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Abstract. Let Xy, X2,...,X, be iid. random variables with common un-
known density function f. We arc interested in estimating the unknown density
f with bounded Mean Integrated Absolute Error (MIAE). Devroye and Gy6rii
(1985, Nonparametric Density Estimation: The Ly View, Wiley, New York)
obtained asymptotic bounds for the MIARE in estitnating f by a kernel estimate
fn. Using these bounds one can identify an appropriate sample size such that
an asymptotic upper bound for the MIAE is smaller than some pre-assigned
quantity 10 > (0. But this sample size depends on the unknown density f. Hence
there is no fixed sample size that can be used to solve the problem of hounding
the MIAE. In this work we propose stopping rules and two-stage procedures for
bounding the L; distance. We show that these procedures are asymptotically
optimal in a certain sense as w — 0, i.e., as one requires increasingly better fit.

Key words and phrases: Density estimation, mean integrated absolute error,
stopping rule, sequential estimation.

1. Introduction

Let X, X2, Xa,... be independent random variables with common unknown
density f on the real line. Consider a random sample X1, Xo, X3,..., X, of size
n. A kernel estimate f,, of f is given by

(1.1) ful) =t [ K@~ )/ m)dEL ),

where F, is the sample distribution function, K is the kernel function and hy, is the
bandwidth. There are several measures of the global performance of the estimate

N

fn. For 0 < p < oo the L, distance between f,, and [ is defiued by

(1.2) Vo = £l — (F [ 15t - f’(r)lpcf:r-)l/p

57
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The mosl widely used Ly distance s the Mean Tntegrated Squared Error (MISE)
or the Lo distance. Devroye and Gy6rfi (1985) argued that the L; distance (Mean
Integrated Absolute Error or MIAE) EJ, is the most natural choice, where J,, =
T | fn = |- They showed that it is invariant under monotone transformations and
it 1s always well defined. L, distance also has the advantage of corresponding more
closely than Ly distance to the visual comparison of densities.

The problem of sequential density estimation was first considered by Yamato
(1971). Wegman and Davies (1975) developed some sequential procedures which
satisfy certain error control. Carroll {1976) considered the problem of estimating
the unknown density at a particular point which may be known or unknown. He
proposed stopping rules to construct a fixed width confidence interval for the value
of the nnknown density. Stute (1983) considered similar problems. Isogai (1987)
investigated the problem of sequential estimation of f at a given point wg in p—
dimensional Euclidean space. He considered a class of recursive kernel estimators
Ffr(x) and proposed a class of stopping rules based on the idea of fixed width
interval estimation. In his 1988 paper he investigated the asymptotic behavior of
the moments of these stopping rules when the length of the interval goes to zero.
Koronacki and Wertz {1988) obtained some results for sequential recursive density
estimators. Efroimovich (1989) derived an asymptotically exact minimax lower
bound for the risk in a sequential nonparametric estimation plan.

Martinsek {1992} studied the problem of estimating the density such that
the most commonly used global measure of error, Mean Integrated Squared Error
(MISE) is smaller than some pre-assigned positive quantity w. Using the well
known asymptotic expansion {see Rosenblatt (1956, 1471), Nadaraya (1474), and
Prakasa Rao ((1983), Theorem 2.1.7))

13 E / T (Fule) - 1(2))de
— (nhy)? j K+ (3P0 [ (f(w))?

+ o{(nhy) "t + A),

where
(1.4) 4= ]w 22K {x)dz,

Martinsek {1992} identified an appropriate sample size. Since the appropriate
sample size depends on a functional of the unknown density, the problem cannot be
solved using a fixed sample size. Martinsek (1992) considered some fully sequential
and two stage procedures to solve the problem. He showed that those procedures
are asymptotically efficient.

Here we are concerned with the prohlem of estimating the unknown density
f such that the 7, distance between the true density and the estimated density
is bounded by some pre-assigned positive quantity w. The organization of this
paper is as follows. Scction 2 proposes sequential and two-stage procedures for
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bounding the Ly error and contains the sltatements and prools of Lhe wain resulls.
Section 3 deals with data-driven, asymptotically optimal bandwidths. Finally,
some simulation results for the two-stage procedure are presented in the appendix.

2. Bounding the L1 distance

Recently much progress hias been wade on the “Ly view”™ of nonparametric
density estimation. Among others this was largely due to the works of Devroye,
Gyérfi, Hall, and Wand. In their monograph Devroye and Gyérfi (1985) developed
a smooth Iy theory. They did not obtain an asymptaotic expansion for the Ly errar,
ingtead they worked with upper and lower bounds for MIAE.

We want to estimate f with MIAFE no larger than w, ie., with sufficiently
good global fit. Unlike the MISE case there is no explicit asymptotic expansion
for the MIAE (for precise but somewhat implicit expansions, see Hall and Wand
(1988), Devroye and Wand (1993) and Wand and Devroye {1993)). But there are
some upper bounds for the MIAE. Under the assumptions that K is a symmetrie,
bounded probability density function with compact support, f is twice differen-
tiable with bounded continuous second derivative, f/f < oo. [|f”] < o0, and
hy, — 0, nh, — o, the kernel estimate satisfies

(2.1) EJ, < ((x] \/f) S b (ﬂ/?‘)hi / Ef”[ + O(hf] + (nhn)_1/2),

where

(2.2) o= \/ﬁ 8= /zQK(m)dm,

see Devroye and Gy&rfi (1985). Put 8 = [+/f, 62 = [|f”| and let H, be the
R.H.S of the expression (2.1}, excluding the higher order term. Since the exact
asymptotic behavior of EJ, is unknown, we deal with the bound for E.J,. From
(2.1) it is clear that the best asymptotic rate for h, is n='/%, Let hy, = en~1/3
where ¢ is a positive constant. Then we get

(2.3) Hy = {ab /e + (8/2)02¢% 25,
The best choice for ¢ i8

(2.4) ¢t = [(whh)/(2802)]%°.

For this choice of ¢ we get

(2.5) H) = A(K)B(fin */®,
where 7% = 5/28/3)

]

(2.6) A(K) = (f K2)2/5 U mgK)lﬁ

and
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27) B(f) = (( / \/?)4 / |f”|/2)

We want to estimate the unknown density f with both TAE and MIAE no larger
than w (w > 0), ie., with sufficiently good L, fit. We first consider the case
by = en™ /5 for some fixed ¢ > 0. From (2.3) it suffices (at least asymptotically)
to achieve

1/5

(2.8) (b1 /e + (3/2)?0)n™ " < w.
This yields the sample size n;,, where
(2.9) n*, = smallest integer > (Jab /e + (B/2)c28Jw™1)>/2,

But this choice of n}, involves the unknown quantities 8, and 6> and hence nj,
cannot be used in practice.

2.1 Sequential procedure

One way of circumventing this problem is to replace the unknown parameters
¢, and 64 in the expression for n}, with cstimates, which suggests the following
sequential procedure. Define the stopping rule

(2.10) T, = first n > 1 such that n=2®{af1,/vC + (3/2)c2ba, +n %] < w,

where 8y, and fs, are estimators of 6, and 0 respectively, based on X, Xa, .. .,
X,, and 0 < £ < 1/16 is a positive number that will be determined later.

The term n~¢ is added to the left side of (2.10) for technical reasons: see the
proof of Theorem 2.1. Estimate the unknown density f by

T

(2.11) fr(@) = (Tuhe ) SO K((z — Xi)/hp,),
1

where hp, == (.'T;Us_ We hope that this procednre will yield the desired results,
ie.,

(2.12) MIAE = E (f:o | fr, (2) — f(.r)|dz) <w

and

(2.13) T, ~ n,.

Choice of éln and égn: In order to construct the estimates of #; and &2 we
need to agsume the following conditions on f and K.
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CONDITIONS.
(2.14) 1" l2 = sup [f"{=)] + Sip(lf”(w) ~ "yl — ) <o
T THEY
(2.15) Both K and K" have finite total variation.

Remark. It is natural to wonder about the behavior of the sequential proce-
dure without the smoothness condition (2.14). Because of the term n—% in (2.10),
the random sample size T\, — o a.8. as w — 0. It follows that the procedure will
be strongly consistent (i.e., Jr, — 0 a.s.) provided that J, — 0 a.s. as n — oo,
In other words, the sequential estimator s strongly COl'lblthHt whenever the uanal
nonsequential estimator is. But the nonsequential estimator is strongly consistent
for all f: see Devrove (1983). The sequential procedure therefore inherits strong
consistency from the nonsequential version, without any smoothness conditions on
f. By bounded convergence one immediately has the same result [or the MIAF
as well. This remark applies also to the two stage and data-driven methods to be

discussed later in the paper.

We propose the following estimates of #; and #5. Tet

(2.16) b1 = O1n (R f \/f:

where d,, — o¢ as n — oc and fn is a kernel estimate of f based on X7, Xo,..., X,
with kernel X and bandwidth h,. The quantities d,, and A, will be determined
later. Similarly we define

C‘I"'ﬂ;
(2.17) Bz — QZ'IL(hn) _“/ . Jfaglﬂ
_dn

where f, is a kernel estimate of f with kernel K and bandwidth A, and d,, and
h,, will be determined later.

The following theorem gives some asymptotic optimality results for the se-
guential procedure.

THEOREM 2.1. Assume (2.14) and (2.15). Put
A, =d, =nl/3
hy, = n~ Y4 (loglogn)'/?,
and
hy = n‘lfs(loglogn)l/s,
where 0 < & < 1/8. Then as w - 0

(2.18) To/ny, —1  as

(2.19) ET,/ny, —1

(2.20) limsupJr, /w <1 a.s.
w-={

(2.21) limsup EJr, fw < 1.

w—0
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Remark. FEquations (2.18) and (2.19) state that the random sample size T,
is, for small w. almost surely equivalent to n¥ and similarly that the expected
sample size is equivalent to n},. Equations (2.20) and (2.21) say that the IAE and
MIAE are asymptotically bounded above by w.

Note that this procedure requires a lot of computation, because the estimates
Hm and Bgn must be recomputed after each new chservation. Another possible
method is a two stage procedure which reduces computational cost and addresses
the main problem.

2.2 Two stage procedure

We propose the following two stage procedure. First draw a sample of size
no(w), where ng{w) — oo and w*?ng(w) — 0 as w — 0. One possible choice
for ng(w) is ng(w) = w™7 for some 0 < v < 5/2. This is done to ensure that we
have enough observations at the first stage but not more than we need. Based on
the first sample estimate #; and 6. Next we draw a second sample of size nq(w),
where nj(w) is the smallest integer greater than or equal to

(2.22) {loBrng / Ve + (8/2)¢02nq + g *)fw}*? — no(w)]

where £ is as in (2.10).
Estimate f by

’H;z ('LU)

(2.23) fnz(w)(;l? [hng(w)’nﬁ Z K{(z — X@)/}an(w)

where h, = cn /% and na(w) = np{w) + n1(w). We hope that this procedure

will yleld the desired results, i.e., results analogous to Theorem 2.1. We get the
following theorem which summarizes the performance of the two stage procedure.

THEOREM 2.2. Under the conditions of Theorem 2.1, as w — 0,

(2.24) naflw)/nt, -1 as

(2.25) Eng(w)/nk, — 1

(2.26) limsup Jo, 0oy /w <1 as.
w—0

(2.27) lim sup £, (] /w < 1.
w—)

Remark. From Theorem 2.2 we can see that the two stage procedure per-
forms satisfactorily. In other words, (2.24) and (2.25) state that na(w) is asymp-
totically equivalent to the optimal sample size n},. Equations (2.26) and (2.27)
say that the JAE and MIAE are asymptotically bounded above by w.
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2.3 Proofs of Theorerns 2.1 and 2.2 L 3
We assume (2.14) and {2.15), as well as the choices of hy,, hy,, d, and d,, given
in Theorem 2.1, throughout.

LemMma 2.1.

(2.28) sup IV fu(@) = /F(@)| = O(n Y3(loglogn)/®)  a.s.

PROOF. From Theorem 2.1.10 of Prakasa Rao (1983), it follows that

{2.29) sup |fu(2) — f(z)] = O(n Y4 (loglogn)*/*)  as.

and since

(2.30) \\f fn -V} = |fn x) — fz)|/( \/ )+ Vf

stmuo—f@N/lﬁmﬂwfmn
= | Fulz) — F(2)|V/2,

{2.28) follows from (2.29) and (2.30].

LEMMA 2.2, R
gln — 91 a.8.

Prooy. By Lemma 2.1,
(231) |0, — 64 <
791?1.
dy,
</
—d,

= O(don % (loglog n)'/®) +

f+[z\/?/\/?|

The first term in this equation goes to zero a.s and since d,, — oo, the second term
also goes to zero.

LEMMA 2.3.

(2.32) sup|f(z) — f'(z)] = O(n " Y3(loglog n)/®)  a.s.
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Proor. By Silverman {1978)

(2.33) sup | f2/(z}) — Bf1(2)] = O~ 2h; " [log(hr )2 as.
Integrating by parts it can be shown that
BFi(@) = (K I')@) = 1" [ Kla = )/ " )iy

From (2.14) we have [f”|| g1, < co. Therefore,

(2.34) sup |E /(@) — f"(z)
= sup /m KW)[f"(x = hnu) — f'{x)]du
<17 mchn [ JulK ()

= O(hy).
(2.32) now follows from {2.33) and (2.34).
Remark. Note that here we are not choosing the optimal h,. That is because
we shall need this choice of h, for another result which does not hold for the

optimal choice of A,,.

LEMMA 2.4,

(2.35) o — 02 a.s,

_ Proor. Lemma 2.4 follows immediately from Lemma 2.3 and the fact that

d, — nl/8-8
i — P
| [V~ [ v
i —dy —dn

ProOF. From Theorem 2.1.11 of Prakasa Rao (1983} we get

LEMMA 2.5,

(2.36) E <oo  Yp> 0

(2.37) Elexp{BM?) < oo

for all 7 > 0, where

(2.38) M = sup |sup |fu(z) — Efulz)|hn(n/loglogn) /2| .
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Again, as in (2.34),

(2.39) sup [E(fa (2} ~ ()]l < IflIprhn [ JulE ().
Therefore,
(2.40) it supsup [BLf (0] - S0} <

and from (2.38) we have EM? < oo for all p > 0, i.e.,
. . . P
(2.41) E [sup sup | fn(r) — Efn(z)|hn(n/loglog n}l/")] < 00,
n xr
Substituting h,, and combining (2.40) and (2.41) we get
. »
(2.42) E {sup sup|fa(x) — f(2)|(n/loglog n)l/‘l} < 0.
From {2.30) we get

< | fulz) = f2)]H2

Vi@ - V7@

It follows that

y Fu(@) =/ f(x)

d.(n/loglogn) *® = O(n *(loglogn)*®).

(2.43) K |:Sup sup
n xr

P
(n/loglogn)I/SJ < oo,

Now

?

Therefore,
(244) E

(sl o[ v

which implies (2.36).

LEMMA 2.6,

(2.45) E |(sup

Proor. Let

dn
[ Wiz -1 @

(2.46) W sup [sup 2(2) = B£2(0) (n/ loglog /B3

p
)]<w ¥p > 0.

65

P
né(loglogn)_l/s) } <oo Y¥p>0,
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Now,
(2.47) sup | f;/{(z) — Ef;(=)]
= supl (k) ZT)K”(@ — X))
- [ RS (o = ) ) )
= supli? | [ K70 =)/l )P 0) = 4P )
= s | [1Fu(o) = PR — ) /)

< hy¥sup [ Fuly) — Iy,

where i < oo is the total variation of K”. Following Prakasa Rao {{1983), Corol-
lary 2.1.1) we have for all 5 > 0, Elexp(8W?2)] < oco. In particular E[W?] < o,
for all p > 0. From (2.34) we get

P
(2.48) [Sup sup |Ef!(x) — f”(:v)|f;,;1} < 00.
We have h, = (n/loglogn)~*/%. From here it follows that

(2.49) E [supsup|f;:(a:) — f(z)|(n/ loglog n)l/s]p < oo,

T @

In particular,

(2.50) ’D l:(sup

which is slightly stronger than Lemma 2.6.

dn
f ) s

P
n's(loglogn}l/s) } < oo

Yp >0,

FPROOF OF THEOREM 2.1. From our definition of T,, it is obvious that as
w — 0, Ty — o¢ a.8. and we get the following inequalities

(251) T > {labir, /ve+ (8/2)c 0y, + 1, w177
and
(252) Tw—1 < {[afr, 1/vVe 1 (8/2)Pbury—y | (T, 1) w1152,

(2.18) follows immediately from Lemma 2.2, Lemma 2.4 and inequalities (2.51)
and (2.52).
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In view of (2.18), to prove (2.19) it suffices to show {w*?T,, : 0 < w < 1} is
uniformly integrable. Therefore, it is enough to show that

{labrr, 1/ Ve + (B/2)cbap, 1 + (T — 1) 20 < w < 1}

is uniformly integrable. This is equivalent to showing

(2.53) @02 0<w<1) s ud
and
(2.54) (637 _0<w<1} isud

From Lemma 2.5,

dn dn P
E || sup A fa— "-\/? ]{oo ¥p > 0
i _dn T
and
D
| \/?~/\/f — 0 as n-— o0
Hence,
dn = P
E (sup ) fn—f\/})}<oo Vp >0
i.e.,
. p
(2.55) E [sup |61 — qu <oc Y¥p>0.

This implies {éfTw_l : 0 < w < 1} is u.i. for all p > 0. Similarly, it can be shown

using Lemma 2.6 that { éf_,’Tw_l 10 < w < 1} is ud. for all p > 0, and this finishes
the proof of {2.19).
To prove (2.20), first write

(256) JTu/w = (JTw/ij) . (HTW/TH)-

To show that the left hand side is less than or equal to 1 asymptotically, wa shall
show that the first term in this decomposition is asymptotically no larger than 1
and the second term approaches 1 as w goes to zero. First consider the second
term. From the definition of n, (2.9) we have

(2.57) Hr,, [w = {aby/v/e+ (B/2)0a" YT Pw™ =~ (n},) /P T5*5,
From (2.18) it follows that

(2.58) Hy /w—1 as.
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Next we consider the first term of (2.56). From Pinelis (1990), we ubtain
(2.59) P(|Jn — Edy| > €) < 2exp(—ne® /2| K||*) Ve > 0.
Therefore, for n sufficiently large,

(2.60) P(|Jn/EJ, = 1| > €) = P(|.J,, — BJ,| > €EJ,)
< P(|Jy — Edn| > eDy(f)n~ %),

from Devroye and Gyérfi {(1985), p. 37), where Da(f) is a constant depending on
4 ‘L'herefore, by {2.59) and (2.60),

(2.61) P(|Jn/BJn — 1] > €) < 2exp(—n?/>¢(Dy(f))%*/ (2| K||*))-

Using the Borel-Cantelli Lemma it is easy to see that

(2.62) Jo/EJy — 1  as.

From (2.1} we have EJ, < Hy, + 0(n72/5). Hence,

(2.63) limsup J,./H, <1 as.

[ Tl

Since T,, — co a.8. ag w — 0,

(2.64) limsup Jr, /Hr, <1 as.

w—0

Combining we get {2.20). To prove {2.21) we first prove the following lemma.
Levaa 2.7,

(2.65) {(T2PJp P 0<w< 1} s wi Vp

Proor. By (2.59) we get
b 5
(2.66) B, — EJo|)P < 2pr " exp(—n'/5t /| K|*)dt
= O(nip/lo).
This imphes that

(2.67) sup E(n?5|J, — EJ,|)) =0 as m — cc.

n>m
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Write m{w) = w™* %) and note that from (2.10), T, > m(w). Define a{n) =
E.J,. Then we have
(2.68)  E(15/°|Jr, — a(Tw)])

= > E{(n**|Jy — EJu)PLiz,—n}

vz )

< S BV, — EJu)® - /P(T, =n)

n2m(w)

- 4 1/2 1/2
<D YD B —ELDT| | > PT,=n)

| nzm(w) ] n>miw)

- -1/2

—| Y BN, - B
Lz m{w)
- 1/2

=|o) Y a7t =0

n>miw)

for p > 5 as w — 0, which implies (2.65).
Returning to the proof of (2.21), by Holder’s inequality

(2.69) E(Jp, f0) < {B(Jr,/Hy, )P} /P{E(Hr, [w)1}'/9,
where 1/p + 1/g — 1. Write
0 = {ab /e + (8/2)822%}.
Then H,, = #n=2/% = (1,6, + Io82)n~%/5, say. By (2.64) and Fatou’s Lemma,

(2.70) lim sup E{J,, /Hy )P < 1.

w—{)

It remains to show that
(2.71) limsup E{Hr, /w)? < 1.
w—0

Write .
Hr, jw= tE?ZE'EQ/Ew_1 < 6/81,

where 8 is as before and

(2.72) Br = b1/ + (8/2)P 00 + 178 = 1101, + labay, + 075

Define 6y, = ff’} VI, Ban = ff;- |f”|, and 8, = 1161, 41502, +n¢. It is obvious
that 8,, — 6.
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Because 0 < § < §/2,

(2.73) E( sup |6, * —Bnqu)

nzxmiur)

=F ( sup |(1101n + lafon +1 €)1 — (11815 + LBy, +n—<)—1‘1)

n>mi{w)
< E ( sup |[(1(61n — 15} + la(B2n ~ 9271)}712‘”“')
nzm(w)

= Ofam(u)~6=2m)
by (2.44) and {2.50). (2.73) yields
(2.74) Elfzt ~ o717 — 0.
This completes the proof of Theorem 2.1.

The proof of Theorem 2.2 is analogous to the proof of Theorem 2.1 and is
omitted.

2.4  Istimating densities with bounded support

Wa ecan improve the results obtained in the previous sections if we further
assume that the unknown density f has a bounded support. Under the assump-
tions that K is a symmetric, bounded probability density function with compact
support, f ig twice differentinble with bounded continuous second derivative and
bounded support, [ /f < oo, [ |f"| < 00, and hy, — 0, nh, — 00, we can improve
upon the bounds in (2.1). The new bound is given by

(2.75) EJ, < (v (a / ﬂ) N+ 72 [ 17
F ok + (nhy) V),

see Devroye and Gy6rfi {1985).
As in Subsection 2.3 we can get stopping times based on this bound. We
define the stopping rule 7, = first n > 1 such that

(2.76) W22 (i) VR + (8/2) i + 0 < w0,
where éln and éQn are egstimates of 8; and #; respectively, based on X, X5,..., X,.,

and 0 < £ < 1/16. Here the estimates of §; and 85 are

(2.77) Orn = 01 (Rn) = f_oo \/fT

o>
(978) 92;1, = gE)t(hn) _ ] |f'g‘1

—0
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where f, and f, are as before. Note that no truncation of the integral is necessary.
Estimate the unknown density f by

(2.79) fr, (&) = (Tuhr,)” ZK (x — X;)/hr,),

where hp, = c,T_U °. It is quite easy to show that these stopping rules arc

asymptotically optimal and we get the following theorem.
THEOREM 2.3. Assume (2.14) and (2.15). Then as w — 0

i) dw/n, —1 as
i) FET,/n, —

i) limsup Jr,/w <1 a.:
w—0

iv) limsup EJr, jw <1,

w0

u

Proor. The proof is analogous to the proof of Theorem 2.1 and is omitted.

We can also obtain analogous results for a two-stage version of the above
sequential procedure.

3. Data driven bandwidth selection for the two-stage procedure

Recently data driven bandwidth selection has received considerable attention,
Many researchers have observed great potential for automatic bandwidth choice in
kernel density estimation: see Wand and Jones (1995), Cao et al. (1994), Sheather
(1992), and Park and Turlach (1992), and the references they cite.

In this paper so far we have dealt with bandwidths that go to zero at the
optimal rate. Equation (2.4) gives the optimal choice among such bandwidths in
the sense that the resulting bound (H,,) for the MIAE is asymptotically minimized.
Suppose now we want to achieve the bound w for MIAE such that the resulting
H,, behaves as in (2.5). The appropriate nonrandem sample size is given by

(3.1) N = [7 A(K)B(f) [w]*?.
This sample size would work if we used the optimal bandwidth given by ROFT =
c¢*n~1/5 where

c* — [(al)/(2062)]%/5.

Once again the choices of N9¥7 and bandwidth AT depend on the unknown
density f which in turn snggesta the following stopping rule. Let TOPT — first
n > 1 such that

(3.2) n 2B AKVB(F) | n €] < w,
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e

where B(f) is an estimate of B(f) and the estimate of the density is given by
Tf;PT

(3.3) Frove (@ | hpors) = (T9FThypea) 1 37 K((z — X)) /hror)
1

where fngpT is a data driven bandwidth.
Under certain conditions we would like to obtain results similar to those in
Theorem 2.1. The analogues of (2.18) and (2.19), namely

POTTINGTT 1 as.

and
ETIFPT/NOPT 1,

w

as w — 0, follow by essentially the same arguments as for (2.18)} and {2.19), pro-
vided that the optimal bandwidth is estimated as indicated in (3.6) and {3.7)
below, with Ty, replacing both ng(w) and n$¥?(w). However, proving the ana-
logues of (2.20) and (2.21) is much more difficult and so far we have been unable
to obtain the desired results.

We propose a two stage procedure which achieves more of the desired asymp-
totic goals. (3.2) suggests the following two stage procedure. First draw a sample
of size ng — ng(w) ~ m(w) where m{w) is as before. Then based on this sample
estimate B(f) and NOPT. Now we draw a second sample of size n¢¥7 (w), where

(3.4) nCF7 () = smallest integer > [‘r’"A(K}I?(Af)/w]5/2 V o (w).
Estimate f by
(35) fﬂ,?PT(w) (m) - (}/:"anT(w)n?PT(w})_l
no(w)+nf’ T (w) A
by K((z— X3)/hporr ),
ng{w)+1

where f;n?n(w) is a data driven bandwidth depending only on X, Xs,..., X,,,.
Note that we are using only the second sample for estimating the density. The
optimal choice for h,, that minimizes H, is given by hQ"7 = ¢*n~1/5. Once again
since c* is unknown we use the “plug-in” bandwidth

(3.6) R8Pty = Eny (09T () 7H5,
where
(3.7) & = [(ab1ng )/ (2862n,)*7%,

and OAMD and égno are estimates of 01 and #; respectively, based on X, Xy, Xz, ...,
X, For estimating B(f) and &}, we modify our estimates of 6, and 8, slightly.

Take
~ d-n -
gln = f N fn +n 7

"

and



BOUNDING L1 DISTANCE 73

A~ d’“ -
b = ] AT
_dn

B(f) (gln,)gzﬂo /2)1/5-
Then we get the following results.

Define

THEOREM 3.1.  Let n§FT(w) = no(w) + nPFT(w) be the total sample size.
Assume (2.14), (2.15) and O <~ < §/2, Then, asw >0

(3.8) nS P w)/NEFT -1 as.

(3.9) Eng "7 (w) NG — 1

{3.10) hmsupE[J OPT w)‘h ()PT( )]/w <1
w—0

Proor. We have éln — f1 a.s., égn — fy a3 asn — oo, and as w — 0,
NGFPT — oc. Therefore, B(f) — B(f) a.s

ng ™7 (w)/mQF" = {B(f)/B(f)}?

and
g7 (w) — 1] /97T < {B(f)/B(HY2.
Moreover, by our choice of ng(w) we have ng(w)/nF" — 0. This proves (3.8).
To show

EnzopT w)/nOPT —1
it is enough to show that {w®/ZnQT (w)

to showing that

0 < w < 1} is u.d., which is equivalent

(3.11) (T AEB(F)*  0<w=<1} s ui

S0, it is enough to prove that {é‘(}—)p : 0 < w < 1} is ui. for all p > 1. This
follows from the fact that all powers of éln and égn are uniformly integrable, so
the proof of (3.9) is complete,

Next we want to show (3.10). For convenience, abbreviate n by n,. By
independence, for every ¢ > (), if w is sufficiently small (so that ng(w) is sufficiently
large),

OPT( )

(3.12) [ B\ — 1)
= [ B~ 1)
- f S E{E(fn — [ memy) | X1, Xa, ... Xoo]}
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- f ZE{EHfm - .ﬂ [ X]:XBu .. :XnU}I{m:m}}
m
< ZE{ (a [ Vi s,

! (6/2)(33%)2f|f"’| +0(m“2/5))1{m=m}}

= B[(¢3,) (0 + (8/2)02(65)%*ym 5 L, _my]
+ eB[(nfTT) /]
< E|(af1n,)/(286020,))1/®
A{aba(01/02 + 010y /(4020 )) b0/ (7% A(K) B(f))]
+ O(L)ewE[d,,/ %6, 1%

2nyg
< E[0:65,) + 60285, /4] (5w/4) + O(DewE (8, L 1BV, L ].

Now with the modified estimates it remains to show that

(3.13) E(#167,) — 1
and
(3.14) E(0207,) — 1.

The proof of (3.13) and (3.14) is very similar to that for (2.73).
Now let € go to 0 to get (3.10).
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Appendix

‘We did some Monte Carlo simulations for empirical verification. These simula-
tions are related to the results stated in Section 2. We considered i.i.d. observations
from a mixture of normal distributions, f ~ 0.3N(~4,4) +0.4N(0,1)+0.3N(2,1).
A standard normal kernel was used. Although the standard normal kernel does
not satisty the required conditions still it gives quite good results. We had to use
numerical integration for computing 8, and 6, as there are no closed form expres-
sions available for them. To avoid huge computations we restricted ourselves to
the two stage procedure. We used ng{w) = w52 ag the initial sample size and
took £ = 1/32. Fixed bandwidths were chosen as &, = cn™/5 for different values
of ¢. The results show that the choice of ¢ influences the sample size greatly. Four
different values of ¢ were used: 0.5, 0.8, 1.0 and 2.0. Three values of w were used:
0.03, 0.05 and 0.1 . Thirty repetitions were conducted for each combination of h,
and w.
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Fig. A2. Estimated density and true density when w = 0.05, hn = 2.0n~1/5,

We used Splus for carrying out the computations. Plots for estimated densities
and the actunl densities are shown for the following cases: (i) w = 0.03, h, =
2.0n Y5 (i) w = 0.05, hy, = 200715 (iii) w = 0.10, hy = 2.0n7Y% (iv)
w = 0.10, hy, = 0.57 /5. The plots for the first three cases are rather impressive.
The [t of the estimated density to the true density, as judged by the human cye,
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Fig. A4, FEstimated density and true density when w = 0.10, hy, = 0.5071/5,

is quite good. Moreover, as one would expect, the fit gets better as w decreases.
The fonrth case illustrates the sensitivity of the results to the chaice of handwidth.
Because the bandwidth in this case is relatively small the estimated density is
choppier, although it still gives a pretty good idea of the overall shape. As is
typical in nonsequential density estimation, when the underlying density is very
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Table Al. Summaory of the simulation study for the two-stage procedure.

w e Toa g b 8 IAE
nn3 N5 22302 21369.3 3.8632 0.6156 0.04271
0.03 0.8 1638% 15392.0 3.8548 0.6340 0.03048
0.03 1.0 16250 14767.3 3.8545 0.6164 0.03531
0.03 2.0 44544 237127.2 3.8879 0.6234 0.01980

0.05 0.5 6219 5569.2 3.7934 0.4921 0.07101
0.05 0.8 4570 3921.7 3.8200 (.5117 0.06489
0.05 1.0 4532 36454 3.7972 0.5156 0.05870
0.05 2.0 12422 13188.6 3.8084 0.7265 0.03078

0.10 0.5 1100 10191 3.6971 0.9656 0.14361
0.10 0.8 808 #13.9 3.698T7 0.9114 0.12085
0.10 1.0 802 876.3 3.7514 0.8852 0.11084
U.10 2.0 2196 3485.1 3.717T1 0.9210 0.05374

smooth larger bandwidths tend to outperform smaller ones.

Numerical integrations were used to find observed TAE and it was compared
with w. For narrower bandwidths the values of TAE generally are not less than w
as expected, even though they are quite close to w. One possible reason is that
our method does not cstimate #; very well, causing nz(w) to be much lege than
n’,. On the other hand when we take ¢ = 2 the estimates improve significantly,
and in that case the TAE is less than w as expected. This shows the importance of
the handwidth selection. Overall the Lwo stage procedure performs satisfactorily.
In particular, the parameter choices examined here work reasonably well for this
density. It would be of interest to see the extent to which they work well in other
situations, or whether there are better (universal) choices.

In most cases the number of observations required to achieve (or at least come
close to) the desired L; error bound is large but not ridiculously so. Silverman
(1986) gives an example involving 15,000 observations of the height of a steel
surface, taken from Bowyer (1980), and another example with 4763 observed time
intervals between successive micro-earthquakes in an area in California, taken from
Rice (1975). These sample sizes are of the same order of magnitude as those found
in the simulation study.

Nentra. et al. (1978) analyzed data on the effect of fetal monitoring on neona-
tal death rates. The study covered 15,846 babies born at Beston's Beth Israel
Hospital, an illustration that our methods could be applied in a large scale med-
ical study (in this particular instance the densities of certain covariates wonld he
of interest).
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