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Abstract. The uniform distance between the distribution functions of the
von Mises w?-statistic for sampling from a continuous distribution and of the
“generalized Bayesian w®-statistic” for sampling from the uniform distribu-
tion on a finite number of points is estimated. Application to the generalized
Bayesian bootstraps is discussed.
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1. Introduction and notation

In a recent paper Lo and Sazonov {1995) we estimated the uniform distance
between the distribution functions of the von Mises w”-statistics w, constructed
for sampling from a continuous distribution, and w7 ., constructed for sampling
from a uniform distribution on a set consisting of m different points. The relation of
this problem to the question of closeness of the von Mises w?-statistic (for sampling
from a continuous distribution) and its bootstrap version was also indicated and
an estimate of this closeness was given.

Iu the present paper we consider a similar problem for the casc when wj ,,

is replaced by a “generalized Bayesian w?-statistic” (w2 ) (this amounts to the
replacement of the empirical distribution funciion in the construction of wi‘m
with m = n by the distribution function of a “randomly uniform” distribution on
a set of n different points). This problem is connected with the precision of the
generalized Bayeslan bootstrap and an estimate of this precision is deduced below.

The approach we are using now is similar to that employed in Lo and Sazonov
(1995) and is based on Berry-Esseen type estimates for Hilbert space valued ran-
duw variables. The application of this technique to the present problem, and in
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particular to the generalized Bayesian bootstrap, however, is complicated by the
appearance of an additional factor which accounts for a lower order estimate as
compared to what was obtained in Lo and Sazonov {1995).

Another way to tackle the problem of asymptotic behavior of bootstrapped
statistics is to use the strong approximation technique {c¢f. Lo (1987, 1991)). In
trying this approach however one meets some essential technical difficulties. But,
even if one overcomes this difficulties, the general known now results on strong
approximation in application to the generalized Bayesian bootstrap will at best
lead to a marginal improvement {just by a logarithmic factor) of the estimate
obtained in the present paper. It is appropriate to mention, though, that the strong
approximation approach may cover the general case of not necessarily continuous
F.

Let X, X, X5,... be a sequence of independent real random variables de-
fined on a probability space (S,B,P), which a common distribution function
Flz) = P{(X < «). Denote Fp{zx) = n! 37i—1 1{x, sz} the cmpirical distribu

tion functions corresponding to the sequence Xi, Xs,... (as usual 14 stands for
the indicator function of a set 4, l.e. 14(s) =1ifs e Adand 14(s) =01if s & A).
The von Mises w”-statistic based on X1, ..., X, is

W2 = nfm (Fo () Fa)2dF ().

Next let £,&1,&2,... be a sequence of independent identically distributed
(i.i.d.) nonnegative random variables satisfying the conditions indicated below.
The variables £, &1, &5, ... may be thought of as defined on an another probability
space, (57, B, P') say, since otherwise one is led to consider conditional probabil-
ities which are essentially irrelevant here. Regarding £,£1,&s,... we will assume
that P'(£ = 0) =0,

(1.1) E'¢ =1, and F'e® <oo forsome t > 0.

Note that condition (1.1) is equivalent to the condition: there exist ¢ > 0. T > 0
such that

(1.1 EefE-D < o972 forall | <T

(see Petrov {1975}, Chapter 3, Lemma 5). The generalized Bayesian bootstrap
version of w2 is defined as (cf Lo (1091))

)

@7 =m0 [T (B - Bue)dRatz)

where 0 = E'(€ — 1)%, F7(x) = 37, Ajlix, <z, and

" ~1
Ajzfj(ZEi) , J=1,...,n
i=1
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Obviously (w2)? is a measurable function of X71,..., X,, &1,...,&,.

As was pointed out in Lo and Sazonov (1995) when the distribution function
F is continuous there is no need to bootstrap w?. For the same reasons the
(generalized) Bayesian bootstrap of w2 for continuous F has no applied value.
Nevertheless it is an interesting theoretical problem to estimate the closeness of
the distributions of w? and (w2)? even when F is continuous since it gives an
insight into the precision of the bootstrap technique. Such an estimate is obtained
below as a corollary of a slightly more general result.

Let U7 be the distribution function of the uniform distribution on a set of n
different points x1,...,x,. Denote

UP(z) =3 Dyl <ay
j=1

and
20

2,)% = no? / (U () - U(2))*dU (z).

—

In what follows ¢, ¢{...), with or without indices, denote absolute constants
and constants depending only on the parameters indicated in the parenthesis re-
spectively. The same symbol may stand for different constants. We use the symbol
| - | both for the norm in a Hilbert space and for the absolute value of a real or
complex number. The meaning of the symbol is always clear from the context.

2. Theorems and lemmas
THEOREM 2.1. [If F is conlinuous then for oll wy,n=1,2,...

(2.1) & =sup |P(u,ni1 <y)— P((w? )P < y)| < cn(l + C(Pf){logn)g/zn"l/z,

0,72
Yo
where Py is the distribution of & (regarding c(F¢) see also Remark 1 below).

To prove the theorem we will use a Berry-Esseen type estimate for sums of
independent {but possibly differently distributed} random variables with values in
a scparable Hilbert space H. Such an estimate was obtained in Ulyanov (1987),
and we will state it here as a lemma. If V is a nonnegative symmetric operator with
finite trace in H having eigenvalues v},v$,...: 0 < v¥ > v > -.- and if 3 > 0,
r=1,2,..., then the inclusion ¥V € G(5, r) will be understood as v2 > Sv?, where
v” = 3"7° v? is the trace of V.

LEMMA 2.1. Let Z1,Z2,..., 2, be independent random variables with values
in H, 5, = Z;’:l X, V., be the covariance operator of 5., N, be an H-valued
(0,Vy) Gaussian random variable. Then for any B,e : 3 > 0, 0 < € < 1, there
exist constants g = q(e), ¢(3, €) such that if V € G(3,q) then

sup [P(18a] <) = P(INa| < 9)] < e(B,e)(Aa + L3 + Lu),
y
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where

n n
A-z = ’U,Ez ZEJJYtl{‘AII>U1L}]2, Lk = ’U,;kZE‘X,gl{‘X”SUn”k,
=1 =1
k=3,4, v, =trv,.

In the proof of the theorem we will also need
LemMA 2.2, Let X, Y, Z be real random variables and 0 < e < 1. Then

sup |[P(X < y¥Y?) — P(X < y)| < 2sup |P(X < y)— P(Z < y)|
y=0 y=>0

lsup Py(1 <) = Z < y{1+¢)?)
y20

+P(Y - 1] > e).

Proor. Take an y > 0 and denote
by =P(X <yY?H) - P(X <y).
Since |Y — 1] < ¢ implies Y2 < (1 +¢€)? and Y? > (1 — ¢)?, we have

by CP(X <y(1+6)?) — P(X <y)+ P(lY — 1] »¢)
and
by > P(X < y(l1—€e)?) — P(X <y).

Thus if 4, > 0 then

(2.2) by SIP(X <y(t+6?) — P(Z <y(1+€))
+IP(X <y) - P(Z <y
+ Py < Z<y(l+e?
+ P(JY — 1] > ¢),

and if &, < 0, then

(2.3) |6y] < [P(X < y(1 —e)?) = P(Z < y(1 - €)?)]
+ |P(X <y) — P(Z < y)]
+ Pyl —e)? < Z <y

The lemma follows from (2.2} and (2.3).
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3. Proof of the theorem

In the proof of the theorem all the probabilities and expectations will be
denoted by P and E respectively (regardless of the probability space considered).
Let G(y), Gn(y) be the distribution functions defined below in (3.2) and (3.10)

regpectively. Ohvinnsly we ecan write (as a matter of fact, we can write it for any

Gly), Gn(y))
(3.1 & < by, + dp1 + bny,
where

6oy =sup [Pwl, <y)— Gly)l, 8, =sup |P((w2,)F <y) - Galy)|
yeR yER

dna = sup |Gy) — Gnly)).
yER

The rate of decay of &,, as 1] — w is well known (see e.g. Gotze (1979),
Korolyuk and Borovskikh (1984)). Namely let G{y) be the distribution function
corresponding to the characteristic function

o

g(t) = [ (1 — 2dt(mg)=%) 12,

n=1

or, what is the same,

(3.2) Gly) = P (f: < 'u) ,

n—1

where (1, (s, ... are independent (0, (7)~?) normal real random variables. Then
there exists ¢ guch that

(3.3) by <ty mi=1,2,....
To estimate 6,; we observe that denoting m = Ele £, we have
(W38 =072 (0% (@) — Ula))?
k=1

=023 (mi/m — K/
k=1

Hence

(3.4) P((wy )7 <y) = P <),
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where .
=07 ((tm — k) /n)ne — (k/n) (g — i)
k=1
Define now Lj{0, 1]-valued random variables Y,;, [ = 1,...,n as follows

v =1 ™ (k/m)e™ (& —1), (k—-1/n<t<k/n, 1<k<i-1,
" e - ke E - 1), (‘Jﬂn<t<wm I<k<n

Obviously Yy, { = 1,...,n, are independent,

(3.5) Yol <o Hg - 1,

and if f € L;[0,1], then

(3.6) B(f,Yur) = e(f,m)E(& — 1) = 0.

Thus {see (1.1)} EYM = 0 and Y,; has moments of all orders. Moreover, if we
define Y, = n™1/4 %" ¥, then

2
B7)  S.=o?) ( (n—k)/n) Z — (k/n) Z (& —1) )

j=hk+t1

R_]

Our next step is to estimate

Ay = sup |P(|Yn‘2 <y) — Guly)l.

yER

From the definition of ¥),; it follows that Y, belongs to the subspace of L [0,1]
generated by its orthonormal elements

b (1) {nlfg, if (k—1)/n<t<k/n,
nk =
0, otherwise,

n—l Forany r,s : 1 <r < s < n— 1 we have E(Y,,b,,.) = 0 (see

=1

E' (Y, bpe) (Yo, byy) = n2E (Z You(r /n)) (Z Ym(s/n))
=1
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=1 I=r+1

(Z e % 4@1))

= 7 l=s+1
s m—rn-—s TS rn—s
=n ( . +{n~—s) (s r)n - )
—n 27(1—3/71)
= Upg, say.

The {n — 1} x {n — 1) symmetric matrix W with elements #,. has the trace

n—1
(3.8) wi =n"23 " r(l—r/n) = (n* —1)/6n>.

r=1
The eigenvalues of W are
(3.9) Wy = (AnZsin®(rr/20)) 7, r=1,...,0n—1
{see Lo and Sazonov (1995)}. 1t follows that the covariance operator V,, of Y, has
the trace w2 and the eigenvalues wy1,. s Wnin-1),0,0,... with wy, defined by
{3.9). Dcnote now N, a L]0, 1]-valued (0,1;,) Gaussian random variable aud let
(3.10) Guly) = PN, <y).

Applying Lemma 2.1 with Z; = n™22Y,, any ¢ : 0 < ¢ < 1, n > g | 1 {here
g = gle)) and 3 = B(c) = 6/(nq)?, we obtain, since forany r: 1 <r < g
1 1 3 n? — 1

. — 2
dn2sin?(wr/2n) — {rq)2 6 ﬁ = Bws,

1Y

(3.11) Wy =

that
(3.12) A = sup |P([Yal? <) — Guly)]

< eq(e )(A2+L2 “+ Ly)
Scl 6)

((woe) BEE — 127 4 (wyo) T E|E — 1) Yn~1Te/2
where ¢;(€) = ¢(3(¢), €); indeed by (3.5)

Aoy = wgz Z Efn_l/zym1{\7;-1/2Ym;>wn} |2
=1

< w;‘ln"g i EiYul
=1
< (wno) TEE — '
Ly = w,? Zn: Eln™2Yuil 1y, ggu*
=1
< (wa0) SEE— 1] 12,
and similarly
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Ly < (wpo) *ElE —1*n" "

If n < g(e) then
1

Agp S 1=glen
so that (3.12) is true for all n = 1,2,.... In particular when ¢ = 1 we have
(3.12) Am <o ElE—1*"Y2, n=12,...,
since w2 = (n? — 1)/6n? > ¢ if n > 2, and since by the moments inequalities

1= (o2B( - 1)) <o Ble -1 < (e EE - 1)) <o E(E - 1)
Now let us estimate

Aps = sup |P({(w? )7 <y) — P(|Yal* < v
yehR

= sup | P(|Yn|* < yni/n®) — P{IYL|* < y)|
yER

(see (3.4), (3.7)). By (3.10) and Lemma 2.2 with X = |Y,,|3, Y =n,/n, Z = |N,|?,
€ = €5, (to be specified below), we have for all n = 1,2,...

(3.13) Apg < Iny + Inp + I,
where
I = 27,1,
Lo, = sup P(y(1 — €,)% < |No|? < y(l +€,)%),
y=0

Isn = P(Ina/n — 1| > €n)

_P(Z(gjwl) >n6n).

G

Let g, T be the same as in (1.1'). We can assume that

(3.14) 0 < (logn)/n < c(g,T) = min({2 — 3/2)/3g, gT?/2),

since otherwise the theorem is obviously true (with c(FPe)+ (e(g, T))~1). Take now
en = {(29logn)/n)'/2.

The density function of |N,|? is not greater then cl{wniwna)” (see e.g.
Paulauskas and Rackauskas (1989), p. 65), which in virtue of (3.11) is bounded by

an absolute congtant. Henee if 4y < logn then

1/2

(3'15) P(y(l - En)Q < |NnI2 < y(l + fn)Q) < cyey

< 691/2(log n)3/2n*1/2.
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If y > logn, then since for any z > 0 and any Hilbert space valued Gaussian
random variable N

P(IN| 2 2) < 2exp{~2*/2E|N|?},
(see e.g. Sazonov et al. (1988)), since by (3.8)
EIN, 2 =trV, = w2 = (n? — 1)/6n* < 1/6,

and since by (3.14) and the definition of €, 3y(1 — €,)* = logn, we have for any
y 20

(8.16) P(y(L—en)® < [Nof* < y(l — €3)%) < P(INo| 2 5" (1 =€)
< 2exp{—y(l - fn)z/ZEanEZ}
< 2oxp(~3y(1 - n)?)
< L.

From (3.15) and (3.16) it follows that
(3.17) Loy, < cg?(logn)¥?n~1/2,

Next observe that our choice of €, together with (3.14) imply €, < ¢T, and

hence, by (1.1") and the exponential inequality (see, e.g. Petrov (1975), Chapter 3,
Theorem 16)

(3.18) T, < 2e~"€0/29
)

Combining now (3.13}, {3.12), (3.17), (3.18) we obtain
(3.19) Anz < o(BJE = 1[*n7Y2 + g *(log n)* 20717,
and from {3.12'), (3.19) we deduce

(3.20) bn1 < Api + Dz
< e(ElE —1['n 2 4 g1/ (logn)3/2n 112,

Finally it was shown in Lo and Sazonov (1995) that

(3.21) Spo<en”t, n=12...,

and the theorem follows now from (3.1}, (3.3), {(3.20), (3.21).
COROLLARY 3.1. If F' is continuous then with probability 1

5a(s) = sup [P(w? < ) ~ P/((w2)® <)l < c(P)(logn)*n Y2, n=1,2,....
weR
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To deduce this corollary it is enough to observe that when I is continuous
all X1(s), Xo(z),. .. are different with probability 1 and apply the theorem with
ny = n.

Remark 1. It follows from the proof of the theorem that when (3.14) is
satisfied one may take c(P;) = (o ™*E|£ — 1|* + ¢%/?), and if it is violated we have

§ < (e(g, T *(logn)n L.

Note also that g may be taken to be any number greater then o2 but the value of
T for which {1.1') is true depends on the choice of g (see the proof of Lemma 5,
Chapter 3 in Petroy (1975)).

Remark 2. When the distribution function F' is not continuous it may hap-
pen that 8,(s) > en~1/2 for all large n with probability 1, where ¢ is an absolute
constant. Indeed in Lo and Sazonov (1995), Remark, it was shown that if

0, x < 0,
Flzy=1¢1/2, ULx<],
1, T > 1,

then the distribution function of w? has jumps > (1/2)(wn) =2 for all large r and
as n — oo converges to a continuous distribution function. At the same time if
we take £; with the standard exponential distribution, then, as is easy to check,
with P probability 1 — 27! (w2)% has a continuous distribution function and it
is degenerate at 0 with probability 27" %1, This implies that for this choice of F
and &; ép(s) > (1/4) () 172 for all large n with P probability 1.
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