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Abstract. We consider local polynomial fitting for estimating a regression
function and its derivatives nonparametrically. This method posscsscs many
nice features, among which automatic adaptation to the boundary and adap-
tation to various designs. A first contribution of this paper is the derivation
of an optimal kernel for local polynomial regression, revealing that there is a
universal optimal weighting scheme. Fan (1993, Ann. Staiist., 21, 196-218)
showed that the univariate local linear regression estimator is the best linear
smoother, meaning that it attains the asyvmptotic linear minimax risk. Mare-
over, this smoother has high minimax risk. We show that this property also
holds for the multivariate local linear regression estimator. In the univariate
case we investigate minimax efficiency of local polynomial regression estima-
tors, and find that the asymptotic minimax efficiency for commonly-used orders
of fit is 100% among the class of all linear smoothers. Further, we quantify the
loss in efficiency when going heyond this class.

Key words and phrases: Curve estimation, local polynomials, minimax effi-
ciency, minimax risk, multivariate curve estimation, nonparametric regression,
universal optimal weighting scheme.

*Supparted by the Deutsche Forschungsgemeinschaft.
**Supported by NSF grant DMS-9203135 and an NSF postdoctoral grant.
***Supported by ‘Projet d'Actions de Recherche Concertées' (No. 93/98-164), by an FNRS-
grant (No. 1.5.001.95F) and by the European Human Capital and Mobility Programme (CHRX-
CT94-0693).

79



80 JIANQING FAN ET AL.

1. Introduction

In parametric regression the form of the regression function is imposed by the
model whereas in nonparametric regression this form is determined by available
data. Even when parametric modeling is the ultimate goal, nonparametric meth-
ods can prove useful for an exploratory analysis and for checking and improving
functional madels. Details on various nonparametric regression techniques can be
found in the monographs of Eubank (1988}, Miiller (1988), Hirdle (1990), Wahba
{1990), Green and Silverman (1994) and Wand and Jones (1995), among others.

For response variables Y1, ..., Y, € R, there are explanatory variables Xy,...,
X, e Rd, (X1,Y1),..., (X, Y,) being independent and identically distributed
random variables for the random design model with regression function m given

by
(1.1) m(z) =EY | X =),

and conditional variance function ¢?{x) = Var(Y | X = z). Non-random X, ...,
X, are agsumed for the following fixed design model;

(1.2) Yo=m(X)+s

where the ¢; are independent and satisfy E(g;) = 0 and Var(e;) = 0%(X;). While
the X come from o d dimensional probability density with support Supp(fx) in
model (1.1}, a “regular design” is assumed for {1.2), leading formally also to a
design density fx.

Of interest is the estintation of the regression function m and its derivatives.
Most of the literature deals with the one-dimensional case d = 1. Among linear
estimators there are smoothing splines {Wahba (1990)), kernel estimators of the
evaluation type (Nadaraya (1964) and Watson {1964)) and of the convolution type
(Gasser and Miiller {1984}) and local polynomial fitting (for early references see
for example Cleveland and Loader (1996)}. Spline smoothers are close to kernel
estimators (see Silverman (1984)) with an advantage in terms of minimax proper-
ties for the latter (see Jennen-Steinmetz and Gasser {1988}). The relative merits
of evaluation and convolution weights for kernel estimation have been discussed
by Chu and Marron {1991), Fan {1992}, Hastie and Loader (1993) and discussions
therein. In summary, the evaluation weights lead to an undesirable form of the
bias (Gasser and Engel (1990) and Fan (1992)), while convolution weights pay a
price in variance for random designs. Fan (1992) evidenced that the local linear fit
overcommes these drawbacks. Moreover, a detailed efficiency study by Fan (1993)
revealed that local linear regression estimators (for d = 1) achieve full agymptotie
minimax efficiency among all linear estimators (for the convolution kernel estima-
tors this holds for fixed design only). Further, the asymptotic minimax efficiency
remains at 80.4% among all catimators. Another nicc fecature of the local lincar
regression estimator is that the bias at the boundary stays automatically of the
same order as in the interior, without use of specific boundary kernels. See Lejeune
(1983) aud Fau and Gijbels (1992).
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In this paper we focus on the more general local polynomial fitting in the
univariate (d = 1) and the multivariate (d > 1} case. Recently, Ruppert and Wand
{1994) established asymptotic expressions for the conditional bias and variance
of local polynomial regression estimators, and showed that these estimators also
adapt automatically to the boundary. The main contribution of the present paper
is to investigate the minimax efficiency of local polynomial fits in one and more
dimensions. In a first stage, while establishing the framework for this study, we
derive a universal optimal weighting scheme under local polynomial fitting.

The paper is organized as follows. Section 2 presents the universal optimal
welghting scheme in one dimension, which will be used later on in the efficiency
study. Section 3 generalizes the results on the optimal weight function to multi-
variate local Hnear fitting. Section 4 contains the main contribution of this paper,
i.e. the study on minimax efficiency of local polynomial regression estimators in
one and more dimensions.

2. Universal optimal weighting scheme in one dimension

A local polynomial regression at zn is computed by minimizing

2
(2.1) YV Y beo) (X wof ¢ K (X_"”O) ,

P
h
i=1 i=0 "

where K(-) denotes a weight function and h,, is a smoothing parameter or band-
width. Denote by b;(xg) (j = U,...,p) the solution of the least squares problem
(2.1). By Taylor’s formula 1, (zo) = v1b, (o) is an estimator for ) (zo). Putting

(X —wo) - (X1 —wo)"
Xx=[: : ,
1 (X.n—’l"o) e (Xn—mo)p
Y1 bo (o)
Y= : ], b=)= :
Yn BP(KED)

and

W = diag{K (%)},

the n x n diagonal matrix of weights, the solntinn to the least sqnares problem
(2.1) can be written as

(2.2) blzo) = (XTWX) 1 XTWy

Sn,o(ﬂl‘o) Sn,1(zo) Sn,p(ﬂfo) B Tn0(zo)
B Spalzo)  Sna(wa) -+ Sppri(zo) Ta,1 (o)
Spp(zo} Sppri(®o) - Snaplzo) Ty pl2o)

= SEITn,
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where
S,y (20) = };K (X—h_ﬂ) (X, —zo),  j=0,1,...,2p,
T,i(a) = Z K (X"’h—_ch) (X:—2) Y, 5=0.1,....p
=1 &
Hence
(23 by o) = €Xblac) = ZW“ (o),

where e, = (0,...,0,1,0,...,0)7 with 1 at the (v + 1)!" position and the weight
function W (t) = CTS 1{1 f:hn, o [t YIT K (#).

Expression (2.3) reveals that the estimator b, (zqg) is very much like a conven-
tional kernel estimator except that the kernel W' is defined in terms of the design
powmnts X; and the location point xzy. The weights in (2.3) satisfy the following
discrete orthogonality relation:

e

X; — Tg
(2.4) S =Wy (S < h, 0wy

i=1

which leads to zero finite bias for polynomials up to order p. Such moment condi-
tions and the respective zero bias are satisfied only asymptotically for convolution
kernel estimators.

Calculation of the local polynomial regression estimators reduces to com-
puting the quantities S, ;{zs) and T, ;(zo) followed by calculating (2.2). Fast
computation algorithms for nonparamectric curve cstimators, in particular loeal
polynomials, are provided in Fan and Marron {1994) and Seifert et al. (1994).

The following lemma provides a representation of the local polynomial regres-
glon estimator in terms of an equivalent kernel estimator. Its proof is simple and
is omitted.

LEMMA 2.1. Assume that the design density fx () i5 continuous and positive
at xg. Then

(2.5) b, (xp) = Ufo(l‘o ZK* (J) Yi{l+op(1)}

where

el
(2.6) Koty =€l 5 *(1t,.. ) K@) = S K (1)
=0

with § = {{ /'K (tydthocjicp and S * = (5o<ji<p-
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We refer to K as the equivalent kernel. Since [w9K} (u)du = el 51 8¢, it
follows that the equivalent kernel satisfies the following moment conditions:

(2.7) /qu:{u)du =6, 0<wvg<p,

which are an asymptotic version of the discrete moment conditions presented in
(2.4). In fact the equivalent kernel K is, up to normalizing constants, a kernel of
order (v,p + 1) as defined by Gasser et al. (1985). Equivalent kernels have been
previously used for analyzing polynomial fitting by Lejeune (1985) and Miiller
(1987) in a slightly different way. See also Ruppert and Wand (1994).

From the above considerations it is easy to derive the asymptotic expressions
for the conditional bias and variance of the estimator 7,{z;). As obtained by
Ruppert and Wand (1994), these are given by

E{rn,(x0) | X1,..., Xn} — m& (o)

_ { / tp“K:(t)dt} P S 4 op (1),
1202 (xg)

Var{m,(x0) | X1,..., Xp} = —o75——
tr(@o) [ X J nha' ™ fx (o)

]K;?(t)dtu +op(D)}.

Remark. For polynomial fitting with a symmetric kernel, it is preferable to
choose p of the order p = v + 1, + 3,... (see e.g. Ruppert and Wand (1994)
and Fan and Gijbels (199554)}. Contrary to expectation, the use of a lower order
polynomial p* = 1, + 2,... with one parameter less does not lead to a smaller
asymptotic variance. However, an additional lower order bias arises depending
on m® 1 and also on fx and f. A classical example is the Nadaraya-Watson
estimator obtained by local constant fitting. Henceforth, we assume {p — v} odd.
See Fan and Gijbels (10055) for a detailed diseussion on the choice of the degree
of the polynomial, and for an adaptive procedure for choosing the degree of the
polynomial.

Minimization of the asymptotically Mcan Squarced Error (MSE) lcads to the
asymptotically optimal local bandwidth

(p + 1)!2(21) + 1) fK;g(t)dtG’Q(:L‘o) :!l/(_QIH—S)

hon(20) = | g IR ()2 [m® D (@) )2 fx (o)

Minimizing the asymptotically Mean Integrated Squared Error (MISE) results in
the asymptotically optimal global bandwidth

hont = [ (p+ 1)!2(21/ +1) IK;Q(t)dt f Jz(x)/fX(’E)w(m)d:E :| 1/(2p+3)
PET L on(p+ 1 - ){[PTIKE(D)d)? [{mP D (2) Pw(z)de

for some weight function w > 0. It is understood that the denominators do not
vanish. Effective estimators of hqpt(20) and hepe can be found in Fan and Gijbels
(1995a) and Ruppert, Sheather and Wand (1995).
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Suppose that Supp(fx) = [0,1]. A point at the left boundary is of the form
g = chn, where ¢ > 0, and the rlght boundary points can be defined similarly.
The moments are now defined by s; . f W K (u)du (and s;, = [°_ v K{(u)du
for the right boundary point 2oy = 1 — chn) leading to an equwaleul, boundary
kernel (compare with (2.6))

(2.8) K:,C(t)=e§5§1{1,t,...,t")TK(t) with  Se = (8541,¢)0<,i1<p-

This equivalent kernel differs from the one in (2.6) only in the matrix S, and
satisfies the boundary moment conditions of Gasser et al. (1985). This reflects
clearly that the polynomial method adapts automatically to the boundary, as
shown in Fan and Gijbels (1992) for the local linear regression and extended by
Ruppert and Wand (1994) to the general case.

Next, the question arises which weight function should be used for different
choices of v and p. The asymptotically MSE and MISE, with optimal choice of
the bandwidth, depends on the weight function through

2u4+1 'p+1__y
{f K;z{t)dt} .

“Optimal” kerncls K , minimizing the right-hand side of (2.9), have been derived
by Gasser et al. (1985) and Granovsky and Mitller (1991), postulating a minimal
number of sign changes to avoid degeneracy. The following theorem provides a
simple solution in the context of polynomial fitting, and reveals a unsversal optimal
weighting scheme (i.e. the solution is independent of p and v) for the interior.

(2.9) T,(K) = l / £ 7 (1)t

THEOREM 2.1. The Epanechnikov weight function K(z) = 3/4(1 — 2%)4 is
the optimal kernel in the sense that it minimizes T,(K) over all non-negative
symmetric functions K. It also induces kernels K which are optimal in the
sense of Gasser et al. {1985). Similarly, the mammum variance kernel minimizing
THK) = [ K2(t)dt is the uniform kernel 1/21),1<1y.

The proof of this result is given in Appendix A.1. The optimal kernel K, of
order (v,p+1), is given by (see Gasser et al. (1985))

pt+1
(2.10) Ko (z ZA 2,

where

H j+p-+1odd
(~1)5H)2Cy(p+ 1= v)(p+ 1+ 5)!

G+ v+ 1228 (pJ’;‘j)t (p+;+j)1

L if j+p+1 even,

(2.11) Aj =9
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with Cp = (p + v + 2)l/{(E2 ) E5=)1}. Moreover, we have the following
explicit formulae for its (p + 1)** moment and Ly-norm:

‘ / B KR dt’ Coilp+ 1)1}
(2p+3)!
O‘,g(p+1ﬁv)2
2v+1)(2p + 3)(p + v + 2)2%+2°

(2.12)

f EER Oy = ¢

Can a similar kind of universal optimal weighting scheme be given at the
boundary? For example, if one wants to estimate m(xzg), with zg == 1 — ch, which
kernet function should be used? In this case the MSE optimality criterion can
be defined as (2.9) but with K replaced by K .. Denote the resulting criterion

TE,(K). When using a local polynomial fit with the Uniform kernel, the
weighting scheme still possesses the minimum variance property. The behavior is
thus optimal in this sense for the interior as well as for the boundary. This follows
immediately from a characterization of minimum variance kernels given by Milller
(1991).

The situation is not as simple when taking MSE instead of variance as a
criterion for optimality. In the context of kernel estimation there is so far no
convincing solution for such optimal boundary kernels available except at the point

= (. This makes it also difficult to judge the quality of the Epanechnikov
weight function, when fitting local polynomials at the boundary. For the most left
boundary point with ¢ = 0, Cheng ef al. (1993) shows that the kernel K(z) =
(1~ 2)Ij0,1){2) is the optimal one, independent of p and v. (For the most right
boundary point, the optimal kernel is K (z) = (14-2)1;_1 (2}.) For other boundary
points the solution is not yet obtaincd. Onc difficulty is thet it is not clear how to
define an appropriate target function. For example, the point z, = ch,, does not
correspond to the same point when two different kernel functions are used, each
using the optimal bandwidth.

Table 1 shows the value of T ,(K)/{?*3) which is the constant factor that
depends on K in the MSE expression. Recall that K(z) = (1 — z)/jp17(2) is the
optimal kernel at the most left boundary point ¢ = 0, whereas the Epanechnikov
kernel is the optimal one at the least left boundary point ¢ = 1-—interior point.
Note that for the Gaussian kernel, the point x,, = ch,, with ¢ = 1 is still a boundary
point, whereas for the other kernels, ¢ = 1 corresponds to interior points. The
triangular kernel used in Table 1 is defined by

Ki(z) = (1 lz])+,

where the subseript ‘+’ refers to taking the positive part. Note that this kernel is
identical to the optimal kernels at the boundary points 0 and 1. Note also that at
the most left boundary point ¢ = 0, the Epanechnikov kernel performs very close
to the optimal boundary kernel K(2) — (1 — 2)Ijp,1)(2). This is a justification to
use the Epanechnikov kernel even at boundary regions.

Tt is known that the choice of the kernel function K is not very important
for the performance ol the resulting estimators, both theoretically and empirically.
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Tahla 1. Values of the target function T;”P(K)]‘/(2p+3) for several kernels K.

v p QGaussian Triangular Uniform Epancchnikov Biweight
01 2.0731 1.1817 052%67 1.1856 L1830
0 3 3923 2.0996 2.1387 231041 2.1012
1 2 5.2638 3.4588 3.6082 3.4713 3.4630
1 4 199751 11.7790 12.2056 11.8194 11.7939
2 3 108991 7.7564 8.0845 7.7810 7.7664
c=10.5
0 1 0.8010 0.6095 0.6294 0.6155 0.6055
0 3 1.4926 0.7771 0.6284 0.7712 0.7957
1 2 23042 0.9103 0.8433 0.9060 0.9161
1 4 3.5218 0.6282 1.4678 0.7734 1.1863
2 3 5.2022 1.1657 0.8313 1.1343 1.2651
c=1
01 0.8834 0.5942 0.6084 0.5908 (.5923
0 3 1.3077 0.7909 0.8020 0.7873 0.7893
1 2 0.7293 0.8671 0.9021 0.8647 0.8692
1 4 2.8039 1.4774 1.5257 1.4724 1.4808
2 5 17734 1.2976 1.3474 1.2927 1.3010

However, since the Epanechnikov kernel is optimal in minimizing MSE and MISE
at interior points and is nearly optimal at the most boundary point, we recommend
to use this kernel function. From Table 1, one can see that the Biweight kernel
function or the Triweight kernel function (not reported in lable 1), which are
respectively of the form

Ky(2) = const{(1 - 2%);}> and  Kj(z) = const{(1 — 2%).}°

perform very clogely to the Fpanechnikov kernel. Therefore, these kernels are also
recommendable. The structure of this kind of kernels also enables one to implement
fast computing algorithms, which is another reason for this recommendation.

3. Local tinear fitting in higher dimensions

We consider only multivariate local linear fitting (p = 1, v = 0} which is
the case of most practical interest, since the sparsity of data in higher dimensions
becomes more of a problem for higher order polynomials (“curse of dimensional-
ity”). In principle, the methodology generalizes to higher order polynomials using
a multi-indices notation. In this section we derive the optimal weighting scheme
for multivariate local linear fitting. Minimax properties are discussed in Section 4.

Let K be a function defined in R? and let z = (#%1,...,24)—a point in the
d-dimensional space—be an interior point of the support of the density of the d-
variate vector (X1, ..., Xy). The ahgervations are given hy { Xy, Y1), ..., (X,, Y.,
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with X; — {X;1,...,X4), 7 — 1,...,n. Dcnote by

R 1
plu) = EK(B Ly,

where B is a nonsingular matrix, called bandwidth matrix. Further let
W = diag{Kp(X; — z),..., Kp(X, — z)}

be the diagonal matrix of weights. Then, the local linear regression is to find bg ()
and b1 (x) to minimize

S 4% = boe) = B ) (X = ) K5 (X - )

and the local linear regression estimator is m(z) = Bg(az) Asymptotic analysis
(sec Theorem 2.1 of Ruppert and Wand (1994)) yields the following expression for
the conditional mean squared error:

E[{m{z) —m{z)}? | X1...., X.]

- E (tr{H(ﬂ" BBT/K(u })

Bsz )du ))]{H op(1)},

where H(z) stands for the Hessian matrix of m at .
Without loss of generality K satisfies

/u,,qu(u)du = bip2{K)

where po(K) is a positive constant. Differentiating the conditional mean squared
error with respect to the matrix BB7 leads to the necessary condition for a local
minimum

L g 9 vo(K)a?(x) Ty—1 _
§p2(K)tr(HBB‘n)H—§;L}X($—)|B|(BB y7t=0

(see Rao (1973), p. 72), where 1p(K) = [ K*{u)du. If the Hessian matrix H(x) is
positive or negative definite this equation has a unique solution

(wlK)eR (@) H N
(3.1) BBT‘( WB(K ndx (@) ) (H)

with

e { H for positive definite H

—H  [or negative definite IT
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which constitutes a minimum. The optimal bandwidth matrix B itsell can be
chosen as any matrix satisfying the last equation. As can be seen from (3.2) below,
the MSE does not depend on the particular choice of B. Relation (3.1) leads to
insight into the problem of multivariate bandwidth choice: when performing an
eigenvalue decomposition of H*, one gets first an optimal rotation of the coordinate
system, aligning according to the Hessian matrix. The respective eigenvalues lead
to a scaling of the weight function K in direction of the new axes, similar to the
analogous problem of bandwidth choice in one dimension. The case of an indefinite
H comprises features which are characteristic for dimensions higher than one. It is
then possible to choose the bandwidths in different directions appropriately such
that the above leading term of the bias vanishes. In such regions with lower order
bias, it would be necessary to perform a higher order analysia. Tn addition, zero
eigenvalues of the Hessian matrix lead to problems similar to the linear case in
one dimension. A detailed discussion is beyond the scope of this paper.

Subsatituting the optimal cholce for the bandwidth maotrix into the asymptotic
expression for the MSE, we get

(32) AMSE= d:‘ldwd“){u (R)pg ()} 4 2{ [H ()]},

f2(x)

The above formula leads to the formalization of optimal weight functions: find K
such that

2,
(3.3) V(KK = {fK2(u)du} ]u%K(u)duu-fuiK(u)du

is minimized subject to

/K(u)du =1, qu(u)du =0, K=9, fuiqu(u)du = b;5p2(K).
The solution given in the next theorem is derived in Appendix A.2.

THEOREM 3.1. The optimal weight function is the spherical Epanechnikov

kernel d(d 2)
+ .
Q_Sd‘(l—uiz—“‘ — uf)+,

where Sq = 2r%2/T'(d/2) denotes the area of the surface of the d-dimensional unit
ball.

K()(LL) =

Thus the thecrem also provides an answer to the open problem about the
optimal support of the weight function in higher dimensions. The solution is
contrary to a suggestion made by Epanechnikov (1969) to use the product of
the one-dimensional kernel of the form 0.75(1 — u?},. With the optimal weight
function, we can easily obtain that

1 2d(d+ 2
,U.Q(K(]) = m and VU(K()) = (?(I%’S—Yi

These (wo momenls are useful in bandwidth selection and for risk calculation.
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4.  Minimax efficiency

In this gection minimax efficiency of univariate and multivariate local poly-
nomial estimators is studied, generalizing results obtained by Fan (1993) for the
special case d = 1, p = 1 and » = 0. We only focus on estimation of m®) ()
for interior points xg. It is shown that the asymptotic minimax efficiency for
commonly-used orders of fit is 100% among all linear estimators and that a rela-
tively small loss in efficiency occurs when allowing nonlincar cstimators as well. For
an illuminating account on recent developments of minimax theory, see Donoho
and Liu (1991), Donoho (1994) and Donoho et al. (1995) and the references therein,
where attention is focused on density estimation and white noise models,

4.1 Estimating m"™) in one dimension

Most commonly-used function estimators are linear, ie. admit a represen-
tation of the form Y0 a(r, X1,..., X,,)Y;. In this section, previons minimax
results for univariate local linear fitting (see Fan (1993)) are extended to higher
order polynomials and to derivative estimation.

Without loss of generality, our goal is to estimate the functional §,(m) —

m)(0), where 0 represents an arbitrary interior point. Consider

" (0) Fllal
41 c f— : — E— J S 07

which includes all regression functions whose (p+1)t* derivative is bounded by C.
Further basic conditions are needed in order to obtain the minimax results:

CONDITION A.

(a) o{-) is continuous at the point 0,

{b) fx(-} s continuous at the point 0 with fx(0) > 0,
{¢) p—visodd.

The linear minimaxr risk 1s defined as

(4.2) Ryr(n,Cpr1) = inf  sup E[S, —mP0)1?| X4,..., X4,

Sy lincar mel, 41
and the minimaz risk is

(4.3) R,(n,Cpr1) =inf sup E[{T, —m® 0} | Xp,..., Xu].

Ty mECp+1

The latter involves all possible estimators including nonparametric estimators with
data-driven choice of smoothing parameters.

As has been shown by Donoho and Liu {1991) and Fan (1993) the modulus
of continuity

(4.4) wy (&) = sup{ [ (0) — M (0)] : my, 1 € Cpyy, Iy — mol| = €}



90 JIANQING FAN ET AL.

is a key Lool [ur deriving lower bounds [or the minimax risk.

Denote the optimal kernel of order (v,p+ 1} by K2f(x) (see (2.10)). Recall
that, as shown in Theorem 2.1, KJP'(x) = Ko, (z)—the equivalent kernel of the
Epanechnikov weight function. Let

(4.5) r=2p+1-v)/(2p+3), and s=2v+1)/2p+3),

and denote

s e {G i) ()

THEOREM 4.1.  The linear minimaz risk is bounded from above and below by

(4.7) B, {1 +o0p(1)} = Ry 1r.(n,Cps1) 2 by p{1l +0p(1)},

&fadﬁwmﬂwg(ﬁm%}@r
(‘ / ' FCoRY t)dt) ( / (KO (1) }th)

Using expressions in (2.12), it can explicitly be calculated that

where

and

2

l
(4.8) by = (2p+3 (p+v+2)!

21/—%—1) (p+1+u),(p+1—v),

2 2

(o) () (e -

How far apart are the lower bound and upper bound in the lnear minimax risk?
To get an impression of this we preseut in Table 2 Lhe ratio of the square roots of
b.p and B, , (the MSE lower bound and upper bound) which is given by

(Uﬂ“wmmﬂqs
O p =

[t K (0] de

(4.9)

It is easy to see that this ratio is equal to one for the commonly-used cases: p = 1,
v =0and p =2, v = 1. We conjecture that the sharp risk is obtained by replacing
|K 3P| in the definition of B, , by |KgB| which minimizes

T a(K) = {]ItpHK:(t}dt}gyﬂ {/Ksz{t)dt}jﬂ»lu
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Table 2. Ratio 8, , of the minimax lower and upper bounds.

p 1 2 3 4 5

p—v
1 1 1 .9902 9124 .7620
3 9478 8126 6611
3 083

(compare with (2.9)). However, the solution to this problem does not usnally admit
an explicit formula and has a so complicated shape that it is only of theoretical
interest. See Sacks and Ylvisaker (1981).

Let 7%(0) = v1b,(0) be the estimator resulting from a local polynomial fit of
order p with the Epanechnikov kernel Ky and with the bandwidth

(2v+ Dip+ )2 [{KEH 6 o2 0) 7O

20p + 1 —v{[ P KR (1]t} fx (0)C?n

(4.10) b, =

It is worthwhile noting that these choices of the kernel function and the bandwidth
reduce to the choices provided in Fan (1993) for the special case that p = 1
and v = 0. With the above choices of the kernel and the bandwidth the local
polynomial estimator has a high linear minimax efficiency, as is established in the
next theorem.

THEOREM 4.2. The local polynomial estimator 13} (0) has high linear mini-
maz efficiency for estimating m™ (0) in the sense that

fiv, (7 Cpt1)
SuPmec,., By (0) —m»(0)}2 | Xy, ..., X

(4.11) >0, {t+op(1)}.

Thus, for commonly-used local polynomial fitting with p =1, v =0 or p = 2,
v = 1, the estimator 72),(0) is the best linear estimator. For other values of p and
v (unless the value is too large to be practical), the local polynomial fit is nearly
the best, as evidenced by Table 2. In fact, if our conjecture after Theorem 4.1 i
true, the efficiency of 1} (0) is far higher than 0, ,.

The behavior of the minimax risk R,(n,Cpy1) over the class of regression
functions Cp11 is established in statement (4.12) below. The second statement in
the theorem shows that the local polynomial regression estimator 7’ (0) comes
asymptotically fairly close to the minimax risk. This estimator is efficient in the
rate, and nearly efficient in the constant factor.

THEOREM 4.3.  The minimaz risk (4.3) is asymptotically bounded by

(4.12) By > By(n,Cpt1) > (0.894)%0,,,
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with by p and By g as tn (1.7}, Moreover, the local polynomial regression estimator
m(0) has an asymptotic efficiency of at least 89.46, ,% among all estimators:

Ry(n,Cpir)
SUDec, ,, BUME{zo) — m) (o) }? | X1, ..., Xa]
> (0.894)%0% , + op(1),

(4.13)

with 8, ,, as in (4.9).

The minimax theory provided in this section is an additional justification of
the intuitively appealing local polynomial approximation method. Other justifica-
tions such as graphical representation and finite sample simulations can be found
in Fan (1992), Hastie and Loader (1993) and discussions therein.

4.2 Locol linear fitting in higher dimensions

In this section we will show that the multivariate local linear regression es-
timator, as defined in Section 3, possesses the same minimax properties as the
univariate local linear regression estimator: with an appropriate choice of the
bandwidth matrix and the kernel function, the multivariate local linear regression
estimator achieves asymptotically the linear minimax risk, and comes asymptot-
ically fairly close to the minimax risk. To accomplish this, we assume that the
regression [unction is in the class:

s ={m: (s}~ (@)~ )] < 5= 20~ o},

where C is a positive definite (d x d)-matrix. Intuitively, this class includes re-
gression functions whose Hessian matrix is bounded by €. We use I, 1(n,Cz) and
Ro{n,Cs) to denote respectively the minimax linear risk and the minimax risk,
defined similarly to {(4.2) and (4.3). Without loss of generality, we assume that
x=0.

THEOREM 4.4. Suppose that Condition A (a) and (b) hold. Then, the local
linear fit with spherically symmetric Epanechnikov weight function is a best linear
estimator and has minimaz efficiency at least 89.4% in the sense similar to (4.13)
in Theorem 4.3. Moreover, the linear minimax risk is given by

(4.14) Ro,(1,C2) = ra{l + op(1)},

where
d 2 _ }
. ) (4 )2/ (D)
(4.15) rq = (Sd) (d+2) (d+4) { 75O

Further, the minimaz visk Ip(n, Ca) is asympiotically bounded by
(4.16) rg = Ro(n,Cy) > (0.894)%r,.

A/ (d44)

} 2/(d+4)

In the univariate case {i.e. d = 1), the quantity r4 reduces to the factor in
Fan (1993).
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Appendix—Proofs of the results

A1 Proof of Theorem 2.1
In order to use the same normalization constant as Gasser et al. (1985), we
define the equivalent kernel by (compare with (2.6))

W*(z) = (—1)tel 71, m, .. LY Kolx).

v

The following properties hold for W}:

1. W} is a (v,p+ 1) kernel in the sense of Gasser et al. (1985).

2. Obviously, Wr(—1) = Wi(1) = 0.

3. Because v + p is odd, the last element of the v-th row of S ~1 is zero and
therefore by (2.6), W is a polynomial of degree p+1 on [ 1,1].
Theorem C in Granovsky and Miiller (1991) states that these properties charac-
terize the optimal kernel. O

A.2  Proof of Theorem 3.1
Let

(A1) oK) = {ng(u)du}gfufK(u)du---/uiK(u)du.
We had assumed without loss of generality that

(A2) / 2K (u)du = - - = / W2 K (),

which leads to

ws - {f KZ(u)du}z {5 e+ uz)K(uwu}dv

Property (A.3) allows us to find the optimal K through the following minimization
problem:
Minimize [ K?(u)du subject to

fK(u)du =1, K20, /uK(u)du =0,
(A4) /Uiqu(U)du =0 when i#j

/(u% 4+t '“-?t) K (n)du = '[(u% +--+ ‘ui)KO(U)dU-
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Now for any nonnegative kernel K > 0, let § = K — K|,.

f”fu” §(u)du = f(s u)d
Hence, we find that

fé(u)Ko(u)du - f{ oy, S0 )

== [ e
RETILPSY

- ] K () (Jul® — 1)du > 0,
{llui®>1}

and therefore,

/K2(H)du* ng(u)du+2/Kg(u)5(u)du+/(52(u)du > /Kg(u)du,
which proves that Ky is the optimal kernel. O

A3 Proofs of Theorems 4.1-4.3
A3l Upper bound

Let ) (0) be the estimator resulting from a local polynomldl fit of order p
with the Epanechnikov weight funetion Ay and bandwidth h,. Let Ky, = K "lpt
be its equivalent kernel, as defined in {2.6). Then,

sup E[{m.(0) =m0 | X1, ..., X,

MECp41
C 2
p+1 opt 2(p+i-v)
(/n K5 (0)ldi +1)!) h2
f{Kopt t)}zdt (0) h (2v+1)
nfx(0) "

= Alhi(p+1 v) T Aghn 21}+1)_
The bandwidth that minimizes the above quantity is given by
9 DA 1/(2p+3)
b = {‘__( 'V_ +‘ ) 2 }
2(p +1- V)A]

which is exactly the bandwidth defined in (4.10). With this choice of h,, we obtain
via simple algebra that

(A.B) sup E[{m, (0) —mM(0}2 | X1,..., X,]

MECy 1

< A3AL Hz(;ﬁiy}} " {2(1%%77}_}

=AJAL2p+3)2v+ 1) *2(p+ 1 — )]
— Bv,p:

bl

with B, , as in Theorem 4.1. This establishes the upper bound for the linear
minimax risk.
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A.3.2 Lower bound
Let us evaluate the modulus of continuity defined by (4.4). Take an f € C
and let
(A.6) ma () = 87 f(2/6),  mola) = —my (),

where & is a positive constant to be determined later on. Clearly, g, mq € C.
Now, selecting é such that

Ima — mol|* = 487 f* = &7,

2 1/{2p+3)
§ o= (6_)
4| 12 ’

which is equivalent to taking

we obtain that

g2 (p+1—w)/{2p+3)
(A7) w(e) 2 mi”(0) - my” ()] = 2/*(0) (M)
Recall the optimal kernel of order (v, p + 1) given in (2.10).
Defining

(A-8) g(x) = {KDS;J (z) if [z[<1

14
0 otherwise,

we need the following lemma.

LevmmMma A.l.  The function g{-) saiisfies

g(p+1)(0) mp-ﬁ-l
(p+ 1)t )

, |
(A.9) o) =3 a0 <]
i=0 I

PrOOF. It is obvious that (A.9) holds whenever |z| < 1. When |z| > 1,
g(z) = 0 and (A.9) becomes

P
(A.10) > xall < AppaaP Tl

i=0

Since the polynomial above is either even or odd (see (2.11)), we only need to
check (A.10% for » > 1. Note that the polynomial (2.10) has & roots on [—1,1]
(see Lemmas 2 and 3 of Gasser et al. (1985)). Hence K P () can not change its
sign when x > 1. Thus

sen(Aps1) K25 (@) > 0,
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namely
P
Apr1]z”Th > —sgn{Apiy) Z/\jzﬁj when z > 1.
J=0

Using a similar argument we get,

r
—sgn{Apt1) Zz\jaaj >0 when z>1
§=0

Combining the above two statements, we obtain (A.10). O

We are now ready to estahlish a lower honnd for the linear minimax risk.

Take,

b

1/(p+1)
(A.11) f(z) =glaz) with a= (@TS’@)

where g is defined by (A.8). Then, by Lemma A1, f € C. It follows from (A 11)
that

ol
a a

(A.12) ey 7U(0) = a"viA,.

Substituting (A.12) into (A.7), we obtain

C o £2\ "2
v ez Y e (2)"
(418 w2 (o) IR (T

Applying Theorem 6 of Fan (1993), we find that the minimax bound of the
best linear procedure is

{A'14) RV,L(nvCp+l)

T o8 # ’ apt | —7 UQ(O) "
28 [UIAV((p+1)]|/\p+1|) 1o (nfx(o)) }

=h

P
using {2.10) and (2.12), with b, , as defined in (4.8). This leads to a lower bound

for the linear minimax risk.

Proor OrF THEOREM 4.1. Statement (4.7) follows immediately from the
upper and lower hound given in respectively (A.5) and (A.14). O

PROOF OF THEOREM 4.2. The maximum risk of m{*/(0) is given by (A.5).
The result follows from Theorem 4.1. 0O

PrOOF OF THEOREM 4.3. Theorem 4.3 is an immediate consequence of The-
orem 4.1, (A.13) and an application of Theorem 6 of Fan (1992). O
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A4 Proof of Theorem 4.4

It can easily been shown that the maximum risk of the local linear regression
smoother is bounded by the left-hand side of (4.15). See (3.2) for a similar expres-
sion. Therefore, the minimax risks are bounded by the lefi-hand side of (4.15).
To establish the lower bound, we apply Theorem 6 of Fan (1993). To this end, let
the modulus of continuity be

w(e) = sup{|m1(0) —mqo(0)] : mo, m1 € Ca, [lma — mo|| = €},

where || - || is the Ly-norm. Without loss of generality, we assume that ' is a
diagonal matrix given by €' = diag{A,...,As}. Take

2

82 d
molz) = 5 1—672 E )\jx?
=1

+

Then, m € Co. It can easily be computed that

2 264148,
(e — .
IC1Y2d(d + 2){d + 4)

Setting the above expression to €2/4 leads to

§ = ‘Cll/Qd(d’ + 2)(d + 4)59 1/{d+4)
- 85, :

Now, taking the pair m; = —my and myg, we have that |m,(0) — me{0)}|| = .
Therefore,

2/{d+4)
}C’l/?d(d+2)(d+4)} fRpyrany

w(e) = |my(0) — mo(0)] = & = { 854

Now applying Theorem 6 of Fan (1993) with p = 4/(d +4) and ¢ = 1 — p, we
obtain

4 nfx{0)

d 72 4/(d+4)
B () (d+ 2)4/(d+4) (d+ 4)—d/(d+4)
4\ 54

0.4(0) 2/(d+4)
X {ch} {1+ 0(1)}.

The fact that the lower and upper bound are the same leads to the conclusions on
linear minimax risk. As for the nonlinear minimax risk Rg 7,(n,Cz), the conclusion
follows directly from Theorem 6 of Fan (1993) together with (A.15). O

(A15)  Rop(nCy) > 2Ly (2 "2(0))(1+o(1))
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