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Abstract. We employ the empirical likelihood method to propose a modified
quantile process under 4 nonparametric model in which we have some auxiliary
information about the population distribution. Furthermore, we propose a
modified bootstrap method for estimating the sampling distribution of the
modificd quantile process. To explore the asymptolic behavior of the modified
quantile process and to justify the bootstrapping of this process, we establish
the weak convergence of the modified quantile process to a Gaussian process
and the almost-sure weak convergence of the modificd bootstrapped quantile
process to the same Gaussian process. These results are demonstrated to be
applicable, in the presence of auxiliary information, to the construction of
asymptotic bootstrap confidence hands for the quantile function. Moreaver,
we consider estimating the population semi-interquartile range on the basis of
the modified quantile process. Results from a simulation study assessing the
finite-sample performance of the proposed semi-interquartile range estimator
are included.

Key words and phrases: Bootstrap, Brownian bridge, confidence band, empir-
ical likelihood, empirical process, Gaussian process, semi-interquartile range,
weak convergence.

1. Introduction

Let Xi,..., X, be independent and identically distributed random variables
with unknown distribution funetion F' confined to the intcrval [a, 4], where —oo <
a < b < oo. The quantile function associated with F is the function defined by
F~l(s) = inf{t; F(t) > s} for s € (0,1). Under the nonparametric setting, the
standard estimator of the quantile function F~'(s) is the empirical quantile func-
tion F 1(3), where F}, is the empirical distribution function of X3,...,X,. The
process Qn = /n{F,; ! — F~') is referred to as the quantile process. Our focus
ol attention in this paper is to study quantile processes and their corresponding
bootstrap versions under the following model. For the unknown population distri-
bution function F' underlying the random sample X1,..., X,,, we assume that we
have some auxiliary information about F' in the sense that there exist r (r > 1)
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functionally independent functions gy(x), ..., g-(z) such that
(11) Epg(X) =0,
where g(z) = (g1{z), ..., ¢(2))". This model is of interest in that in many situa-

tions, we may have some partial information about the distribution, although we
do not know exactly the distribution function undeslying the sample. For example,
one may know the population mean, or a population quantile, or that the pop-
ulation distribution is symmetric about a known constant. Several anthors have
considered nonparametric estimation of a functional of F' when auxiliary informa-
tion about F is available. For instance, Haberman (1984) considered the problem
of estimating a Fuclidean-valued functional of a probability measure satisfying a
finite number of linear constraints. By extending Haberman’s work, Sheehy (1988)
considered distributions that minimize a distance measure from the empirical dis-
tribution subject to linear constraints. Both Haberman and Sheehy’s works are
based on the minimization of the Kullback-Leibler divergence from the constrained
family of probability measures to the empirical measure of the observations. Under
simple random sampling, Kuk and Mak (1989) considered estimating the median
of a finite population in the presence of auxiliary information. In the context of
linking the empirical likelihood method and auxiliary information available in a
population, Owen (1991) has shown that when gome functionals of the distribution
of the data are known, one can obtain sharper inferences on other functionals by
constrained empirical likelthood. Chen and Qin (1993) have indicated that the
empirical likelihood mcthod can be naturally applied to make more accurate sta-
tistical inference in finite population estimation problems by efficiently employing
auxiliary information. Qin and Lawless (1994) have shown that empirical like-
lihood can be used to perform inference on parameters under a semiparametric
model. Zhang (1995a) has considered the M-estimation problem as well as the
quantile estimation problem in the presence of auxiliary information (1.1) in con-
junction with the method of empirical likelihood. Zhang (19955) hae considered
an alternative estimator F, of F satisfying (1.1) and has established the weak
convergence of the modified empirical process /n(F, — F) to a Gaussian pro-
cess. Recently, Zhang (1995¢) has proposed a modified bootstrap procedure in
the case where we have auxiliary information (1.1) and has established the asymp-
totic validity of the modified bootstrap procedure by proving the almost-sure weak
convergence of the modified bootstrapped empirical process.

The empirical likelihood method for constructing confidence regions in non-
parametric settings was introduced by Owen (1988, 1990). For a more complete
survey of developments in empirical likelihood, see Hall and La Scala (1990) and
Owen (1991).

There are two objectives in this paper Onr first obhjective ig to employ the
method of empirical likelihood to propose and study, in the presence of auxﬂlary
information (1.1), a modified quantile process defined by Qn = ValF 1 - l)
To explore the asymptotic behovior of O, we establish, by representing Q,b
the mean of a sequence of independent and identically dlstr1buted stochastic pro-
cesses with a remainder term of order o,(n~1/%), the weak convergence of Qn to
a Gaussian process on a proper subinterval of [0, 1] not containing the endpoints.
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One advantage of the modified quantile process Qn over the standard guantile
process (2, is that the asymptotic variance function of ﬁ'n* ! is uniformly smaller
than that of F, !, which enables us to get sharpen inferences on the quantile func-
tion F '. Our second objective in this paper is to bootstrap the modified quantile
process Qn To justify the bootstrapping of the process Qn we show that the
limiting process of the modified bootstrapped quantile process coincides with that
of the original process Q. This result is used to construct asymptotically correct
bootstrap confidence bands for F'~! with F satisfying (1.1). Other applications
include estimating quantiles and the semi-interquartile range in the presence of
auxiliary information (1.1).

This paper is organized as follows. In Section 2, we describe the profile
empirical likelihood under {1.1) and propose a modified quantile process Qn =
VR(EY — F~1) with F satisfying (1.1). In Section 3, we establish the weak con-
vergence of Q.. to a Gaussian process. In Section 4, we bootstrap the modified
quantile process Qn and establish the almost-sure weak convergence of the mnd-
ified bootstrapped quantile process. As an application of this result, we propose
in Section 5 the bootstrap confidence bands for F~! with F satisfying (1.1). Sec-
tion 6 deals with estimating the semi-interquartile range under (1.1}, Simulation
results are presented in Section 7 to demonstrate the performance of our proposed
semi-interquartile range estimator for small samples. Finally, proofs of lemmas
and theorems appear in Section 8,

2. Profile empirical likelihood

Let X1,..., X, be independent and identically distributed random variables
with distribution function F' confined to the interval |a,b], where —o0 < o <
b < oo. Let p = (p1,...,pn) denote a multinomial distribution on the points
Xy,..., X, and put L(p) = [}, p;. Under (1.1), since Epg(X) = 0, the profile
empirical likelihood 7 is defined to be L = max, L(p) = max, [[._, p;, subject to
the restrictions Y ;" p; = 1, >0 pg(X;) =0, and p; > O for¢ = 1,...,n. If

0 is inside the convex hull of the points g(X1),...,g(X,), then L exists uniquely.
A little calculus of variations shows that L = I—[?_l Pi, where p; = %m for

1<i<nwithn=(n,...,%)" being the solution of

{2.1) Z%Q(X Zm (X} =0.

Now let

“ Iix, <)
2.2 id[x, <o T e
(2.2) Zp [Xi<a} = Zl+ng(X)

then F, can be regarded as an alternative estimator for F satisfying (1.1). On
the basis of F},, we propose, in the presence of auxiliary information (1.1), to
estimate the quantile function F~1 by F ', which will be called the modified
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empirical quantile function. Note that in the absence of (1.1}, since £, reduces
to the standard empirical distribution function F,, I:",,: ! reduces to the standard
empirical quantile function F !, Throughout this paper, we refer to the process
Qn = vn(F7* — F71) as the modified quantile process.

Zhang (19956} has established the weak convergence of the modified empirical
process \/ﬁ(ﬁ‘n — F) to a Gaussian process in Dla, b] by expressing I, as the mean
of a sequence of independent and identically distributed stochastic processes with a
remainder term of order 0,{n"1/2). These results are summarized in the following
theorem.

_ THEOREM 2.1. If ¥ = Elg(X)g¢™(X)] is positive definite, then we can write
Folz) — F(x) = £Y0,Yi(z) + R.(z), where Yi(@) = Ix,<q — Flz) —
U ()27 g(X;), Ulx) = Elg(X)}x<x], and the remainder term R, (x) satisfies
SUDg<pch | Rn(T)| = 0p(n~Y2). As a result, /n(E, — F) B W on Dla,b], where

W is o Gaussian process with continuous swinple puths und sulisfies
EW({x)=0, a<xz<hb,
EW(2)W (y) = F(min(z,y)) — F(z}F(y)
—Blg" (X x <] BT Elg(X)x<y)l,  a<ay <b.

In this paper, the norm of a n; x ny matrix A = (@ij)n, xn, is defined by
Al = (072, 372 a3)'/? for ny,na > 1. Moreover, we use o and O to stand
for o, and Oy, in bootstrap probability under E,.

We close this section by establishing the uniform strong consistency of the
modified empirical quantile function F.7! over a subinterval of [0, 1] not containing
the endpoints. This result is a part of Lemma 8.6 in Section 8.

THEOREM 2.2. Let 0 < o < B < 1 be given. Suppose that ¥ =
Elg(X)g™(X)| is positive definite and E|lg{X)||? < oo with some g > 2. Sup-
pose further that F has continuous positive density [ on [F~ (), F~Y(3)]. Then,
as n — oo,

sup |[E7Hs)— F7Y(s)| = o(n YY)  as.

T
assLp

3. Weak convergence of Qn

We begin with cxpressing ﬁ,,;‘ ! ag the mean of a scquence of independent
and identically distributed stochastic processes with a remainder term of order
op(n1/?) on a subinterval of [0, 1].

THEOREM 3.1. Let 0 < a < A < 1 be given. Suppose that ¥ =
Elg{X)g™(X)] is positive definite and F has continuous positive density f on
[F~Ya) — ¢, F7Y(B3) + €] for some ¢ > 0. Then, one can write

(3.) Fris) = F7Ms) = = S Hils) +rals)
=1
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where

YilF ) Ixcr-io) =8~ BleT (X x, <p-1(y) | B (X))

i) = = FF1(s)) FE(5))

and the remainder term 7, (s) satisfies

(3.2) sup |rp(s)] = op(n “1/2).

ass<d

Theorem 3.1 enables us to establish the weak convergence of the modified
quantile process ), to a Gaussian process in Do, 4.

THEOREM 3.2. Under the same conditions as in Theorem 3.1, as n — oc,

VRET =P S WET/S(ET) on Dla. ),
where W is the Gaussian process defined in Theorem 2.1.

Remark 3.1. In the absence of auxiliary information (1.1), Theorem 3.2 re-
duces to Oy E>B’/f{F_1) in D[, ] (Bickel (1966)), where {B(£),0 <t <1} isa

Brownian bridge.

Remark 3.2. For fixed p € (0,1), if £ = E[g(X)y7(X)] is positive definite
and F has a continuous positive density f in a neighborhood of F '(p), then

Theorem 3.2 1mphe€ that as n — oo, vr(F 7 (p)—F ' (p)) A N(0,02), where o =

{p=p)=1f " g7 (@)dF @) By ()97 (O] ([ g@)dP @)} 2F ().
This result was alqo established by Zhang (1995a).

Remark 3.3. For s € [o, ], let
od(s) = 2L =8
’ G O)E
s(1— s}~ E[QT(Xl)I[XlgF—l(s)]]Z_lE[g(Xl)I[X]SF-'l(s)ﬂ
[FOE~H{s))]? "

r>1.

al(s) =

Theorem 3.2 indicates that the asymptotic variance function o2(s ) of F H(s) is
uniformly smaller than the asymptotic variance function cro(s) of I, ) for all
s € [a, 3]. Furthermore, it can be shown that o2(s) < o2_,(s) ior r > I and
all s € [er, 3], which indicates that the more informatlon we have, the smaller

asymptotic variance function of Fn_ L would have.
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4. Bootstrapping the modified quantile process Qn

On the basis of the modified empirical distribution function F),, Zhang (1995¢)
proposed a modified bootstrap procedure in which we generate bootstrap samples
from F’n, instead of from the standard empirical distribution function #,. Thisg
modified bootstrap procedure is employed in this section to bootstrap the modified
quantile process Qn. Specifically, let (X7,..., X}) be a random sample of size n
from F,,, then the auxiliary information (1. 1) about F carries out to F}, in the
sense that B g(X[) = S pig{X,) = 0 by (2.1). In analogy with the approach

in which we propose F, in (2.2), we propose the following modified bootstrap

empirical distribution function &, based on X7,..., X:
. "L ixr<a)
(4.1) Glz) = ZPJI[X r<z] = Z m
where p7 = nm———— for 1 <j <nwith A={X,..., Ar)7 being the solution of
1 1 .
(4.2) -~ JZ; WQ(XJ- )=0.

Based on (,, we define the modified bootstrap quantile process by Q =
Vva(G;t — F1). Note that in the absence of auxiliary information (1.1), Q:‘l
reduces to the standard bootstrapped quantile process @ = /n{G;' — F; 1),
where Gn(x) = L 37| Iixs <4 with XJ ~ F, (Bickel and Freedman (1981)).

Zhang (1995¢) has established the almoqt sure weak convergence of the mod-
ified bootstrapped empirical process /n (G, — I,) to a Gaussian process in D|a, b]
by expressing &, as the mean of a sequence of independent and identically dis-
tributed stochastic processes with a remainder term of order o} (n='/%). These
results are summarized in the following theorem.

THEOREM 4.1. If ¥ = E[g(X)g"(X)] is positive definite and Elg(X)||? <
oo with some g > 2, then along almostﬂ all sam?ie sequences X1, Xa,..., given
(X1,...,Xy), as n — oo, we can write Gp(x) ~ Fo(z) = + 377, Y7 (7) + H;,(2),
where Y—J*(CC) — I[X;gm] — n(l) ( )E lg(X*) Un(l‘) == EFn{ (XI)I[XTS:C]L
T, = Ep[g(XDe"(X])], and the remoinder term R (x) satisfies
SUD < pep B (T)] = U;(n*lm) almost surely. As a result, along elmost all sam-

ple sequences X1, Xa, ..., given (X1,...,X,), asn — oo, \/ﬁ(én — I:‘n)gW on
Dla,b], where W is the Gaussian process defined in Theorem 2.1.

On the basis of Theorem 4.1, we can explore the asymptotic behavior of the
modified bootstrapped quantile process @)%, by deriving the bootstrap versions of
the representation and the weak convergence asg given in Theorems 3.1 and 3.2.
We state our results in two theorems.
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THEOREM 4.2. Let 0 < a < 8 < 1 be given. Suppose that ¥ =
E[g(X)g7 (X)) is positive definite and E[|g{X}|* < oo. Suppose further that F' has
continuous positive density f on [F~1(«) — e, F7Y(3) + €] for some € > 0. Then,

along almost all sample sequences X1, Xa, ..., given (X1,..., Xyp), as n — o0, one
can write

R R 1 n
(43) Gl (s) — By () = - S HI(s) + ()

i=1
where
*® —1
() = ()
f(E~Hs))
_ Ixpern - Fo(F7H(s)) — Be Lo (X 1xr <1 B0 9(XT)
F(F~1(s)) ’

and the remainder term v}, (s) satisfies
(4.4) sup |ri(s)|=oi(n V%) as.

a<ssp

Theorem 4.2 enables us to establish the almost-sure weak convergence of the
modified bootstrapped quantile process Q:‘L This result, together with Theorem
3.2, indicates that the limiting process of ¢, = VRiG — ﬁ;l) agrees with that
of O, = ValF-1 — F~1), thereby we can claim that @, has the same limiting
behavior as Qn

THEOREM 4.3. Under the conditions of Theorem 4.2, along almost all sam-

ple sequences X1,Xa,..., given (X1,...,Xp), as n — o0, \/ﬁ(égl — ijl)g

W(FY/f(F~) on Dia, 8], where W is the Gaussion process defined in Lheo-
rem 2.1.

5. Confidence bands for F'~* in the presence of (1.1)

In this section, we demonstrate how the result of Theorem 4.3 can be employed
to set confidence bands on F~! with F satisfying (1.1). According to Theorems
3.2 and 4.3 and the continuous mapping theorem (Theorem 5.1, Billingsley (1968),
p. 30), we immediately have the following result.

THEOREM 5.1. Let 0 < o < B < 1 be given. Suppose that ¥ =
Flg{X)g™(X)] is positive definite and F has continuous positive density f on
[F~Ya) — €, F7L{B) + €] for some € > 0.

~ -1
() $UPacecs VAIET (8) = F1(8)] 2 suppeacs | Hreriop |-
(i) If E||g(X)||* < oo, then along almost all sample sequences Xy, Xo, ...,

Q"!‘;?JE'I‘I (Xla e an)'l as n - 00, Supaésgﬁ ﬁlé;l(q) - Fn_l(s)l 2}

W(F s
SUPn<e<g |f—((}7’T((.§r)))l|
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Part (i) of Theorem 5.1 indicates that construction of confidence bands for
F~! requires of finding the exact distribution of SUPagsgﬁip}/(g’: 1(25))))| and its
quantiles. Unfortunately, no simple closed-form expressions for these quantiles are
known. Nevertheless, an application of the bootstrap procedure described in Sec-
tion 4 can overcome this difficulty. Indeed, Theorem 5.1 implies that the limiting
distribution  of  sup,<y<p Vn|Gol(s) — FE7s)| agrees with that of
SUDy <5< ValE7Y(s) — F~1(s)| and thus we can approximate the quantiles of
SUP < < VRIFT (s) — F~'(s)| by those of sup, << g \/ﬁl('}:;l (8) — F71{(s)|. With
this heuristic argument in mind let vl a = inf{t; P*(y/nV; <t} > 1 — a} with
O<a<l V)= Gt (s) — F, ' (s)], and P* stands for the bootstrap
probability under I, Then under the assuniptions in Theorem 5.1 and the addi-

tional assumption that the distribution of sup,«,<g ’%}f-:]((—))))

can be shown from Theorem 5.1 that as n — oc, limn e PSUD, 2,24 JnlF- 1(5)
F=(s)| <of_,) =1—a. As aresult, a (1 — a)-level bootstrap confidence band

for F~ on [a, 3] with F satisfying (1.1) is given by J* = (E7 () - ”1 N O
b “} Note that according to Theorem 1 of Tsirel’son {1975), the di‘stribution

of sup,<.<g |ﬁ| is continuous except perhaps at the lower endpoint of its

support. In the absence of (1.1), the bootstrap confidence band [7* reduces to the

standard (1 — ) level bootstrap confidence band for F~! on |a, 3| based on F 1

T* = (B () B Moo poigy k\;ﬁ ), where k' = inf{t; P*(\/nV* < ) > 1—a}

with V. = %upagsgﬁ |G Hs) — F71(s)|.

Remark 3.3 predicts, for the same confidence level 1 — ¢, a certain amount
of narrowing in the proposed bootstrap confidence band g oas compared to the
standard bootstrap confidence band J7*.

6. Estimating the semi-interquartile range in Lthe presence of auxiliary infurmalion

The population semi-interquartile range R = £(F~1(0.75) — F1(0.25)) is an
alternative to the population standard deviation o of F' as a mcasurc of disper-
sion. Under the nonpdrdmetric setting, the standard estimator of R is the sample
analogue R,, = $(F, (0.75) — F,71(0.25)). However, in the prebencc of auxiliary
information (1.1), we propose to estimate R by K, = %(F HO.7h) — F7H0.28)).
The bootstrap replicdtion of R, is R = %((;',;1(0.75) ~ G;1(0.25)). To study the

asymptotic behavior of R, and B’n, we first present the following theorem which
is a straightforward consequence of Theorems 3.2 and 4.3.

THEOREM 6.1. Let 0 <Cgy < -+ < g < 1. Suppose that & = E[g(X)g™ (X}]
s positive definite and F has continuous positive density [ in neighborhoods of

F~Yaq),. .., F Y{q).

(i) Asn > oo, vR(E T g)) FHa),. . Bylae) F~l(ax)) > Ne(0, B,
where 0 = (0,...,0)7 and B = (Byjlexk with by = {QE(]. - q;) —
E[QT(X)I[xgi}—l(qi)]]z_lE[Q(X)f[XgF—l(qj)]]}/{f(F_l(Q'm})'f{F Ha))} fori <
and by = by for i > 4.
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(i) If E|lg(X)||® < oo, then along almost all sample sequences X1, Xa, ...

given (X,,...,X,), asn — oc, \/ﬁ(égl(ql)—ﬁgl(q]),... ,G;l(qk)*ﬁ‘gl(qk))z
N (0, B).

Theorem 6.1 and the Cramér-Wold device enables us to establish the asymp-
totic distribution of R.. and its bootstrap counterpart, as given by the following
theorem.

THEOREM 6.2, Suppose that ¥ = Elg{X)g™(X)] is¢ positive definite and F
has continuous positive density [ in neighborhoods of F~1(0.25) and F™(0.75).

(i) As n — oo, V(R — R) D N(0,0%), where 0% = 0% — (h(0.25) —
BO.TS) S H(A0.25) — hOT) with op = GI(FOB)]* +
Slf(FH075)72 — 312{f(F_l(0-25))f(F"1(0-75))]_1 and  h{y) =

{Eg( X x<p—10 VA2 FH gt
(i) If EHg(X}H3 < oo, then along almost all sample sequences X1, Xa, ...,

given (X1,..., X,), asn — o0, /n( w—Rn)—i‘N(O,Ufﬂ_{).

Remark 6.1. In the absence of (1.1), R, = R, and Part (i) of Theorem

6.2 reduces to the well-known result about the asymptotic distribution of R,

(Serfling (1980), p. 86), that is, /n{R, — R) gN(O,U%). Likewise, Part (ii) of

Theorera 6.2 reduces to the standard bootstrap asymptotic distribution of R},

fe, Vr{RE — Rn)RN((}, o%) almost surcly. Note that the agymptotic vasri

ance of R, is less than that of R, unless h(0.25) = h(0.75). Also, note that
2

the asymptotic relative efficiency of R, relative to R, is e(Rn,Rn) = ;? =
1 —{(r(0.25) — h(0.75))" 7 L(h(0.25) — h{0.75))}/c%.

As an application of Theorem 6.2, let us consider estimating the semi-
interquartile range R when (i) the population mean yy = EpX is known or (ii)
the population median mg = F~1(0.5) is known. Specifically, suppose X|,..., X,
is a random sample from a population with unknown distribution function . We
assume that F has continuous positive density f in neighborhoods of I *1(0.25)
and F~1(0.75). When p; is known, we have r = 1 and g(z) = g1(z) = = — o in
(1.1). When mq i8 known, we then have g(z) = Le<me] = 0-3. We now consider
three special cases.

Exampte 6.1. Let Xq{,...,X, bc a random Samplc from a N{pp,0%) =
N{mqg, o?) population, then since h(0.25) = h{0.75), (J' . = 0%, for both settings (i)

and (ii) described above. As a result, asymptotically, thexe 18 no improvement of
R, over R,, whether we know the population mean or the population median.

Ezxample 6.2. Suppose that Xy, ..., X, 1s a sample from a Gamma distri-
bution T'{v, p) with density f(z) = ﬁ%ﬁaﬂ”’ e P for x> 0, v > 0, and p > 0.
Let f, and F, be, respectively, the density and distribution function for a I'(~, 1)
distribution, then it is easy to see that F(z) = F{pz), F 1{z) = %F{l(;c), and
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Fig. 1. The curves labeled “Gamma (mean)” and “Gamma (median)” correspond to
the asymptotic relative efficiencies e1{y) and ea(y), respectively, whereas the curves
labeled “Weibull {mean)” and “Weibull (median)” are, respectively, the asymptotic
relative efficiencies eg(v) and ea(~).

FF=Hm)) = pfo (FHx)). Tn addition, we have po = %, mo = %F{l(O.S), and
Fr(0.78)— F71(0.25)
R= T :
(i) When the population mean g is known, according to Part (i) of Theorem
6.2 and Remark 6.1, the asymptotic relative efficiency of R, relative to &, is

[F=1(0.75) — F1{0.25)]
i5 N 15 ~ 1 ’
[f(FH026))]17  [f(FFH0.78))]2 £y (FyH(0.25)) £, (F H(0.75))

which is independent of the scale parameter p. When the shape parameter -y is
equal to 1, or equivalently, when the population has an exponential distribution
with mean iy = %, it can then be shown that e(1) = 1 — $(log3)? = 0.54739.
Figure 1 shows the curve of e1(7) for v € [0.01, 3, indicating that e,(7y) attains
its minimum around ~ = 0.46 with e;(0.46) = 0.44597 and becomes larger for ~y
away from 0.46.

(i) When the population median mg is known, the asymptotic relative effi-
ciency of }SL,,, relative to R, is

1-%-0,?T
15+ 1.5a% — a,

where ay = fy(F,1(0.25))/f,(F, *(0.75)). ea(7) is also independent of p. When
¥ — 1, ea(1) — 5/6 — 0.83333. Tigure 1 shows that ex{v) is increasing in ~.

ealy) = e( R, FA?n) =

3
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Ezample 6.3. Suppose that Xip,...,X, is a sample from a Weibull dis-
tribution W, p) with density f(z) = 53:7‘16_“&/ ? and distribution function
Flz)=1—e /7 forz >0, v > 0, and p > 0. It is seen that py = p/"T(1 + %),
mo = (plog2)'/7, FIF~Y () = g 'T(L + 2)(1 — y)[-plog(l -~ »]O V7, and
R =3p""[(log4)'/” — (log 3)'/"].

(i) When the population mean fq is known, the asymptoiic relative efliciency
of R, relative to R, is, by Part (i) of Theorem 6.2 and Remark 6.1,

63(’7) = e(Rnu Rn)
4812 (1 + 1)
-1 v

F(1+3) T2 (1+l)
Y ¥
F]_+]_/.-Y(— log 0.75) - 0.25 F1+1/'Y(10g4) — 0.75 2
3(—log0.75) 0~ /v (log )0-107%

' SR 1 —(v—=1)/7"
(log 3) + 9(log 4)~R0=1/Y _ 9 (log 3 log 4)

where Fy41/, is the distribution function for a (1 + %, 1) distribution, as defined
in the preceding example. Note that e3(~) does not involve the scale parameter p
and eg(1) = 0.54739 for an exponential distribution with mean gy = p. Figure 1
shows the curve of e3(7y), indicating that e3(7) is minimized around v = 0.78 with
€3(0.78) =~ 0.49348 and is getting larger and larger when the shape parameter -y is
away from 0.7%.

(ii) When the population median myg is known, the asymptotic relative effi-
ciency of Rn relative to R, is

1+ 02
1.5+ 1562 — b,

34(7) = e(Rm Rn) =

where by, = 3(log £/log4)""V/7. e4() is also independent of p. When v = 1,
es(1) = 5/6 = 0.83333. The curve of eq(7y) is superimposed on those of e1(7),
ea(7), and es(7) in Fig. 1, suggesting that e4(7) is increasing in -y as ex{7) is.

Remark 6.2. Examples 6.2 and 6.3 along with Fig. 1 appear to indicate that
in the sense of achieving a greater variance reduction, the information about the
population mean is, in general, more uscful than that about the population median
for estimating the semi-interquartile range R. The simulation results in the next
section also support this phenomenon.
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7. A simulation study

To evaluate the finite sample properties of the proposed semi-interguartile
range estimator R, and to compare R,, with the existing standard estimator R,,
in the presence of auxiliary information (1.1}, we perform a small simulation study
to verify the asymptotic results of Theorem 6.2 and Romark 6.1 in moderate
samples. Specifically, we consider estimating the semi-interquartile range R in
situations corresponding to Examples 6.1 to 6.3. Recall that (i) if the population
mean gy is known, g(@) = = py, while (ii) if the population median my is known,
9(x) = Ijzame) —0.5. We now consider the following four population distributions:

(a) The population has the standard normal distribution N{0,1) with (i)
g(r) = w and (i) g(x) = Iz<o) — 0.5.

(b) The population has the standard exponential distribution E(1) with (i)
g(z) =2z —1land (ii) g(z) = ljz<iogq — 0.5.

(c) The population has the Gamma distribution I'(7y,1) with v = 0.46. In
this case, we have (i) g{z) = = - 0.46 and (ii) g(x) = Ijz<0.19362) — 0.5. Note that
v = 0.46 approximately minimizes e;(y) in Example 6.2.

(d) The population has the Weibull distribution W (v, 1) with v = 0.78, yo =
{1 + 7) 1.15432, and mg = (log2)1/"f = 0.62507. In this case, we have (i)
glx) = x — 1.15432 and (i) g(x) = T.zo.e2s07 — 05 Notice that v = 0.78
approximately minimizes e3(%) in Example 6.3,

This simulation study aims to compare the performances of R, and R, by
examining their biases, variances, and relative efficiencics. In our simulations, we
generate 1000 independent sets of Monte Carlo random samples of size n = 35
from each of the four populations described above. For each population, based
on 1000 catimates from simulation, we evaluate the biases and variances for R,
and R,,. To obtain the corresponding bootstrap estimated biases and variances,
we generate, for each simulation and population, two sets of 1000 1ndependent
boolstrap samples according to #, and ﬁn, respectively. All computations were
done in double precision FORTRAN and the simulation results are summarized
in Table 1 for setting (i) and in Table 2 for setting (ii).

InLables 1 and 2, Bias( ;) and Var(R, ) stand for, respectively, the average of
1000 biases of Ry, and the sample variance of 1000 estimates R,,, whereas Bias(R,,)
and Var(R,) stand for, respectively, the average of 1000 biases of Ry ‘and the
sample variance of 1000 estimates R,. In addition, we use Blas(R ) and Blas(R )
to represent, respectively, the averages of 1000 bootstrap estimates of the hias
of R.. and that of R... Here, each hootstrap estimate of the hiag of B, (Rn) is
the difference between the average of the 1000 bootbtrap rephcatlonb R"‘ (R:)
and the estimate R, (R,). Similarly, we use Var(R,) and Var(R } to represent,
respeetively, the averages of 1000 bootstrap estimates of the variance of R, and
that of R,. Moreover, e( Ry, R,,) denotes the relative efficiency of R, relative to
R, ie., e(Rn, R,) = Var(R,,)/ Var(R,).

For both settings (i) and (ii), the results of the simulation in the normal
case are roughly as were expected in Example 6.1, though there is a slight im-
provement of f%ﬂ over H, in terms of their biases and variances. In all other
three cases under settings (i) and (ii), R, produces appreciably smaller biases
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than H,, and, as anticipated by the theory in Theorem 6.2, the variances of i,
are all considerably smaller than those of K,. Furthermore, when the population
mean is known, the relative efficiencies in the exponential, Gamma, and Weibull
cases are, respectively, equal to 0.57303, 0.50158, and 0.51896, which are not far
away from the corresponding asymptotic relative efficiencies 0.54739, 0.44597, and
0.49348 as described in Examples 6.2 and 6.3. Moreover, when the population
median is known, the relative efficiencies in the exponential, Gamma, and Weibull
cases are, respectively, identical to 0.84341, 0.77465, and 0.79325, as compared to
the corresponding asyvmptotic relative efficiencies 0.83333, 0.72877, and 0.77194.
These facts indicate that the proposed estimator R, has significantly improved
the standard estimator R,, in the presence of auxiliary information (1.1), and that
the information about the population mean is more useful than that about the
population median for estimating R in the sense of achieving a greater variance
reduction, thus supporting the phenomena in Examples 6.2 and 6.3 and in Fig. 1.
Finally, with regard to cstimating the biascs and varlances of Ry, and R,, Tables 1
and 2 reveal that the modified bootstrap estimated biases and variances for R,
work better than the standard bootstrap estimated biases and variances for I,
although, on the whole, the booistrap estimated variances work betler than the
bootstrap estimated biases for both R, and f%n. In general, biases are harder to
estimate than variances and we may need more bootstrap replications to obtain a
good estimate of bias.

8. Proofs

We first introduce several lemmas, which are used in the proof of the main
results. Here we only present the proofs of Lemma 8.5 and Theorem 3.1. Other
proofs are available from the author.

TeEvMa 1. If N = Eg(X)g"(X)] +4s positive definite, then n =
RHIYT L 0{Xa) +op(n ). As a resull, Jn 5 N(0,51).
Lemma 8.2, Suppose & = E[g(X)g™(X)] is positive definite and
E|lg{X}||? < co with some ¢ > 2.
(i) maxi<icy (X3} = o(n'/?) a.s.
(ii) n =o(n Y9) a.s
(i) maxi<aga 177 g(X0)] — (1) 0.5

LEMMA 8.3. If E|lg(X)||? < oo with some ¢ > 2 and h is a measurable
function such that E[|h{X)|||g(X)||*¥] < 0o for some k € [0,4], then
(i) Bz XX < 0o a.s. for large n;
(it) Ep [R(X])|g(XT)I*] = E[R(X)/lg(X)|*] + o(1) a.s. as n — oo.

LemMa 8.4 Let Ep = Ep [g(X{)g7(X])]. Supposc & = E[g(X)g"(X))] is
positive definite and E||g(X)||? < oo with some g > 2.
(i) With probability 1, %, = £ + o1} as n — oo and X, is positive definite
for large n.
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(i) =, = 1= ® + o) with probability 1 as n — 00,
(iii) For almost all sample sequences Xy,..., X, and given (X1,...,X,), as
n — 00,

1 . * * i, —
;Zg(Xj) +opn™?) as  and

max INTg(X7} = op(1)  as.

As a result, for olmost all sample sequences X5,...,X,, as n — oo, \/ﬁ)\—a
N{0,271).

LEMMA 8.5, Let0 < a < f§ < 1 be given. Suppose & = Elg(X)g" (X)) is
positive definite. X
(i) supgea<n [Fulz) — F(z)| = Op(n'/2).
(1) supy<sep [Fn(Frt(s)) — sl = Op(n).
(i) If F has continuous positive densily f on [F~Ha), FY(B)], then
sUPascp [ £y H(8) = F1(s)| = Op(n™1/2).
(iv) IfF has continuous pesitive density f on [F~1{a)—¢, F(B3)+¢] for some
> 0, then for uny A > 0, SUPF-1(a) _¢/2<a<F-1(8) /2 SUP|y—z|<An-1/7 | Fn(®) —
Foly) = F(z) + F(y)] = 0p(n~1/2).

Proor. Part (i) is a straightforward consequence of Theorem 2.1. For Part
(ii), applying Lemma 8.1 gives

(8.1)  sup |FL(F,s) —s| < max sup | (X)) — sl
agsf P P (X o) <SP (X ()
SJQ:”;W (X(i))mpn(x(i )l

= sup p; = Oy(n™"),
1<i<n

where X1y < -+ < X ( ) are the order statistics of X1,..., X, and X = a.
Turning to Part (111), rt (i) and Lemma 8.1 yields

(8.2) A, = max sup s — F(X3)]
1£z£nﬁ (X(im)) <8< P (X i)
<2 sup [Fn( ) — F(x)] + 11252(%@ - Op(nfl/z).

a CB

Since F' has continuous positive density f on [F'{a), F-Y{3)], f{(F '(s)) is
bounded away from zero on [a, 8], which, together with (8.2), implies that

(8.3) sup |Ft(s)— F ' (s)|
*<s<p
S max sup | Xy — F7(s)

B X n)<sSF (X y)
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e 11213&}&;1 R sup A !Fﬁl(F(zYu))) Fﬁl{3)|
- — Fn(.X(i,l))<S§Fn(X(i))

1A

s LD _]—
{‘; F1(s))

To prove Part (iv), let 6, = An~"/? and {m,} be a sequence of positive integers
such that m, = [n?] with 6 > 1, where [n?] denotes the largest integer less or
equal to n’. We first divide the interval |[m, {F =) — ¢/2}]/map, [ma.{F1(5) +
€/2} + 1] /m,.] into subintervals T; = [l tsq] for i =0,1,...,d,. — 1, where #; =
([ma{F~Ye) — €/2}] + k)/my, for k = 0,1,... d, with d,, = [m,{F~1(8) +
¢/2} + 1] — [mp{F~*{er) — €/2}]. We then subdivide each interval [t; — [mné, +

1£5n+qﬁxan)_<%xn—ﬂ2y

1) /1y ti+mpbp+ 1] /my] for ¢« = 0,1, ..., dy, into subintervals Iy — (£, y541y] for
J=—bn,...,b0p—1, where t;; =1t; +~—— for j = —=by,,..., b, with b, = [m,6, +1].
Now let

Hulz,y) = Fu{z) = Foly) — Fz) + F(y),
Ko = 0%i S, by <3<by [l b))
(8.4) a; = Fltig) — F{ti),  ai; = Fltige) — F(t),

1= 07--':dn7 J: “bna'“abna
Zije = Yi(ts) — Yi(ti;),
i= 0, dps = —bproibny k=1,2,....1
where Y}, is defined in Theorem 2.1. Since F has continuous density f on [F~'{a)—
e, F~Y(B)+¢), fis bounded on [F~!(a) —¢, F 1 (B8)+¢|, Le., f(z) < My forallz in
[F~'{a) —¢, F~Y(3) +¢| with M being some constant. Furthermore, applying the
Mean Value Theorem gives maxg<i<g, @i < %ﬁ and maxg<;<q, MaX_p_ <;<b,

ti; < ?j\ni_ for large n. These facts, along with the monotonicity of F and F,
implies that, for large n,

2M
(8.5) max max  |H(z,y)| < Ko+ —2L.

Dir<tipa iy <u<tay o ey
Inequality {8.5) further implies that, for large n,

(8.6) gup sup  |En(x) — Fuly) — Flz) + F(y)|
F=Ha)—e/2<a< F-1(f)+e/2 [y—z|<n

= K, + o(n~12).

oM
< K+ =L

in

Thus, in order to prove Part (iv), it is enough to show that K, = o,(n"'/2). For
this purpose, by (8.4) and Theorem 2.1, we have

e
L3N = Bl )~ Bt
Zzzjk

(8.7) K,= max max
0<i<dy —bn<i<bn

< max

+ 0,(n"4/?),
0<4<d,, —bn <7<b-n
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It now suffices to show that IAX0 <4<, MAX b, <5 <by, 23 01 Zig| = op(n™1/2).
By (8.4) and the definition of Y}, it is easy to see that

1 n
- Z Zijk

(8.8) max max
0<i<dn —bn<j<bn

< max
0<i<d,, —by <g<bn

%Z{ Uixse) — Lixpzen) — (F(t) - F(tijﬂ}‘
k=1

+ max max

T -1
0<i<d, —bpoi by E[g (Xl){I[Xlﬁti] - I[Xlgtij]}]g

Moreover, il can be shown by the Mean Value Theorem that

(8.9) oax max, Var(lix,<u) — Iix a0

1
< - .. < .
Dg‘]l.%)én —b, <j‘<b IF(t'L F(tq,.?)l ) Mf (511 + ——m )

23

For any ¢ > 0, using (8.4), (8.9), and Bernstein’s inequality (Serfling (1980),

p. 95) gives
= 1
Z P ( 7. Mmax  max > E)
0<i<d, —by <j<h,
> 6,,,715)

Lt

X s Y MUixese) — Tixct)] — [E() — Flt)]]

k=1
oo dy by i
<33 NP (

Y Alxusty — Iixesen,)) — [F(6) — Flzi)l}

n=114=0 j=—b, k=1
i 522
< QZ(dn—i— 1)(2b, + 1}exp | — " 1 < oo,
n=1 2M (8, +mat) + gtSn&‘

which, along with the first Borel-Cantelli Lemma, implies that

(8.10) max  max
0i<dn —bn <j<hy

Z[I[Xk<f] —ixp<ry)] — [F(t) — F(ti)

=o{n %) as

To deal with the second term in (8.8), applying (8.9) and Cauchy-Schwarz’s in-
cquality gives, for 0 < s < r,

811 max  max [Elgs(X1H{Tx <o) — Ix <]

DSiSdn _b'n S.?S,bn

< [Blgs(X0)*'? | max  max IF(m—F(tij)Wﬂ

— O™V,
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Let 3= — (%) pyp, combining (8.11) and the central limit theorem gives

(R12) max max
0<Li<dy —bp<i<hy,

1 T
Elo™ (X4, <o) — Iixoze ) HE T (H kzlg(Xz«)) ‘

st
<3 i e, EILC0) v - T

s=1 =1
1 i
Eng(Xa-)
T k=1

(n—3/4)'

4

Combining (8.8), {8.10) and (8.12) yields

Z ka

which, together with (8.7}, implies K, = o,(n~*/*), and this completes the proof
of Lemma 8.5.

rax = op(r 1/2) + Op(n_:iM) = op(n_”z),

0<i<dn —b,,<3<b

LEMMA 8.6. Let 0 < a < < 1 be given. Suppose that 2 = E[g(X)g™ (X)]
is positive definite and El|g(X)||9 < co with some ¢ > 2.

(i) SUDazpes |[Frlw) — F(z)| = oln Y% as.

(ii) supyc cp | Fn(Fy(s)) —s| = O(n™h) as.

(iit) If F has contmuous positive denszty f oon [F7l(a), F7Y(B)], then
SUPy<g<3 |F ('S) - 1(3}‘ = 0(”‘ 1/0) @&

(1v Y IFE[g(X)® < 00 and F has contmuom positive density f on [F~H{a) —
e, F=Y(3) + €] for some € > 0, then for any A > 0, SUDp-1(4)_¢/a<a<P(B)+e/2 "

SUP|y—zj< An-5/12 Fo(z) — Fuly) — Flx) + Fly)| = o(n~*?) a.s.

LEMMA 8.7. Let 0 < e < 3 < 1 be given. Suppose & = E[g(X)g™(X)] is
positive definite and E||g(X)| ¢ < oo with some ¢ > 2.

(1) supycpcp |Gnl®) — F,(z)] = O;(n”lﬂ) a.s.

() uPaarap |Cal5 (5) 8l = O30 as.

(ii1) If F has continuous positive den.szty f 0?7 [F~{a) — e, F71{3) + €] for
some € > 0, then we have SUpy< < G A(s) — Fi7 ()] = o3(n™Y?) a.s.

(1v IfEHg(X)H‘ < o0 and F has confinuous positive densaty fon[F Y (v)—
e, FLBY + €] for some € > 0, then for any A > 0, Supp-1(g)<a<r-1(8)"

SUP|y—z|< An~5/12 KA;W(LE) - én(y) — Bz + Fn("!)' = O;(nilfg) @.5.

LEMMA 8.8. Let 0 < & < 3 < 1 be given. Suppose that ¥ = Elg(X)g7 (X)]
is positive definite and E||g(X)||* < oo. Suppose further that I has continuous
positive density [ on |[F~1{(a) — e, F'7H) + €] for some € > 0. Then,

sup |F(G,(s) — F(E7Hs)) + Gu(F7Hs)) — Fu(F 1)) = o(n7?)  as.

oS
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ProoF OF THREOREM 3.1. For convenience, we use F'F,F~1{.) ete. to
denote composite functions. Let

rin(s) = — |[FTF,F7Hs) = FTYRF ) + %;Hl(s)
ron(s) = F FE 1(5) F FoUs)+ PR, F Y s) — FTUFF(s),
ran(s) = F BBy () = F7H(s),
then it is easy to see that
(8.13) FoUs) =17 (s) = L Zn: Hi(s) +71in(8) 4 ran(s) + r3n(s).
" i=1
Let @n{s) = Fn(F~1(s)), thon supyc,cps|en(s) o = Op(n=1/2) by pm (i) of

Lemma 8.5. Since F has continuous positive density f on [F~a)—¢, FL{5) +€],

f(F~1(s)) is bounded away from zero on |o,/3]. As a result, applying Taylor
expansion and Theorem 2.1 gives

(8.14) sup |rin(s)!

a<s<g
1 Ll
— —1y. _ -1 - fe
_uggﬁp (zn(s)) = F (s)+n;m(s)
1 o o
< 2 ey ) - ZH
+Op(n_1/2)
= &i1 ——R”(F_l{s)) o, (n~ Y2y = o, (n" 12
S SR TE ) | P = 0p .

Let ¢ = SUp,<s<p |E1(s)—F~1(s)], then ¢, = O, (n~1/2) by Part (iii) of Lemma
%.5. Applying Parts (1} and (iv) of Lemma 8.5 yields

(8.15)  sup |ran(s)l

Fo(FY(s)) ~ B (F71(8)) — F(FH{3)) = F(F 7 (s))
=, JET(s)
+ Op(Tfl/z)
< s5u 1
= | amang FF1(s))
sup sup | Fn(z) — Fu(y) — F(z) + Fy)l
FYa)<z<F~4(8) ly—z|<dn
+ Op(n_l/z)

- Op(n_lm)-
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Finally, by Part (ii) of Lemina 8.5, we have

&AL .
(8.16) sup |r3n(3)|é sup EJ,(Fn (3)) ]

op(n!) — n1y.
a<s<f azszg| SFTS)) Top(n™) — Op(n )

Let rp,(8) = r1n{8) +ranie) + ran(s), then both {3.1) and (2.2) hold by combining
(8.13)—(8.16}, and this completes the proof of Theorem 3.1.

Proor oF THEGREM 3.2. Theorem 3.2 is a straightforward consequence of
(3.1), (3.2), and Theorem 2.1.

PrOO¥ OF THEOREM 4.2. Theorem 4.2 can be proved by employing a sim-
ilar approach as in the proof of Theorem 3.1.

Proor oF THEOREM 4.3. Theorem 4.3 is a straightforward consequence of
(4.3), (4.4), and Theorem 4.1,
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