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Abstract. We show that convergence of intuitive hootstrap distributions to
the correct limit distribution is equivalent to a local asymptotic equivariance
property of estimators and to an asymptotic independence property in the
bootstrap world. The first equivalence implies that bootstrap convergence fails
at superefficiency points in the parameter space. However, superefficiency is
only a sufficient condition for bootstrap failure. The second equivalence sug-
gests graphical diagnostics for detecting whether or not the intuitive bootstrap
1s trustworthy in a given data analysis. Both criteria for bootstrap convergence
are related to Hajek’s (1970, Zeit. Wahrscheinlichkeitsth., 14, 323-330) formu-
lation of the convolution theorem and to Dasu’s (1955, Sankhyd, 15, 377-380)
theorem on the independence of an ancillary statistic and a complete sufficient
statistic.
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1. Introduction

Behind the bootstrap lies a grand dream: freeing statistical inference from in
genious analytical approximations to sampling distributions that must be devised
case-by-case. Farlier this century, the two-sample Behrens-Fisher problem forced
frequentist statistical theory to derive approximations based on asymptotic expan-
sions. Welch’s (1937) clever solution to the problem relied on his discovery that
the first two terms in the Edgeworth expansion for the Behrens-Fisher statistic
coincide with those [or a certain ¢-distribution, whose degrees-of-freedom depend
upon the estimable ratio of the two variances. Using this ¢-distribution to derive
critical values eased the construction of tables and finessed the poor behavior of
Edgeworth approximations in their tails.

The normal-model parametric bootstrap solution to the Belirens-Fisher prob-
lem has the same good second-order asymptotics as Welch's solution (Beran
(1988)). Unlike the analytical approach, the bootstrap solution is highly intu-
itive and may be carried out easily on a computer. Moreover, it extends readily to
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several samples, to non-normal models, and to other roots that mirmic the struc
ture of the t-statistic asymptotically. Hall (1992) and Mammen (1992) described
systematically such asymptotic theory for the bootstrap. Provable success in such
settings has encouraged the use of Intuitive bootstrap inference in dala analyses
that may involve smoothing, or model-selection, or some form of shrinkage (cf.
Efron and Tibshirani (1993), Hjorth (1994)). However, theoretical support for
natural bootstrap procedures in these more complex contexts is often lacking. Of
course, it is precisely in sophisticated data analyses that we would meost like the
hootstrap to work reliably and automatically.

1.1  Correct convergence of bootstrap estimators

Supposc that the sample X, consiste of n random elements (X, 1, X, 2,---,
X, n) whose joint distribution is Py . The unknown parameter ¢ lies in a space
6 that need not be finite-dimensional. Of interest is the distribution H.,,{(#) of a
root By, (X,,4) under this model. By root, we mean a function of the sample and
of the parameter that takes values in a complete separable metric space. Roots
include pseudo-pivots for confidence sets (possibly simultaneous), loss functions,
or test statistics. Let 6, = H (X.) denote an estimator of #. The corresponding
plug-in or bootstrap estimator of H,(#) is then H,, (9n). As defined, this bootstrap
distribution is a random probability measure. The interpretation of Hﬂ(én) as a
conditional distribution leads to useful Monte Carlo approximations.

ProrosITION 1.1, Supposc that © is metric, Oy C ©, and
a} for every sequence {6, € © : n > 1} that converges to Oy, H,(0,) =
H(gg),
b) i — to in Fg, n-probability as n — oo.
Then Hy(6,) = H(8) in Py, n-probability.

This simple result, a version of Theorem 1 in Beran (1984), provides a tem-
plate for arguing that the limit in Py, ,.-probability of the bootstrap distributions
{H,.(6,)} coincides with the limit of the sampling distributions {77,(0p)}. Such
reasoning, or the related equicontinuity consideration in Bickel and Freedman
{1981), has been used frequently in the bootstrap literature.

Most important is the choice of the metric on the parameter space ©. Con-
dition a) is easier to satisfy if the metric is strong, so that the class of convergent
sequences {0, } is relatively small. Condition b) is easier to meet if the metric is
weak, so that the class of consistent estimators is relatively large. Thus, prov-
ing bootstrap convergence by means of Proposition 1.1 usually requires a clever
metrization of the parameter space and a carefully crafted estimator 8,,. The de-
tails depend strongly on the mathematical structure of the problem. Because of
this, Proposition 1.1 does not support the idea that intuitive bootstrap estimates
will “usually” converge.

Another aspect of bootstrap convergence was pointed out by Putter (1994)
in his doctoral thesis. Recall that a set in a topological space is nowhere dense
if its closure has empty interior. A set is said to be of (Baire} category I if it is
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a countable union of nowhere dense sets. A set is of category II if it is not of
category L

ProrosiTioN 1.2, Suppose that © is complete metric and
a) H,(8) = H{#) as n — o0, for every 0 € 6;
b) H,(8) is continuous in 8, in the topology of weak convergence, for every
n = 1;
¢) O — 8 in Ps o, -probability, for every 0 € O,
Then, there exists a set E of category I such that H.(6,) = H(0) in Pa -
probabzlaty for every 8 € © — E. Moreover, the set © — E is of category II.

Proposition 1.2, a variant of Theorem 2.2.2 in Putter (1994), ultimately stems
from mathematical results on category and on interchanging the order of two limits.
We return to this point in Section 4. Topologically speaking, the set of # at which
the bootstrap distributions in Proposition 1.2 converge correctly is “large”; and
the set of points where convergence is not assured is “small”. In general, sets of
category I are not easily visualized. For example, when © is a subset of a Euclidean
space, a set of category I can have large Lebosgue measure. If we impose additional
assumptions on the model in this finite dimensional case, then the exceptional set
£ in Proposition 1.2 does have Lebesgue measure zero (cf. Section 3 and Theorem
2.6.1 in Putter (1994)). While encouraging, such results do not identify, in a useful
way, those values of ¢ at which convergence of the bootstrap distributions fails.

1.2 Supercfficiency und boolstrup failure

At first glance, Proposition 1.2 suggests that the failure of bootstrap distribu-
tions fo converge correctly is an unusual event, of no great practical importance.
The following examples cast doubt on this impression.

Ezample 1. Suppose that the {X,,;} are iid random variables, each dis-
tributed according to /V(¢,1). Here the parameter dimension & = 1. Let X,, be
the sample mean and let T, g be the Hodges estimator of 4, given by

(1.1)

)

{bXn if | X, <n7t4
Tn H = . X
X, otherwise

where 8% < 1 (LeCam (1953}). Observe that, wheu b is zero, T}, & is a model
selection estimator that chooses between fitting the N(0,1) and N{#,1) models on
the basis of the data.

The distribution Hy,(#) of the root n'/ T, 11 —0) converges weakly to N(0, 1)
when 6 # 0 and to N(0,b%) when # = 0. Let X, denote the sample mean.
The bootstrap distribution H,,(X,.) converges weakly in probability te N(0,1),
the correct limit, when # # 0. However, if § = 0, then H,(X,) converges in
distribution, as a random element of the space of all probability measures on
the real line matrized by weak convergence, to the random probability measurc
N({b—1)Z,b%). Here Z has a standard normal distribution. This failure in
bootstrap convergence at the single point # = 0 is an instance of Theorem 2.3 and
illustrates Proposition 1.2.
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The asymptotic risk of the Hodges estimator is

: - o [b* if #=0

(1.2 R S
while the Fisher information bound is 1. The origin is thus a point of superei-
ficicncy for the Hodges cstimator. For fixed n, the risk of 7T 4 is less than 1
in a neighborhood of the corigin, then rises steeply above one, and subsequently
drops slowly towards 1 as |6] tends to infinity (cf. Lehmann (1983), Chapter 6).
The neighborhood of improved risk narrows as n increases, so that the asymptotic
picture is (1.2). At finite n, the Hodges estimator has larger risk than the sample
mean for most values of 8. Such poor behavior in risk near any point of super-
efficiency is characteristic of one-dimensional estimators (LeCam (1953), Hajek
(1972)).

It is noteworthy that the failure in convergence of the bootstrap distribution
H,(X,) occurs at 8 = 0, the value at which the Hodges estimator improves upon
the sample mean.

Exzample 2. For higher dimensional estimators, superefficiency at a point
need not entail poor risk nearby. Let Iy denote the k x k identity matrix. Suppose
that the {X,, ;} are iid random k-vectors, each distributed according to N.(G, 1],
where f§ € R¥. This is a simple model for n repeated observations on a discrete
time series measured at k time points. The goal is to estimate the unknown sighal
#. For k > 4, consider the Stein estimator that shrinks each component of the
sample mean X, towards the average of all nk numbers in the sample. Let e
denote the vector in R¥ whose components each equal 1. For every vector x, let
m(z) denote the average of the components of z. Define

(13)  Tus = m(&ale+ 1 — (k- 3)/(nlK — m(X)e))(Xn — m(Xo)e).

This estimator is a sharp early example of what are now called regularization
methods for signal recovery (cf. Titterington (1991)),

When the components of § are not all equal, the distribution H, (8} of the root
n'/2(T;, 5 — 6) converges weakly to N(0, ). The bootstrap distribution H,(X,,)
converges weakly in probability to the same limit. To describe what happens when
the components of A are equal, lat 7, he a random vectar with standard normal

distribution on R*, let Zy(h) = Z;, + h, and define the family of distributions

(1.4) w(h) = L{Zs — (k - 3)Z.(h) = m{Z.(h))e]/|1 Z.(h) — m(ZIc(.h))em},
h € RE.

When the components of 8 ave aqual, H,.{8) equals ={0)} for every n and sn con-
verges weakly to m(0). However, the bootstrap distribution H,(X,) converges in
distribution, as a random element of the space of all probability measures on the
real line metrized by weak convergence, to the random probability measure #(Zy).
This result also exemplifies Theorem 2.3. The values of 8 at which bootstrap con-
vergence fails form a one-dimensional subspace of R®, a set of category I and of
Lebesgue measure zero,



DIAGNOSING BOOTSTRAP SUCCESS

1]

For & > 4, the asymptotic risk lim, . ‘ILE9|T”,S — 6’|Q equals the informalion
bound & whenever the components of 8 are not all equal and is strictly smaller
than & when they are equal. The points of superefficiency of this Stein estimator
thus coincide with the subspace where the bootstrap distribution H, (X} fails to
converge correctly. Unlike Example 1, the estimator T}, ¢ strictly dominates X,
over the entire parameter space, substantially so when k is much larger than n (cf.
Lehmann {1983), p. 305). The superefficiency points detected by asymptotics in
n while & is held fixed are only a ghost of the risk function at finite n and k.

The possibhility of superefficiency is at heart of modern estimation theory. So-
phisticated signal estimators or model selection estimators implicitly create points
of superefficiency, though often without articulating this as goal; and they do so
because, as in Example 2, superefficiency points can reduce risk over the entire pa-
rameter space when £ is not too small. That points of superefficiency in a Euclidean
parameter space form a Lebesgue null set (cf. LeCam (1953) and Section 3) does
not make them unimportant to the task of improved estimation. Unfortunately,
as we will prove in this paper, superefliciency is a sufficient condition for failure
of intuitive bootstrap distributions to converge correctly. In this sense, intuitive
bootstrap methods break down precisely when we need them most.

1.3 Bootstrap diagnostics

To guard against possibly misleading bootstrap distributions in data anal-
vees it is degirahle to characterize theoretically those situations where intuitive
boatstrapping fails to converge correctly. Equally important are direct diagnostic
methods for detecting hootstrap failure in a speciflic data analysis. Because 8 is
unknown, wc cannot say with certainty that the bootstrap fails in a particular
data analysis. However, ag in traditional regression diagnostics, it is reasonable to
seek data-based indicators of possible bootstrap failure.

The main results of this paper are both structural and diagnostic. TIFirst,
we show that, in locally asymptotically normal parametric models, correct con-
vergence of intuitive bootstrap distributions is equivalent to a local asymptotic
equivariance property of estimators. 'L'his result defines what we mean by the
phrase “intuitive hootstrap” and implies that superefficiency is a sufficient {but
not necessary) condition for failure of the intuitive bootstrap. Second, we prove
that correct convergence of the intuitive bootstrap is equivalent to an asymptotic
independence property in the bootstrap world. Because this asymptotic indepen-
dence property takes place in the world of the data, it suggests diagnostic plots
for detecting bootstrap failure. Third, we extend both results to nonparametric
bootstrapping when the parent distribution has finite support, but the cardinality
and valies of the support points are unknown. The theory of the paper is deeply
related to Hajek’s (1970) formulation of the convolution theorem as well as to
Basu’s (1955) theorem on the independence of a complete sufficient statistic and
an ancillary statistic.
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2. Bootstrap convergence

We will characterize successful bootstrap convergence in a setting more struc-
tured than that of the Introduction. The assumptions to be made imply resuits
substantially more detailed than Propositions 1.1 and 1.2. It is useful to treat
parametric and nonparametric bootstrapping separately.

2.1 Parametric bootstrap

We begin with assumptions on the model. Suppose that the sample X, con-
sists of » iid random elements, each having distribution Fy,. The parameter space
© is an open subset of R*. The distribution Py, ,, of X, is now the n-fold product
of Pa,. For every h € R¥ such that o +n /2h € ©, let Py .., , denote the
absolutely continuous part of Py -1/, ,, with respect to Py, ;.

DermviTion 2.1, Let  L,(h,0p) denote the log-likelihood ratio of
Pgﬂ n12hm with respect to Py, n. The model {Fp, : 8 € O} is locally asymp-
totically normal (LAN) at 6 if there exist a random k x 1 vector ¥, (6) and a

nonsingular £ x & matrix I(fp) such that, under Py, n,
(2.1) L, 80) = B Yy (60) — 27 R T(06)h + 0,(1)

for every b € R¥ and for every sequence {h, ¢ R¥} converging to ; and £{Y, (60) |
Pyyn] = N(0,I{6p)).

This definition, which implicitly determines the Fisher information matrix
I(6p), was introduced by LeCam (1960). The local uniformity is important for our
bootstrap discussion. When (2.1) holds at every 0y € ©, we can modify the score
function Y, (-} so as to achieve both (2.1) and

(2.2) Yo (8o +n YPh,) = Ya(Bg) ~ I(60)h + 0,(1)

under Py, , (seec LeCam (1969), p. 68). We will assume (2.2} hereafter. The LAN
property is possessed by many classical models, including smoothly parameterized
exponential families. Héjek and Siddk {1967) and Héjek (1972) provided conve-
nient sufficient conditions for LAN. For an LAN model, the log-likelihood ration
behaves asymptotically like the log-likelihood ratio of N{(h,I *{f)) with respect
to N(0,771(fy)). We expect that the limit likelihood ratio can be used as a good
approximation to the actual likelihood ratio—an idea that the preceding references
support.

Let 7 = 7(f) be a parametric function that takes values in R™, where m < k.
Let T.. = T,(X..) be any estimator of 7. We begin with the root R.{X,,8) =
n'/2(T, — 7), whose distribution under Py, is H,(#). We will characterize the
set C of 0 values such that both [,,(0) = H(0) and H,(0,) = H(#) in P -
probahility  in other words, the valucs of 8 at which the bootstrap distribution
converges correctly.

Motivating this study are the following statistical considerations. Loss func-
lious and sowe rools used to construct confidence sels have the form g[pt/? (7, —
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1(0))], where g is real-valued. Lel H, ,(8) = L£{g[n'/*(Tn — 7(6))] | Pa.n} and
let H,(8) = L{g(R)}, where R has distribution H(f). Assume that the discon-
Linuity points of g form a null set with respect to H{f). Then, for cvery # € C,
both H, {0} = H;{#) and H.n,g((;n) = H,(9) in Py ,-probability. The st C thus
describes points where the bootstrap distribution of the root g[n'/%(7T), — 7(4))]
converges correctly. For an analysis of studentized roots, which are not covered
by this discussion, see Subsection 2.5.

The next definition isolates an approximate equivariance property possesscd
by many classical estimator sequences {T,, : n > 1} in LAN models.

DEFINITION 2.2, Suppose that H,(8y) = H{fy) as n — occ. The estimators
{T}.} of 7(0) are locally asymptotically equivariant (LAE) at 0y if, for every h € ItF
and every sequence {h, € R*} converging to h,

(2.3) Hy (80 + 07 2h,) = H(6).

This definition technically strengthens Hdjel’s (1970) concept of reqularity,
which asserts only that H, (6 +n"1/2h) = H(8,) for every h € R*. Suppose that
7 is Fréchet differentiable at 0y and that the derivative Vr {6}, which is the m x &
matrix {87;{6y)/00y ;}. has full rank m. Let

(24) p3 (90) = V’T(Qo)fil (QQ)VIT(Q()),

where ’ denotes matrix transpose. An important consequence of regularity, and
so of LAE, is the convolution theorem: there exists a distribution D{0y) such that
H{6y) = D{(fy) » N(0,2,(6u)). Proved by Héjek (1970) and, in less generality, by
Inagaki (1970), the convolution theorem is closely tied to the question of successful
hootstrap convergence. The next theorem supports this assertion.

Let {1y g} be any sequence of estimators such that. under Py, ,,

(2.5) T, =1 (00) + 17" 7V (80) 1" {80) Y (60) + 0p(r™'/7).

Suppose that {h, € R¥} is any sequence converging to k. By (2.2}, differentiabil-
ity of 7, and contiguity (LeCam (1960}), the limiting distribution of n*/*(T,, g —
T(o+n"2hy)) under Py 1/sp 4 18 N{0O,5,(60)). Thus, the estimators {T}, 5}
are LAE at 8y and have the least dispersed limit distribution that the convolution
theorem permits. For this reason, estimators that satisfy (2.5) are called asymp-
totically efficient. We remark that maximum likelihood estimators in smooth
exponential families and one-step MLE's in AN modcls are typical constructions
of T, g (cf. LeCam (1956, 1969)).

Recall that, in complex variables, a set I/ C R* is called a uniqueness set if
any analytic function defined on an open connected subset of ('* that contains
U is uniquely determined by its values on U. For example, U could be RF, or
a k-dimensional box in R* with edges parallel to the coordinate axes, or a dense
subset of these.
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In what follows, let 0, be the estimator of @ that is used to construct the

hootstrap distribution Hy,(8,) for n*/2(T,, — 7(6)). Let J,(8) = L[n'/%(6,, — 6) |
Py ] and let

(2.6) Kn(0) = L2 (T, — Ty p), Yu(0) | Ponl-

THEOREM 2.1. Suppose that the model {Fyp, : 0 € O} is LAN at 6y and 7
is Fréchet differentiable at 8y with derivative V7(68y) of full rank. Suppose that
II,(00) = H(6p), that J(6y) = J(6u), and that the support of J{0y) containg a
uniqueness set. Then the following statements are equivalent:

a) H,(6,,) = H(fh) in P, n-probability.

b} Kn(by) = D(8) X N(U,1{60)) in Pg,n-probability for some distribution
D(GD) such that H(Gg) = D(Bo) * N(O, 27(90))

¢) {T},} is LAE at 0y with limit distribution H (fy).

Remarks. For standard estimators 6, the support of J(f) is the whole of
R*. Theorem 2.1 thus defines and addresses what we have called the “intuitive
bootstrap”. The interpretation of part b) is discussed after Theorem 3.1. Its use
in diagnosing bootstrap failure is taken up in Subsection 2.3.

Part ¢) of Thearem 2.1 implies part a) regardless of the support of J{f)
(cf. the proof in Section 4). Thus, the parametric bootstrap distribution of an
asymptotically efficient estimator—that is, any estimator satisfying (2.5)---always
converges correctly in probability when Jp, (8g) — J(6p). It ie parametric bootstrap
distributions of estimators superefficient at ¢y that fail to converge correctly there
unless the support of J(fp) is the origin. This point will be developed in Section 3
and Subsection 2.4.

Let {8, € ©} be any sequence such that n'/2(#,, — 6g) converges to a finite
limit. Theorem 2.1 remains valid if P, , is replaced by Py, ., in parts a) and b).
‘I'his is 80 because {Fs, ,,} and {Fs, } are contiguous.

Ezample 2. (continued) The normal location model in this example is LAN,
with Y, (0p) = n'/*(X,, — 8p) and () = Iy; and the best LAY estimator 1, g
is X,,. We may therefore apply Theorem 2.1 to the Stein estimator (1.3). Let
0, = 0o + n'/?h,, where {h, € R*} is any sequence converging to h. When
the components of fy are not all equal, then H,{0,,) converges weakly to N (0, It),
whatever the choice of h. However, when the components of g arc equal, the weak
limit of H,{#,) is the distribution (k) defined in (1.4). Consequently, the Stein
estimator is not LAE when the components of 8y are all equal.

Consider the bootstrap distribution A, (X,) for the Stein estimator. The
weak limit of J,,(89) = Lnt2(X, — 8y) | P, ] is standard normal on R* and
s0 has full support. Parts a) and c) of the Theorem 2.1 thus confirm what we
observed in the Introduction: the hootstrap distribution H,(X,) cannot converge
correctly when the components of #g arc all equal.

By reasoning similar to the first paragraph above, we find that, when the
components of 8y are not equal, part b) of the theorem holds with D(6) being
the point mass al the vrigin. However, when the components of 0y are all equal,
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then K, (X,) converges in distribution to the random probability measure M Zy),
where, in the notation of (1.4),

27) AR = L{—(k — 3)[Zu(h) — m(Ze(h))el/|Zx(B) — m(Zi(R)el?, Zi ).

Thus, the asymptotic independence in part b) breaks down at the points wheve
the intuitive bootstrap fails to converge correctly.

2.2 Nonparametric bootsirap

The method used to prove Theorem 2.1—specifically the step from (4.5) to
(4.6)—does not work when the parameter ¢ takes values in a Banach space. For
this technical reason, we will study the nonparametric bootstrap not over the class
of all distributions on a Euclidean space but over a rich subset of this to which
our approach applies. Let IT denote the set of all distributions that have finite
support on a given Euclidean space £. Because neither the finite support set nor
its cardinality are specified, IT is dense, under weak convergence, in the set of all
distributions on £. Suppose that the observations { X, ; } in the sample are iid, each
distributed according to an unknown distribution P € IL Let s = {s1,52,...,84}
denote the support points of P, in lexicographical order; let @ = (¢1,02,...,684-1)
he the first d — 1 of the probabilities #; = P{{s;}); and let é(s;) denote the
probability measure that puts unit mass at s;. Then

=

(2.8) P =Y "0;8(s;) = P(0,,d).

=1

We assume that the representation (2.8) is minimal in the sense that each #; lies
strictly between 0 and 1. Because P is unknown, so are the values of 8, s, and d.
The class of distributions II reflects the common experience that measurcments
are made to a finite number of digits over a finite range, with the accuracy and
range not known a priorl.

For 1 < j < d, let 8, _j be the proportion of observations {X,;} that equal
8; and let Qn = (49rb 1,9%2, .. Hn 4—1)- The empirical distribution of the qample is
then P, = P(#,.s,d). An important property of the empirical distribution P, is
that its support lies within the support of P.

For fixed d and s, let L{s, d) denote the set of all signed measures v{a, s, d) =
E?_l a;8(s;), where a = (01,02, ..., 04— 1) ranges aver Rl and ay = —T‘d iaj.
Metrize L{s,d) by Euclidean dla.tance on the argument a. Let diag(#) denote the
diagonal matrix formed by arranging the d — 1 components of # down the diagonal
and let W{I) be a random vector in Rd 1 whose distribution is N (0, diag(#)—08').
Under P", the random vectors {n1/2(6, — #)} converge weakly to W{P). Corre-
spondingly, the empirical processes {nl/ 2P, — P)} converge weakly, as random
elements of L{s, d), to the Gaussian process v(W{P),s,d).

Let T hea functional that maps Il into Rm and let T, = T,,{X,,) be an estima-
tor of T(P). The nonparametric bootstrap estimator of the sampling distribution
Ho(P) = L[nM*(T,, — T(P)) | P"] is H,(F,). In this nonparametric setting,
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the plug-in estimator T'(5,) for T(P) plays the role of the best LAF estimatar
introduced in (2.5). In place of (2.6}, define

(2:9) Ky (P) = Lin' (1, — T(P)),nt2( 6 — P) | 1],

In Theorem 2.3 below, we relate correct weak convergence of the nonparametric
bootstrap distribution H, (P, ) to the asymptotic structure of K,,(P,). The Fréchet
differentiability and LAE conditions of Subsection 2.1 are replaced as follows.

DErINITION 2.3. The functional T is said to be partially Fréchet differen-
tiable at Py = P(8y, so, do) it T{P(8, 50, dp)] is Fréchet differentiable in @ at 6, with
m x {dy ~ 1) derivative VT(P) = {8T5[P(Hn.Sn,dnﬂ/a@n,j}.

DEFINITION 2.4. Suppose that H,(Fy) = H(F)) asn — oo. The estimators
{T,.} of T(P) are partially LAE at F, = (Ao, g, da) if, for every h & RA1 and
every sequence {h, ¢ R4"!} converging to h,

(2.10) H,[P(By +n~Y?h,,, s0,do)] = H(P).
Let
(2.11) Yo (Fo) = VI'(F)[diag(fo) — 08|V T (Fy).

When T is partially differentiable at Py, the distribution of »Y2[T(F,) — 1'(#%)]
converges weakly under Fj to N(0, % (F)).

THEOREM 2.2. Suppose that the functional T(P) is portially Fréchet dif-
ferentiable at Py = P(fy,s0,dy) with derivative VT(Py) of full rank and that
H,(Fy) = H(R). Then the following statements are equivalent:

a) H,(P,) = H(F,) in P} -probability.

b) Kn(B,) = D{F;) x LIv(W{Fp), so,dn)] in Py -probability for some dis-
tribution D(Po) such that H(Py) = D{FPa) % N{0, Sr(F)).

c) {T.} is partially LAFE at Py with limit distribution H(Py).

Fraomple 3. Suppose that the enpport points of each distribution P € IT are
vectors in R¥. Tn the notation of (2.8), the mean of P is

(2.12) p(P) = 8;s;.
J-1

Evidently, u(FP) is partially differentiable at every F, € II. Let o?(P) denote the
variance of P. By the triangular array central limit theorem, the plug-in estimator
X, = /.1(}5“) of u{P) is partially LAE at every P € TI, the limit distribution being
N(0,0%(Pp)Ix). Part c) of Theorem 2.2 implies that the nonparametric bootstrap
distribution for £n*/?(X, — u(Py)) | P] converges weakly in probability to the
corroct limit for every 13 € IL
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In the notation of Example 2, constder che sealed Stein estimalor for p{FP),

(213) Thss=m(X,)e+[1—(k—3)s2/(nX, — m(X,)e)(Xn — m(X,)e),

where s2 = no?(B,)/(n — 1) is the usual unbiased estimator of o2(P). When
Py = P(Oo, so,do) 1s such that the components of u(Fy) are not all equal, then
H,(Py) = [ n' 3 (T 55 — p(Fo)) | Py is partially LAK at £ with limit distribu-

tion N(O a (P(])Ik)

When the components of u( Py} are equal, the situation is more complex. Let
Vi be a N{0,0*(Py)Ix) random vector. Forevery h € R%~1 let hy = — Zdu_l
Define the shifted random vector

dy
(2.14) Vi(h) = Vi + > sozhy

and the distribution
(245Y »{Fo, b)) = L{Vi— (k=30  {(P)IVe) —m{Ve(h)Ye) /| Vi Ry —m{ ViR e ")y,

If the components of u(Fy) are all equal, then H,[FPy(fy + n~"?h,, s, dy)] con-
verges weakly to v(Fp, k) for every sequence {h, € R% !} that converges to A.
Consequently, the scaled Stein estimators {7, gs} are not partially LAE at such
By.

By Theorem 2.2, the nonparametric bootstrap distribution H,{(£,) for the
scaled Stein estimator converges correctly in probability if and only if the com-
ponents of the mean p{Fy) are not all equal. The set of distributions P, € II
where bootstrap convergence fails is indexed by those values of &y such that
1| P(8o, s0,do)] has equal commponents. This is a hyperplane in R%~! of Lebesgue
measure zero.

2.3  Graphical diagnostics
Is bootstrap inference credible in a given data analysis? A reasonable answer
would consist in diagnostic plots philosophically akin to regression diagnostics.
Theorem 2.1 suggests how to do this for parametric bootstraps. Suppose that
X is a hootstrap sample of size n, constructed so that the conditional distribu-
tion of X7, given X, is Py . Let T = T,,(X7), let ¥\ = Yo (X5, 6,), and let
o= The(X;). In Theorem 2.1, correct convergence of the parametric boot-

strap distributions for n'/?(1;, — tp) cannot occur unless n*/2(1* —'17 o) and Y,*
arc asymptotically independent, given X,,. Graphical checks for this approximate
independence serve as the basic diagnostic for bootstrap success.
The following algorithm carries oul the idea:
1) Given the original sample X,,, construct B conditionally independent
bootstrap samples X*1, X2 ... X*B, each of which has conditional distribution

O,
2) Compute R = n'/2[T, (X7} — T, p(X9)] and Y, = Y, (X7, 4,) for
1<j<B.
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3) Select two real-valued test functions f and g that are continuous over
R™ and R* respectively. Plot the points {{f(R*),g(Y,*¥)):1< 4 < B} in R?.

4) Use this scatterplot and summaries such as robust correlations to assess
whether approximate independence of the {R}} and the {Y;?} breaks down. If

so, mistrust the bootstrap distribution H,(#,) computed from this data set.
Theorem 2.1 provides a rationale for this algorithm, provided the test functions f
and g are chosen without reference to the sample X,. The critical assumption on
the support of J{fy) is met by typical estimators {4, }.

Adjusting this algorithm to fit the nonparametric bootstrap consists In minor

changes:

1) Given the original sample X,, construct B conditionally independent
boatsirap samples X', X2 .., }‘(:LR, each of which has conditional distribution
Pr.

2') Let P*J denote the empirical distribution of bootstrap sample X*7. Com-
pute B = n'?[T,(X;7) ~ Tp p(X:9)] and Y7 = n/2(F2/ — P,) for 1 < j < B.
3"} Select two real-valued test functions f and g that are continuous over R™
and L(s,d) respectively. Plot the points {{f(R:), g(Y,*)):1<j < B} in R2
4") Assess as before.
Theorem 2.2 supplies a rationale for this algorithm.

Example 4. In the nonpararnetric model of Example 3, with & = 1, consider
the Hodges estimator 7o, g in {1.1), with b = 0, as an estimator of the mean
w(P}. To diagnose empirically whether the nonparametric bootetrap distribution
for Ho(P) = Lin*2(T,, g — u(P)) | P7] is reliable, we take, in the preceding
algorithim,

(2.16) JRD) =n AT n(X7) - X30) g(V) = n (X7 - Xa).

Here f is the identity function while g{v) = [ zdv{z) for every signed measure
v € Ls, d).

Figure 1 displays seatterplots produced from two samples X, by step 3’} of
the diagnostic algorithm. The first sample was an artificial N(0, 1) sample of size
n = 30, for which u(P) = 0. Note that this sample comes from a distribution
in If. The second sample was the firs{ sample shifted by 1 so that u(P) = 1.
Both diagnostic plots exhibit points from B = 50 bootstrap samples. In the plot
for the first sample, 80% of the points lic on a line with slope —1, indicating
strong dependence and failure of the nonparametric bootstrap. In the plot for the
second sample, 94% of the points have abscissa 0, indicating near independence
and success of the nonparametric bootstrap. As n — oo, the proportion of plotted
points not on the respective lines tends to zero. This theoretical result follows
readily from the definition of the Hodges estimator and (2.16}. Note that sample
correlation is an untrustworthy measure of dependence in Fig. 1 because of the
outlying points. Theorem 2.2 only supports thie use of dependence measures Lhat
are continuous with respect to weak convergence of distributions.
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Fig. 1. Diagnostic scatterplots for Example 4 at sample size n = 30. When p(P) =0,
80% of the B = B0 points lic on a line of slope —1, indicating strong dependence
and failure of the nonparametric bootstrap. When p{l’) = 1, 94% of the points lie
on the vertical line with abscissa 0, indicating vear independence and success of the
nonparametric bootstrap.

2.4  Repairing bootstrap failure
To better understand the role of the support and LAE conditions in Theorem

2.1, we consider the following relaxation of LAE.

DEFINITION 2.5. The estimators {1, } are said to be locally asymptotically
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weakly convergent (LAWC) al 6y if there exists a family of distributions {7 (6, h) :
h € R*} such that

(2.17) Hyo(6o +n “"hy) = 7(6, )
for every h € R* and every sequence {h, € R*} converging to h.

For instance, hoth the Stein and Hodges estimators of Examples 1 and 2 are

LAWC at every point in the parameter space. Evidently, an estimator that is
LAWC at 8y is LAE at 6 if and only if 7(6p, h) = 7(f,0) for every h € R*.

THEOREM 2.3. Suppose that the estimators {T,,} are LAWC af 0y nnd the
{6,} are such that J.(00) = J(8). Let V be a random vector whose distribu-
tion is J(0y). Then, under Py, ., the bootstrap distribution Hn(én) cOnverges in
distribution, as a random probability measure, to the random probubility mewsure

W(Qo,V).

Thus, the bootslrap distribution of an LAWC estimator converges correctly
if and only if

(2.18) {0, V) = H{bp) = w(tph,0) w.p.l.

The following Corollary develops this observation into two methods for repairing
the intuitive bootstrap at non-LAE points.

COROLLARY 2.1. Suppose that the conditions for Theorem 2.3 hold. The
Jollowing assertions hold under Py, .,

a) Let {8,} be such that the support of J(By) is the origin whenever 8y is a
point where {T,} is not LAE. Then the bootstrap distribution H, (én) CONUETGES
weakly in probability to the correct limit distribution H(8).

b) Let {mn :n > 1} be any sequence of positive integers such that m,, — 00
and 1y /1o — 0 us 0 — 0o. Then the sub-sample bootstrap distribution Hp, (8,)
converges weakly in probability to the correct limit distribution H(0p).

Wu (1986), Mammen (1992}, Putter {1994} and Beran {1995) exhibited sev-
eral ways to modify §,, so as to remedy bootstrap failure at certain points in the
parameter space while preserving correct convergence elsewhere. Similar to part
a) of Corollary 2.1 is Putter’s work. The alternative cure b) by modifying boot-
strap sample size is also effective over the whole parameter space. Introduced
by Bretagnolle (1983), this sample size device was used by Beran and Srivastava
(1985), Swanepoel (1986), and Athreya (1987). Kiinsch (1989), Franke and Hardle
(1992), and Politis and Romano (1992) developed related methods for bootstrap-
ping stationary time series

Some disclaimers are in order. A practical drawback to strategy a) is the
prior mathematical analysis required to determine the non-LAE points of T}, and
to construct suitable f,,. Conceivably, a morc sophisticated adaptive construction
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of O, might overcome this obstacle. A drawback to strategy b) is that Hy, (X,)
is highly inefficient as an estimator of H(f;) whenever 8y is an LAE point (cf.
Beran (1982)). Bickel et al. (1997) suggest efficiency improvements to strategy b).
Typically, the pointwise bootstrap convergence achieved by either strategy is not
locally uniform in # at non-LAE points.

Frample 2. {continued) 'L'o apply part a) of the Corollary to the Stein esti-
mator, let

(2.19) g — {'IN(Xn)f:' i | Xy —m(Xp)e| < 14
. L =4 |

X, otherwise

Fvidentty, Pgo,n[én = m{X,)e] tends to 1 if the components of &, are all equal and
to 0 otherwise. Hence, the limit distribution J{6;) is a point mass at the origin if
the components of #y are all equal and is N (0, I};) otherwise. The Stein estimator
Th.5 is LAWC when the components of 8y are all equal, with =(8y, h) given by
(1.4); and it is LAE at all other values of 8y, with 7w(6y,h) = N{0,I}) for every
h. By Theorem 2.1 at LAE points and by part a) of Theorem 2.3 elsewhere, the
bootstrap distribution Hn(én) converges to H(fy) in Py, n-probability for every
choice of &g.

Applying Part b) of the Corollary to the Stein estimator, with b, = X,, is
straightforward.

2.5 Studentized roots

Suppose that 8, estimates consistently the Euclidean-valued parametric func-
tion o{6). Let G,{6) denote the distribution under P, , of the pair (n*/2(T, —
7),8,). Let Q{8) — L£L{R,s(#)}, where R has distribution H(#). In this subsec-
tion, we will characterize the set D of § values such that both G,,(8) = G(#) and

Gr(0n) = G(0) in Py ,-probability—that is, the values of # at which the latter
boutstrap distribution converges correclly.

Motivating this analysis is the observation that studentized roots used to
construct confidence sets have the form f[n'/2(T, — 7(0)), S,], where f is real-
valited or possibly vector-valued and 5, estimates the symmetric square root o(8)
of the asymptotic covariance of n'/2(T,, — 7(f)). Such roots follow the example
of Hotelling’s T2-statistic. Let Gy, ¢(8) = L{f[n'/?(T,, — 7{6)), Sn] | Po.n} and let
Gg(t) = L{f(R,o(#))}. Assume that the discontinuity points of f form a null
set with respect to G(#}. Then, for every 6 € D, both G, #{#) = G¢{#) and
G 4 { 6,) = G #(0) in Fa ,-probability. The set D thus describes points where the
bootstrap distribution of a studentized root converges correctly.

Let Fo(0) = £(Sn | Psn) and let 8(c(#)) denote the point mass at o(8).
Recanse a constant and a randnm element. are independent, the hootstrap conver-
gence G, {8,,) = G{8) in Py ,-probability is equivalent to the pair of convergences
H,(0,) = H(#) and F,(6,) = 6(c(6)) in Py ,-probability. Equivalent conditions

for the second of these are as follows.

THEOREM 2.4. Suppose that the model { Py, : 0 € O} is LAN at 6y and that
Jrn(0p) — J(0g). Then the following statements are equivalent:
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a) Fn(én) = 8(o{fa)) in Py, n-probability.

b} 8, — a(bn) in Pa, n-probability.

) Sn — o(by) in Py, n-1/2p, - probability, for every h € R* and for every
sequence {hy,} converging to h.

This theorem has several implications. In view of Theorem 2.1, the bootstrap
distribution Gn(éﬂ) converges correctly under Py, ,, if and only if the estimators
{T,} are LAE at 85 and b) holds there. Second, the obvious diagnostic for b)—
checking that recomputations of 8, from B conditionally independent bootstrap
samples are similar—has the theoretical support of a) and may be added to the
diagnostic steps of Subsection 2.3. Third, as in Subsection 2.2, it is possible to
extend Theorem 2.4 and ite applications to nonparametric bootstrapping.

3. Local asymptotic equivariance and superefficiency

The results in this section are needed to prove Theorem 2.1 and to clarify the
structure of the exceptional set E where bootstrap failure occurs.

DEerFINITION 3.1.  Suppose that H,(fy) = H(fy) as n — oo. The estimators
{T,.} are essentially locally asymptotically equivariant (ELAE) at #; if there exists
a uniqueness set I/ C B* and, for every h € U, a sequence {hn € R’”} converging
to h such that

(3.1) H, (0o +n~"2h,) = H{fg).

The ELAE property is formally weaker than LAE in two respects: the values
of h are restricted to a uniqueness set U that can be a proper subset of B¥; and (3.1)
is required to hold for only one sequence {h,} converging to . Convergence in
probability ul the bootstrap distribution Hn(éﬂ) Lo H{fp) proves Lo be a slochastic
form of ELAE, where {h,} is a realization of {n*/2(#, —#;)} and U is the support
of J(G{))

Clearly LAE implies Hajek {1970} regularity, which in turn implies ELAE.
The first two parts of the next theorem establish the equivalence of these concepts
for models that are LAN. The third part contains Planzagl’s {(1994), Theorem
8.4.1) formulation of the convolution theorem as the special case h,, = 0.

THEOREM 3.1.  Suppose that the model {Py., : 0 € O} is LAN at 8y and 7
is Fréchet differentiable at 6y with derivative V7(6y) of full rank. Suppose that
H,(6p) = H(6). Then the following statements are equivalent:

a) {T.} is FLAE at 8y with limit distribution H ().
b) {T..} is LAE at 8y with limit distribution H(6).
¢) For every h € R® and every sequence {h, € R*} converging to h,

(3.2 KB +n"Y2h,) = D(8y) x N(0, 1{6,))

Jor svine distribulion D{(6g) sucl thut H(8) = D{6p) = N(0,3,(6p)).
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Parl ¢) implies thal n*/2(T, — To,r) s locally asymplotically invarianl in Uhe
approximating local normal model at . At the same time, the statistic Y, (8) is
locally asymptotically sufficient and complete in the approximating local normal
model (cf. LeCam (1956)). The local asymptotic independence asserted in part c)
recalls Basu’s (1955) theorem on the independence of an ancillary statistic and a
complete sufficient statistic. Part ¢) of Theorem 2.1 then carries Basu’s theorem
into the bootstrap world associated with I, (4,).

Theorem 3.1 is also linked to the result of Lehmann and Scheffé that a uni-
formly minimum variance unbiased estimator is uncorrelated with any unbiased
estimator of zero (Lehmann (1983), Theorem 1.1). On the one hand, T,, — T, g
is an LAE estimator of zero; T, g is a best LAE estimator for 7(6) in view of
Hijek’s eonvolution thearem; and the T.AFE property may he interpreted as local
asymptotic unbiasedness. On the other hand, part ¢) of Theorem 3.1 implies local
asymptotic independence of n'/2(T,, — T, g) and n'/%(T,, g — 7(8)); and so entails
local asymptotic correlation zero.

On close reading, remarks by LeCam ((1973), pp. 169 and 176) imply an al-
most everywhere form of the convolution theorem. Results of this type were proved
by Jeganathan (1981), Droste and Wefelmeyer (1984}, and Pfanzagl {(1994), The-
orem 8.4.14). The next theorem reaches a stronger conclusion: LAE holds almost
everywhere.

THEOREM 3.2.  Suppose that the model {Fp,, : 6 € O} is LAN at every 6 € ©
and that H,(8) = H(0) for every 8 € ©. Then there exists a Lebesgue null set
F C O such that, for every h € R¥ and every sequence {hy} converging to h,

(3.3) K (0 +n"Y2h,) = D(0) x N(0,I(#)) for every 6 c© — E.

Hence the estimators {T,,} are LAE at every § € @ — E and H(8) = D(f) =
N{0,2:(8)) for every 0 € @ — E.

Theorems 2.1 and 3.2 establish that intuitive bootstrap distributions fail to
converge correctly at precisely those points in © where {T},} is not LAE; and that
this exceptional set has Lebesgue measurc zero. In Examples 1 and 2, the points
of bootstrap failure were also superefficiency points. A connection between super-
efficiency and non-LAE exists more generally. Let w be a symmetric, subconvex,
continuous, non-negative function on R*. We say that {7},} is superefficient at 8,
for loss function w if

(3.4) lim sup Eg, w[n'/2(T, — 7(8))] < Ew[E74%(8:)Z),

00

where Z; has a standard normal distribution on R¥.

If {7} is LAE at g, the limiting distribution H({#) has the convolution
structure in part ¢) of Theorem 3.1. Fatou’s lemma and Anderson’s lemma {cf.
Ibragimov and Has’minskii (1981), p. 157) then imply that

(3.5) lim sup Eg,w[n'/2(T, — 7(60))] 2 Bw[E;Y?(8)Z)].

O
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‘L'hus, a point of superefficiency must be a non-LAFE point. It 18 useful to note
that discontinuity of H(#) or of ¥,(8} at f is a necessary condition for break-
down of convolution structure at #p (see the Addendum to Theorem 8.4.14 in
Pfanzagl (1994)); and consequently is a necessary condition for supcrefficiency at
¢h. Examples 1 and 2 illustrate discontinuity of the limit distribution H(#) at
the superefficicncy points. The following example shows, however, that the set of
non-LAF points can be strictly larger than the set of superefficiency points.

Fzample 5. In the setting of Example 1, we construct a modified Hodges
estimator as follows. Split the sample into two subsamples of sizes n; = [n/2] and
fio = 1 —ny. Let Xn,l denote the average of the first n; components of the sample
X, and let X n,z denote the average of the remaining np components. Define

(3.6) Tn,MH _ { (3(71.,1 - Xn,Z)/Q if }le < n_1/4 )

X, otherwise
For every sequence {h, € R*} that converges to h, the distributions H,(fy +
Y2 hy) = LY Ty pem — (B0 + 17" 0y)) | Ppyyn-3/2h, ») cOnverge weakly to
N{0,1) if 6y # 0 and to N{—h,1) if 8y = 0. Consequently, {7, rrzr} is not LAE
at 0. Nor is it superefficient there, because the pointwise limit H{#) is N(0, 1) for
every ¢.

We may summarize the preceding discussion quite simply. Under the LAN
and support conditions of Theorem 2.1, LAE at d; i1s a necessary and sufficient
condition for correct convergence of intuitive bootstrap distributions at 6. This
condition remains critical in the more general discussion of Subsection 2.5. The
set of non-LAE points, or of bootstrap failure, has Lebesgue measure zero. Su-
perefficiency at fp is a sufficient condition for bootstrap failure there, but it is not
necessary.

4. Proofs

The logical sequence is to prove Section 3 and then Section 2. We end with a
short proof of Proposition 1.2 in the Introduction.

ProOF OF THEOREM 3.1. For every h € R* and every sequence {h,, € R¥}
converging to h, write ,, as shorthand for 6y4+n"'/2h,,. The LAN property implies
that { Py, »} and {Pg,,n} arc contiguous. By contiguity and (2.2},

(4'1) ann) :YTL(QO) _1(90)}1’+0P(1)
under Py, . From this, property (2.5), contiguity, and differentiability of 7,
(4.2) 2Ty g~ 1 (0n)) = V1 {60)T " {(80) Y0 (0n) + 0p(1)

under Pj, . Observe that n'/?(T,, — 7(6,)) is the sum of n'/3(T,, — T,, g) and
n'?(T, g — 7(6n)). Part ¢) of the theorem and (4.2) thus imply part b), the
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limit distribution I7{fy) having the convolution structure asserted in ¢). Since b)
obviously implies a), it remains only to show that a) implies ¢).

First step. Suppose not. By the hypothesized weak convergence, LAN, and
tightness, there exists a subsequence M such that the weak convergence in ¢ fails
on M while

(4.3) L (T — 7(00)), Yu(00) | Pogn] = L(R,Y) for ne M

with L{R) = H(fp) and L{Y) = N(0,1I(6y)). Fix h € R* and let {h,} be the
distinguished sequence whose existence 1s assured by ELAE. By contiguity, differ-
entiability of 7, and Corollary 2.1 of LeCam (1960}, the characteristic function of
H,.(6,) satisfies

(4.4) ile%’ Eq,, exp{iu'n'/?[T, — 7{6,)]}
= E{explin’' B — i1/ V(fo)h] exp[h'Y — 27 0/ T(Aa)R]}.
By ELAE, the left side of (4.4) also equals Eexp{iu'R). Thus
(4.5) Eexp(iv' R) = E{exp[iv' R — 1v/V7(6p)h] exp[h'Y — 27 A I(60)A]}

for every h in the uniqueness set /. Since the right side of (4.5) is analytic in h
while the left side does not depend on h, equation (4.5) holds for every h € CF.
Setting b =4[t — I (Bo)V'7(6y)u] in (4.5) yields, after simplification,

(4.6) Eexp(iv'R) = Eexp{ie'W + it'Y ) exp[2~ "' T(00)t] exp[—2~ "' T, (65 )u),
where W = R — V7(60)I7}(6y)Y and X.{f) is defined in (2.4). Consequently,
(4.7)  Eexp(iv’W +it'Y) = exp[2 'S, (0o)u|E exp(in' R) exp[—2 1/ T(6y)4],

which establishes independence of W and Y.
Second step. Let

(48) W, = nl/2(Tn - TnE) = nl/2 [Tn - 7(90)] - nl/Z[Tn.E *“ 'T(B[]ﬂ

From {2.5) and (4.3), L[W,,, Y, (6) | Pg,nl = L(W,Y) on the subsequence M.
Let {h, € R*} now be any sequence that converges to i. By contiguity, Corollary
2.1 of LeCam (1960), and the independence of (W,Y),

(4.9) 1iCrR14 Eg, expliv' W, + it'Y,,(60)]

= Efexp(iv/ W + it'Y ) exp[h'Y — 27 W I(6)h]}
= Eexp{iv'W)E exp|(it + h)'Y] exp[-27' W' I(6p)A].

Because the distribution of Y is N(0,1(6p)), the transform Eexp(s'Y) =
exp[271s'I(fy)s] for every s € C*. Thus, (4.9) simplifies to

{(4.10) H€IJI\£1' Eq, expliv'W, + it'Y, (6g)]

= Fexp(iv/W)Eexp[it I{8,)h — 271 T(8,)¢).



20 RUDOCLF BERAN
If we let D(fy) = £(W), then (4.10} is equivalent to the weak convergence
(4.11)  L[Wa, Yulbo) | Pa, ] = D(0) x N(I(8a}h, I 1)) for ne M.

From this and {4.1), it follows that K,,(8,) = D(f) x N(0,171(8y)) for n € M,
contradicting our initial supposition. Hence, a) implies the weak convergence in c).
The convolution structure for H{fy) follows by specializing that weak convergence
to hy, = 0, then using (4.8) and (2.5).

LEMMA 4.1, Let {fn, : n > 1} and [ be Lebesgue measurable real-valued
funetions on R* such that

(4.12) JEI&O folz) = f(z) a.e Lebesgue.

Then, for every sequence {y, € R¥} converging to zero, there exists a subsequence
M such that

{4.13) Hm fo(z +yn) = f(x)  a.e Lebesgue.
neM

PROOF OF LEMMA 4.1. For this generalization of Bahadur’s lemma, see
Droste and Wefelmeyer ((1984), pp. 140-141) or Planzagl ({(1994), pp. 285-286).

PRrROOF OF THEOREM 3.2. Let ¢,(u,#) and ¢(u, #) denote, respectively, the
characteristic functions of H,(8) and H{#). Let D be a countable dense subset
of R". Fix (h,u) € D*. By the weak convergence hypothesized in Theorem 3.2
and by Lemma 4.1 with f, = ¢n(u,-), = 8, and y, = n~'/2h, there exists a
subsequence M (h,u) and a Lebesgue null set F(h,u) such that

(4.14) lim  ¢n{u,8 +n"Y2h) = p(u,8) forevery 8¢ 0 — E(h,u).
nEM(h,u)
Let
(4.15) 2— |J Ehw.
(hau)eD?

By reasoning akin to the first step in the proof of Theorem 3.1, equation (4.5)
holds for every (h,u) € D? and for every § € © — E. Because D is a uniqueness
set for analytic functions and because a characteristic function is determined by
its values on the dense subset 2 < R*, equation (4.5) continues to hold for cvery
h e C* every u € R*, and every 8 € © — E. The remaining argument for the
a.e. convergence (3.3) and for the a.e. convolution structure of (@) parallels the
proof of 'I'heorem 3.1 after {4.5).

PROOF OF THEOREM 2.1. a) implies c¢). The weak convergence of {J,{6)}
and the convergence in probability of {H,(6,)} imply that L|n'/?(8, — th),
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Hpn(0n)] = J(6) x 6(H(6y)), where 5{(H (8;)) denotes the point mass at H (8p)
and the topology is the product of Euclidean convergence and weak convergence.
Consider the probability space (£}, B, 1), where (2 is the unit interval equipped with
Borel sets B and p is Lebesgue measure. By a standard Skorokhod construction,
which inherits w.p.1 the relation H,(8,) = H,(8y + n'/2(f, — o)), there exist a
null set ¥V C @ and random vectors {V,,(w)} and V{w) defined on  such that
L{Vn) = Inlth), LV) = J(6o), and

(4.16)  lim (Va(w). Hal60 +n 2V, (w)) = (V(w). H(00)) Vw e Q- N.

The set {V{w) : w € 2 — N} is dense in the support of J{fp), and so itself
constitutes a uniqueness set for analytic functions deflined on C*. For each w &
1 — N, put h = V(w) and h, = V,(w). By (4.16), h, — h and H,(0,) = H(6,).
Thus, a) implies that the estimators {7,,} are ELAE. The desired LAE property
follows from Thecrem 3.1.

¢} implies b). In (3.2) of Theorem 3.1, set h, = V,(w) and h = V(w) to
deduce b) from the LAE property.

b) implies a}). The argument draws on the derivation of ¢) from a). As there,
the assumed convergence in probability of K,(#,) implies that, for every A in a
dense subset of the support of J(f), there exists a sequence {h,, € R*} converging
to h such that K, (0,) = D(fy) x N(0,1{(#y)). From this and (4.2), we see that
Hpn(0n) = H(6y) = D{fo) * N(0,%:(6p)) and the estimators {T,,} are ELAE. By
Theorem 3.1 they are LAE. Tn the definition (2.3) of LAE, set h,, = V,,(w) and
h =V{w) to deduce a).

Proor orF THEOREM 2.2. This argument consists mostly in applying The-
orem 3.1 to the parametric model P*{#, sp,dy) and to the parametric function
7(8) = T[P(#, s0,do)}. Here @ ranges over those vectors in R%~! whose compo-
nents are strictly between 0 and 1 and sum to stricily less than 1. Under this
model, the density of the sample X,, with respect to counting measure on the
support points sq is

do .
(4.17) [1e:".
7=1

Let e denote the vector in R%~! whose components each equal 1. By Taylor
expansion, the parametric model P"{8, sy, dy) is LAN at #p with

(4.18) I{6p) = [diag(fo)] ' + (1 — '8y) " Lee’
Yn(8) = I(85)n'/2(6,, — 6;).

A standard matrix identity yields 7=1(8,) = diag(6g) - 000

As was noted in Subsection 2.2, the random vectors {n'/2(8,, — 6,)} converge
weakly under P(6y, so, dp) to W(F,), whose distribution is J(fg) = N(0,I7()).
This distribution lias full support on B% 1,
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A sequence of estimators {T},} is partially LAE for 7(8) = T[P(8, s9,dg)] at
Ao if and only if it is LAE for 7 at 85. The plug-in estimator T(f’n) = T(én) plays
the role of 7o r. Indeed, {4.18) and the assumed differentiability of 7 (i.e. the
partial differentiability of T') entail

(419)  7(0n) = 7{00) + V(00)(6n — 00) + 0, )
= 7(00) + n V2V (86) ] (B0) Yo (Bo) + 0p(nH?)

under P™(8y, sy, dy), 08 required in (2.5). The covariance matrix ¥, (%) defined
in (2.4) coincides here with the covariance matrix Xr(FPy) of (2.11).

With these identifications, Theorem 2.1 is applicable. The distributions
Hy(0n) and Hp(Fy) coincide. The distribution &, (6,) in Theorem 2.1 here be-
comes

(4.20) Ka(0) — LY 2Ty — 7(0,)), HOMY 2Dy, — 0) | P™(0, 50, do)].

It does not coincide with K, (F,). Howcver, the one-to-one correspondence be-
tween 1(0)n'/2(0, — 0) and n'/2[F, — (0, 50, dp)] justifies replacing Kn{0,) by
K, (F,) in stating Theorem 2.2.

Proor oF THREOREM 2.3. Let {V,(w)} and V{w) be the Skorokhod randowmw
vectors constructed for the proof of Theorem 2.1. The LAWC condition (2.17) then
vields

(4.21) Hy(By +n Y23, (w) = 7{6p, Vw)) VYwe
The theorem follows.

Proor orF CorROLLARY 2.1. Part a} is immediate from Theorem 2.3 because
H{8y) = w(8y,0). To provc part b), observe that, in the notation of the previous
proof, Hy, (f,) has the same distribution as H,, {8y + mn/*U,), where U, =
(/1) 2V, Since Uy, (w) — 0 for every w € Q and m,, — oo, LAWC implies

(4.22) Hp, (80 +m;Y20,) — 7(60,0) = H{#y) Vw € L
Asgsertion b) follows.

Proor or THEOREM 2.4. Statements b) and c¢) are equivalent because
{Pyypnt and {P30+n1fzhmn} are contiguous under the LAN assunption.

a) implies b). As in the first part of the proof of Theorem 2.1, construct
Skorokhod versions {V,(w)} and V(w) such that £(V,) = J,(8o), L{V) = J.(60),
and

(4.23)  lim (Va(w), Fu(fo + nTY2V, (W) = (V(w), 8(o(6))) Yw € Q- N,

where N is a null set. Fix w € @ — N and put h = V(w), h, = V,(w). By (4.23),
hn — h and Fp{(6,) = 6(c(#)). Part b) now follows because { Py ,,,—1/2),, } and
{Fs,,n} are contiguous.
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b} implies a). Since b) is equivalent to ¢), st by, = Vy(w) and A = V(w) in
¢) to deduce a).

ProoF OF PROPOSITION 1.2. ‘I'he exercises and theorems cited below are
all in Chapter 1 of Munroe (1953). Let ¢ be any bounded, continuous function on
the range space of the root R,. Because of ex. o on p. 70 and the Baire category
theorem, hypothesis a) implies that there exists a set £ of category I such that

{(4.24) /gdHT,‘(,Q) > /gdH(~, #)  subuniformly on & — F
as n — o¢. Fix fy € © — E. By hypothesis b),

(4.25) lim | gdH,(-,86) = fgdHn(-,Ho), n> 1.

9—*90

By the subuniform version of Theorem 5.4 {ex. | on p. 44} and the two preceding
limits,

(4.26) lim fgdHn(-,Q) = lim liug /gdHn(-,())

n—00,8—6g n-—oc0 §—é,

= i [ gatta(.00) = [ gdH(60)

.

Let {f, € ©} be any sequence converging to fy € © — E. Convergence (1.26)
imphes that H,(6,) = H(8;). The first assertion of Proposition 1.2 follows from
this and hypothesis ¢). The second assertion is the Baire category theorem.
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