.774(0.123) 0.775(0.115)
16875 7Y LULO(0.099)  LOULZ(U1LZ)  LUIZ{0.121)  L.012(0.114)
1880-84 1.151(0.098)  1.151(0.112)} 1.151(0.121) 1.151(0.114)
188589 1.307(0.098)  1.301(0.112) 1.299(0.120) 1.301(0.113)
1890-94 1.510(0.099)  1.541(0.113) 1.546(0.122) 1.542(0.115)
189599 1.553(0.009) 1.572(0.114) 1.575(0.123) 1.573(0.116)
1900-04 1.502(0.099)  1.623(0.115) 1.628(0.125) 1.624(0.117)
190509 1.461(0.101)  1.464(0.117) 1.464(0.128) 1.464(0.120)
1910-14 1.369(0.104)  1.373(0.122) 1.372(0.133) 1.373(0.124)
1915-19 1.237(0.116)  1.253(0.137) 1.256{0.150} 1.254(00.140)
o 0.00 0.00209 0.00362 0.00239
s.e. of (—) (0.000680) (0.00108) (0.000929)
DE Goodness of fit chi-square
30 127.69 43.78 30.00 40.06

2) Ppisson maximum likelihood, ®) negative-binomial maximum likelihood,
) quasilikelihood /methed  of moments, 9 quasilikelihood /pseudalikelihood
method.

(.318, 0.000428 and 0.0890 for ffg, [3’1 and Bg, respectively, which are similar to the
model based s.e.’s though the robust s.e.’s are not efficient (Firth (1992)). The
estimates of A, £, and Gz do not change drastically, howeaver, the estimate of o
in the pseudolikelihood method gives an intermediate value between the other two
methods. For example, the values of the Wald ratio for f; of each of the maximum
likelihood methods, the QL /M, and the QL/PL with small sample adjustment are
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3.61, 3.19 and 3.46, in which the adjusted pseudolikelihood method also gives the
intermediate value between the other two methods.

Erxample 2. (Prostate cancer death data) Holford (1983) presented data
from prostate cancer deaths and a midperiod population for nonwhites in the
US by age and calendar period. Epidemiological data with a large population
are usually fit by a Poisson model. If there is overdispersion, the quasilikelihood
method using the McCullagh and Nelder type variance function or the quasi-
likelihood method using a negative-binomial variance functinn are nanally nsed
{Breslow {1984)). This is because, in general, epidemiological data are not well
controlled, therefore a tobust method is appropriate for the fit. First, we fit the
full model, the age + period | birth cokort model, with the midperiod pepulation
as an offset. The adjusted score test (Dean (1992), p. 453) for overdispersion
with the McCullagh and Nelder type variance function was 14.58 and that for the
negative-binomial variance funclion was 14.17, by which a severe overdispersion
was suggested. The period effect was not significant {Breslow (1984)). So, we fit
the age + birth cohort model with a negative-binomial variance function using the
maximum likelihood method, QL/M, and QL/PL methods with a small sample
adjustment, equation (2.12). The estimated parameters of a (standard errors) are
& = 0.00209(0.000680), &n = 0.00362(0.00108) and &py = 0.00239(0.000929).
The pseudolikelihood method gives an intermediate value of the o estimate be-
tween the other two methods. Parameter estimates from the Poisson maximum
likelihood method, the negative-binomial maximum likelihood method, the QL/M
method, and the QL/PL method with small sample adjustment are given in Ta-
ble 2. Parameter estimates from the four methods are consistent and similar, how-
ever, the standard errors of the Poisson fit are underestimated since the Poisson
fit did not consider the overdispersion.

6. Comparison to the bootstrap method

Another method of analysis of the overdispersed count data is the jackknife or
nonparametric bootstrap method (c.g., Efron and Tibshirani (1993)), which was
suggested by a referee. Poisson regression parameter estimates using all data is
used for the parameter estimates. The Huber-White “sandwich” variance of this
estimate under this misspecified model {e.g., White (1982)) is

-1

n -1 n e
(6.1) (Z ,u,ixiﬂ:?) (Z Val'(ﬁ;):ﬂ,;w?) (Z M;}Sim?) s
im1 i=1 i=1

where x; is the covariate vector and u, = E(Y}), Poisson variance. For estimating
the standard errors (s.e.’s) of the Poisson parameter estimates, i.e., the s.e.’s from
the robust variance (6.1), the bootstrap s.e.’s are calculated from the 4,000 boot-
strap Poisson parameter estimates by the 4,000 saine sized resawplings from the
original data set. Note that 4,000 is enough to produce stable bootstrap standard
errors. 'This method is also a semi-parametric method that avoids the variance
function estimation. We show the results applying this method to Example 1.
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The result of Poisson regression parameter estimates (nonparametric boot-
strap s.e.’s) are Gy = 2.178(0.351), 5, = —0.00101(0.000643), 5 = 0.320(0.100)
where the Wald test statistic for £; is 3.20. The bootstrap biases are —0.0345,
—0.0000457 and 0.00761 for 3y, 5 and fs, respectively, Since the bootstrap biases
are small relative to the parameter estimates, we used the estimates without bias
adjustment. The jackknife method also can be considered but the jackknife s.e. ig
less efficient than the bootstrap s.c. in nonlinear problems (Efron and Tibshirani
(1993), Chap. 11). The Huber-White “sandwich” robust estimate for s.e. (White
(1982)) also can be considered but is not efficient {Firth ( 1992)) since this estimate
is obtained by replacing Var(Y;) by a single squared residual (Y; — ji;)? in (6.1).
Thus, we used the bootstrap method.

The Poisson parameter estimates are consistent and do not differ greatly from
the QL/PL method. Comparison of the bootstrap s.e.’s and the model-based s.e.’s
from the QL/PL method show that the bootstrap method gives larger s.e. esti-
mates. These results can be expected since the Poisson regression probably uses
less appropriate weights than the QL/M and QL/PL methods under this extra-
Poisson situation, ie., Var(Y) = u{1 + au), hence would produce less efficient
parameter estimates than the quasilikelihood methods. That is, asymptotically,
the bootstrap s.e.’s for 3 are larger than the s.e.’s from the quasilikelihood meth-
ods, i.e., if underlying distribution is NB(yi, &), then, asymptotically, we have the
inequality,

n

-1
- 1 v~
). - = 1 idg T
(6.2) asvar(v/n(Bp—f8)) = im (n 2_4'“’ 24; )
-1
{ Z,Ufz 1+(},U,Z 3T }(?LZ#LTM’J )
" -1
> - L
_nlnéo(nzl-l—a,u% 1332)

where Gp is the bootstrap estimate for (3, i.e., Poisson estimate for 3, 3 is ML,
QL/M or QL/PL estimate for 8 and the inequality is in the sense of positive
semi-definite. The bootstrap method results in conservative Wald test statistics.
Thus, the estimation of the correct variance function contributes to the increase
of the efficiency of parameter estimates for 3. Note if the variance function is a
McCullagh and Nelder type variance function, i.e., Var(Y") = {1 + a)u, then the
Poisson parameter estimate, 35, is as efficient as the quasilikelihood estimate for
f3, since, in this case, the variance estimate (6.1) gives the same variance estimate
as the quasilikelihood estimate.
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7. Discussion

The coefficient of variation (CV) of the Poisson distribution is 1/,/i1, and the
CV of the distribution with relation {(2.3) is \/a + 1/p. The CV of the Poisson dis-
tribution decrcases as the mean increases. Although the effect of the non-Poisson
source of variability, ¢, will preclude the CV being extremely small, this situation
might occur when g is large. When the value of « is about 0.3, the efliciencies
of the QL/M and QL/PL methods are low, then the maximum likelihood method
would be recommended though it is less robust. The three cases are considercd
in the caleulation of asymptotic relative efficiency. Cases {(a) and (b) correspond
to experimental data, e.g., Margolin ef al.’s data and case (c), which has a larger
mean, corresponds to epidemiological data, e.g., Holford’s cancer epidemiologi-
cal data. The two examples show that when the value of a is small, the use of
the pseudolikelihood method is advocated althongh the advantage of using the
pseudolikelihood for data with large means is small.

The small sample size of Example 1 would result in some bias in the o and 3
estimates from ML, QL/M, and QL/PL. To evaluate this bias is, however, a future
problem. Note the bias of the estimate « has little effect on the estimate of 3 since
both parameters are orthogonal (Cox and Reid (1987)). The uncertainty of the
true distribution of the example also weakens our reasoning in Section 6. For ox-
ample, someone might say that the bootstrap estimates and the QL estimates for
s.e.’s arc similar. This is because the example data does not discriminate between
the two variance functions, the MeCullagh and Nelder type variance function and
the NB type variance function, as shown by score test for overdispersion. This
phenomenon is inevitable for small sample data. So if we want to avoid this weak-
ness, we should geuerate a moderate to large sized oxample dato sot by NB(p, o)
distribution.

To extra-binomial data, the two types of variance function also can be ap-
plied, beta-binomial type variance function and McCullagh and Nelder Lype vaci-
ance function (Liang and McCullagh (1993)). In the beta-binomial type variance
function, the dispersion parameter also would be more efficiently estimated hy
the pseudolikelihood method than by the method ol moments as seen in negative-
binomial type variance function. Further, although the method of moments allows
the estimation of only a single parameter, the pseudolikelihood method aliows the
estimation of more than one parameter. Liang and McCullagh (1993) investigated
the appropriateness of these two types of variance function in five extra-binomial
data examples. They concluded that, from the finite sample, they can not distin-
guish which variance function gives a better fit to the data. In the two examples of
the negative-binomial applications in this paper, we also could not conclude which
variance function fits better to the data hetween two variance functions. i.e.. the
McCullagh and Nelder type variance function and our negative-binomial variance
function.

Regardiug the adequacy of the negative-binomial assumption for a data, the
following can be suggested. If there are some candidate distributions for the data,
one can use the AIC criterion (Akaike (1973)). However, the basic assumption of
the AIC is that the model includes the true model, which is generally unknown.
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Since the actual data set has a finite number of data points, it would be difficult
to specify the distribution of that data. Instead, the mean-variance relationship
can be specified. Then we can apply the quasilikelihood method and can use the
recently proposed AIC, criterion (Hurvich and Tsai (1995)) for the selection of
extended quasilikelihood models in small sample cases. Note the quasilikelihood
method does not deteriorate the efficiency of the estimation (Firth (1987)). For
estimating the variance function, the graphical method can be applied. Carroll
and Ruppert (1988) suggested the use of the absolute, log-absolute, and cube
root of the squared residnals. Tamhert and Roeder (1995) proposed the convex-
ity plot or C-plot to detect overdispersion, and the relative variance curve and
the relative variance test to give an approximate mean-variance relation for the
random-coefficient GLM. Hence, several techniques are applicable to our data
sets. However, because of the small sample size of our data sets, the graphical
methods would fail to suggest an appropriate variance function. Hence we only
show the results of score tests for overdispersion (Dean (1992)), since our example
data sets have been analyzed before using NB{y, ).

Dean (1994) has done small sample simulation studies and has given seven
methods of estimation for overdispersion parameter « in NB(y, o) including the
maximum likelihood method. Under condition of the mean-variance relation {2.3),
the method of moments, the pseudolikelihood method, and the optimal quadratic
estimating equation give consistent estimates for a, i.e., they are robust. Spec-
ifying the third and fourth moments would give an additional efficiency gain to
the estimate from the optimal guadratic estimating equation approach. however,
the specification of the higher order moments is an obvious disadvantage of this
approach. Other method of estimation in the paper are not robust under relation
(2.3). The extended quasilikelihood estimator, EQL, in the paper da not give a
consistent estimate (Davidian and Carroll (1988)). NB and PIG estimators in
the paper also would give inconsistent estimate under relation (2.3) as shown in
Sectinn 4. Dean (1094) suggested that the modified pseudolikelihood estimator,
MPL, performs well, i.e., low bias and high efficiency, under a small ¢, even in
small samples. However, the MPL estimator is not good nor consistent unless
the approximation of the Anscombe residual is good. The approximation of the
Anscombe residual is good for moderate to small values of ay. So there is a possi-
bility that for large values of ¢ the MPL estimator is no longer good even in cases
of a sinall w.
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Appendix. Asymptotic variance of the QL/M and QL/PL estimates

This appendix is largely after the Appendix A in Lawless (1987). We will
explain here the derivations of the ARFE formulae (3.1) and (3.2) for the method
of moments and pseudolikelihood method, respectively. We assume that Y; ~
NB(p;, ) with p; = exp(z;3), and we will consider the likelihood score equation
for 3, which 1s a quasilikelihood score equation, the method of moments equation
for o, and the pseudolikelihood estimating equation for o

"

Uor(8,a) = Z (ﬂ__”ﬁxz =0,

o Lop
- (i — )?
Un (B, a) = e — 3 = (),
m(B,a) ;Mi(l+aﬂi)
and
=i ) — (o)
UPL(ﬁ?a) _; 2(1_1_&”%)2 _O:

which, when p is fixed, are asymptotically equivalent to (2.4), (2.10) and (2.11),
respectively, as n tends tn infinity. Write that # = (3, ~}. Then fram the resnlts
of Inagaki (1973), the estimator 6 = (3, &) obtained solving the equations above,
under conditions similar to those for which standard maximum likelihood asymp-
totics hold, is consistent and asymptotically normal with the covariance matrix

(A1) asvar(vVn(6 — 8)) = A(9) " B(B)(A(6) ™),

where A(#) and B(#) are {p+ 1) x (p + 1) matrices with respective entries

1
A() = lim lE( 8U>, and B(#) = lim EE(UUT},

n—oo 1 a6t N 00

where U7 = {Ué"L,UM) or UT = (U, Upy). 1t follows after some algebra that
A(8) and B{#) are the Hmits, respectively, of

An(0) = (nlfll(b’,a) 0 ), and  B.(0) — (n‘lfl%r(ﬁ,a) c ')’

bT bp+ 1 ct . Cp+1

where I1;(3, ) is as in (2.9) and where, under NB{y, @), we have b = ¢ for the
method of moments and pseudolikelihood methods, respectively. Inverting A(#)
and using (A.1), we get

) I3 (8, 0)" 0
asvar(v/n{A— 83,4 —a)) = 0T 521—(Cp+1 — 6T (5, 0) ') |

p+1

where I7 (3, &) = limp .00 (1/n) 111 (5, @).
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Therelore, the estimates, B and &pg or apy, which are from the moments
equation {2.10) and pseudolikelihcod equation (2.11), respectively, are consistent

and asymptotically independent and normally distributed, with

asvar(Vn(B — 8)) = I} (3,a)™",
asvar{(v/n(év — a)) = bMQP‘ a1 = DI (B, 0) " thar).
and

asvar(vn{épr, — a)) = bpf 1 (eprprr — bp I3 (8,0) bpL),

where I7(3, ) = limy,—oc n 1 11{83,a); bar and bpp are p x 1 covariate vector;
batpst. Carpet. bprpiis and cpr i1 are scalars. More precisely, noting that
when Y; ~ NB(p;, ), we have E(Y; — ;) = 0, E{(Y; — u:)?} = (1 + ap),
E{(Y; — 11)®} = pa(1+ aps) (1+ 2040), and E{(Y; — a)*} = pa(1 + o) (1 + 3 +
Bovi; + Rovp? + B2 p?) from the moment-generating function (2.2) of a negative-
bhinomial model, then we get

1 au 1o {1+ 204
by = lim —E (— M) = lim E{LMUQL)— lim —Z(Jﬂm*) i,

n—00 11 a3 n—oo n—o0 13 14 oy

T

. 1 M py . 1 Hi
bat p = —E{ - =1 " 1+ e’
Mp+1 = A ( o ) oo g 1+ oy

1\ 1
Criper = Jim | B(UUR) =2+ 60+ Jim 2 Ty

1 1
bpr = lim —F (aUPL> im A—E(UPLUQL)

n—oc N Bﬂ n—o0
n

7%—-»00 n = 21 +ap; )2"ul “

.1 gy -
bprpi1 = lim —E{ — =) = ,
PLptl = M ( da ) nseo 1 L 2(1 + aua)Q

and

T

nlgxéo HE(UPLUPI) = hﬂgo n Z {4(1 + o )3 + 201+ ap)? |

CPLp+l —
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