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Abs t r ac t .  The probability generating functions of the waiting times for the 
first success run of length k and for the sooner run and the later run between 
a success run of length k and a failure run of length r in the second order 
Markov dependent trials axe derived using the probability generating function 
method and the combinatorial method. Further, the systems of equations of 
2 m conditional probability generating functions of the waiting times in the m- 
th order Maxkov dependent trials are given. Since the systems of equations are 
linear with respect to the conditional probability generating functions, they 
can be solved exactly, and hence the probability generating functions of the 
waiting time distributions are obtained. If m is large, some computer algebra 
systems are available to solve the linear systems of equations. 
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1. Introduction 

Exact  distributions on runs in independent trials have been interested since 
De Moivre's works (cf. Johnson et al. ((1992), pp. 426-432)). Recently, distri- 
but ion theory on runs has been developed by many authors (Rajarshi (1974), 
Schwager (1983), Phil ippou and Muwafi (1982), Phil ippou et al. (1983), Phil ippou 
(1986), Hirano (1986), Phil ippou and Makri (1986), Hirano and Aki (1993), 
Godbole (1993), Godbole and Papastavridis  (1994), and Mohanty  (1994)). Since 
Ebneshahrashoob and Sobel (1990) solved a sooner and later problem for success 
and failure runs, various extensions have been given (cf. Aki (1992), 
Balasubramanian et al. (1993), Aki and Hirano (1993), and Viveros et al. (1994)). 

* This research was partially supported by the Natural Sciences and Engineering Research 
Council of Canada. 
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More generally, waiting times of appearance of a pattern among a given set 
of patterns have been investigated (Chrysaphinou and Papastavridis (1990) and 
Chrysaphinou et al. (1994)). Fu and Koutras (1994) have recently presented a sim- 
ple unified approach for the distribution theory of runs based on a finite Markov 
chain imbedding technique. 

As applications of the distributions of runs, we can mention start-up demon- 
stration tests and reliability of consecutive-k-out-of-n:F systems (cf. Hahn and 
Gage (1983) and Derman et al. (1982)). In these practical situations, Markov 
dependence models are considered (cf. Viveros et al. (1994), Viveros and 
Balakrishnan (1993), Fu (1986), Lambiris and Papastavridis (1987) and 
Papastavridis and Lambiris (1987)). Sooner and later waiting times between a 
success run and a failure run of specified length respectively have meanings in 
practical situations. For example, we consider a start-up demonstration test such 
that a purchaser of power generation equipment requires k consecutive successful 
start-ups for each delivered unit to accept the unit and he rejects it if r consecutive 
failure start-ups occur. Then the number of at tempted start-ups for a delivered 
unit becomes the sooner waiting time between a success run of length k and a fail- 
ure run of length r. The distribution of the number of start-ups is main concern 
for researchers of a start-up demonstration test and it is very important. 

In this paper, we deal with the waiting time problems for the first consecutive 
successes of a specified length and for the sooner and later runs between a success 
run and a failure run with specified length respectively. There are two standard 
approaches to these problems. One is to solve a system of equations of conditional 
probability generating functions. Then, some characteristics such as probability 
function and moments are derived from an expansion of the solution. The other 
is to give a typical sequence. And, by splitting it into subsequences which can be 
interpreted, we obtain the total characteristics of the distribution. By the former 
approach, Ebneshahrashoob and Sobel (1990) derived the p.g.f, of the sooner and 
later waiting time problems. Aki and Hirano (1993) studied the problem in the 
first order Markov dependent trials. By the latter approach, Balasubramanian et 
al. (1993) solved the sooner and later problems in the first order Markov dependent 
trims and Mohanty (1994) investigated the waiting time for success runs of length k 
in Markov dependent trials and some generalizations. Viveros et al. (1994) derived 
the binomial and negative binomial analogues under correlated Bernoulli trials. 

The purpose of this paper is to unify various approaches which have been 
attempted and to extend the study of waiting time problems from the first order 
Markov dependent trials to the second order Markov dependent trials. We also 
give a method to handle higher order Markov dependent trials. 

In Section 2 we study the distributions of the waiting time for the first success 
run of a specified length. The probability generating function (p.g.f.)'s are also 
given for the distributions of the sooner and later waiting times. In Section 3 
we give systems of equations of the p.g.f.'s of the conditional distributions of the 
waiting times. Fortunately, they are linear with respect to the conditional p.g.f.'s 
and hence they can be solved, though some of them are rather messy. And since 
the solutions are rational functions, characteristics such as recurrence relations 
of probabilities and moments are derived by standard methods (cf. e.g. Stanley 



SOONER AND LATER PROBLEM FOR RUNS 775 

((1986), Chapter  4)). 

2. Waiting time problems in the second order Markov chain 

Let X - l ,  X0, X1, X2,.. .  be a sequence of {0, 1}-valued second order Markov 
chain with the following probabilities: for x, y = 0, 1 and i = 1, 2 , . . . ,  zrx~ = 
P ( X - 1  = x, Xo = y), 

Pxu = P ( X i  = 1 [ X i _  1 = y, X i - 2  = x) 

and 

qzy = 1 - P x y  = P ( X i  = 0 I X~-I  = y, X i - 2  = x). 

For x , y  = 0,1, we assume that  0 < P~u,q~u < 1. We also call Xn  the n- th  trial 
and we say success and failure for the outcomes " r '  and "0", respectively. The 
outcomes " r '  and "0" are often denoted by S and F,  respectively. Let k be a 
given positive integer greater than 2. 

First, we derive the p.g.f, of the distribution of the waiting time for the first 
" r ' - run  of length k in X - 1 ,  Xo, X1 ,X2 ,  . . . .  Let ¢(~'u)(t) be the p.g.f, of the 
conditional distribution of the waiting time for the first " l"-run of length k in 
X - 1 , X o , X 1 , X 2 , . . .  given that  X-1 = x and Xo = y. Suppose we have currently 
'T ' - run  of length i. Then, we denote by ¢i(t) the p.g.f, of the conditional distri- 
bution of the waiting time from this t ime for the first " l"-run of length k. From 
the definition, we see that  ¢1(t) = ¢ ( ° ' l ) ( t )  and ¢2(t) = ¢O'1)(t). 

Remark 2.1. We note that  these distributions of waiting times are proper 
distributions. Let p = m i n { p z v , x , y  = 0, 1} and let Y1 ,Y2 , . . .  be a sequence of 
independent {0, 1}-valued random variables with success probability p. From the 
assumption, 0 < p < 1 holds. For i = 1, 2 , . . . ,  let As = {Y(i-1)k+l = 1, Y(i-1)k+2 = 

. . .  A 1, , Y~k = 1}. From the definition, the events { i}i=l are independent and 
~-~i~1 P ( A i )  = oc, since for every i, P ( A i )  = pk > 0. Then, from the Borel- 
Cantelli lemma, P(A~ occurs infinitely often) = 1. But, 

P ( the  waiting time for the first " l"-run of length k in X - l ,  X0, X1, X2 , . . .  < oo) 

_> P ( the  waiting time for the first " r ' - run  of length k in Y1, Y2,.. • < oo) 

> P(Aioccurs infinitely often) = 1. 

This proves the assertion. 

By considering the condition of one-step ahead from every condition, we have 
the following system of equations of conditional p.g.f.'s 

(2.1) ¢(0,0) = Poot¢l + q0ot¢ (°'°) 

( 2 . 2 )  

(2.3) 

¢1 = P01t¢~ 

¢2 = Pl l t¢3 

¢k-1 = p l l t  

¢(1,o) = Plot¢l 

+ q01t¢ (1'°) 

-4- ql l t¢  (1'0) 

• 1 + ql l t¢  0'°) 

+ ql0t¢ (°'°). 
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From (2.2), we have 

l _ ( p l l t ) k _  2 
(2.4) ~1 = qol t+  1 - p l l t  . polql~t 2) ~(1,o) + po~p~ik-2t k-1. 

From (2.4), (2.1) and (2.3) we obtain 

(2.5) ¢(0,1) = ¢~ = 

1- Iplo t 
polPllk-2t k-1 

_ _  P°°ql°t21~ q~ot ] ~ (qmt 
1 - (pllt) k-2 + 

1 - p l l t  • po~ql~t 2) " 

Then, ¢(0,0), ¢(1,0) and ¢(1,1) are given as 

(2.6) ¢(o,o) = 

(2.7) ¢(1,o)= 

and 

pOlPllk_2tk_ 1 POOr 
1 -- qoot 

1-(plot+P--°°qlot2~ (q° l t+ l - (p l l t ) k -2"P° lq l l t2 )  - qootJ 1 -P l l t  

polpllk-2t k-1 (plot + P°°ql°t2-1---- ~oot ] ~ 

Pooqlot2~ (qolt + l - (pllt)k-2 . Polqllt2) ' 
1 - (plot + -1--~oot/ 1 - pllt 

(2.8)  ¢0 ,1 )  = ¢2 = 

pllk-2tk-2(1--(ploqolt2+q~P--Ooqwt3~ 
1 -- qoot J ] 

( ~ ( 1 - (pllt) k-2 ) '  
1 - Plot ÷ P-°°ql°t2- qmt + "POlqllt 2 

1 - qoot J 1 - p11t 

where the last formula is derived from ¢1 -- Polt¢2 ÷ qmt¢ (1'°). 
Hence, we have 

THEOREM 2.1. The p.g.f, of the distribution of the waiting time for the first 
"l"-vun of length k in X-1,Xo, X1,X2,. . .  is given as 

7¢00¢ (0'0) (t) + 7r01¢ (0'1) (t) ÷ 71"10¢ (1'0) (t) + 71"11¢ (1'1) (t), 

where ¢(0,o), ¢(1,o), ¢(o,1) and ¢(1,1) are given in (2.6), (2.7), (2.5) and (2.8), 
respectively. 

Remark 2.2. (i) Expressions (2.5), (2.6), (2.7) and (2.8) for conditional 
p.g.f.'s can be alternatively derived by two different but well known approaches. 

In the first approach we consider the outcomes at the beginning of a sequence 
i 

and do not introduce Oi. For i -- 0, 1 , . . . ,  k -  1, let us call the subsequence S- .- S F 
k 

the i-th type of subsequence and subsequence S - . .  S the k-th type of sequence. 
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¢(0,1) = 

¢(1,0) = 

and  
¢(1,1) = 

Divide sequences in every ¢ into those s tar t ing with the  i - th  type  of subsequence 
(i = 0, 1 , . . . ,  k). Then,  we have the following equations:  

~b(o, o) = qoot¢(°,°) + Pooqol t2 ¢ (1'°) + PooPol qll t3 ¢ (l'°) + PooPolpl l qll t4 ¢ (1'°) 

+ ""  + PooPolpll k-3qlltk¢(l'O) + PooPolPli k-2tk, 

q01t¢ (1'°) + POlqllt2¢ (1'0) + POlPllqllt3¢ (1'°) + POlPllPllqllt4¢ (1'°) 

+ . . .  + Po1Pllk-3qlltk-l~) (1'°) + POlPllk-2t k- l ,  

qi0t¢ (°'°) + Ploqolt2¢ (1'°) + PloPOlqllt3¢ (1'°) + PloPOlPllqllt4¢ (l'°) 

+ •.. + PlOPOlPllk-3qlltk¢ (1'°) + PlOPOlPllk-2t k, 

q l l t ¢  0'°) + Pllqllt2¢ O'°) + PllPllqll t3¢ 0'°) + PllPllPllqll t4¢ 0'°) 
+ "'" + Pllk-3qlltk-2¢(l'O) + Pl l  ~-2tk-2. 

By solving these equations,  we obtain directly (2.5), (2.6), (2.7) and  (2.8). 
Another  approach is to examine the  s t ruc ture  of sequences in order to derive 

the  p.g.f. A typical  sequence in each of ¢(o,1), ¢(o,o), ¢0,o) and ¢(1,1) is given 
below• 

<_k-2 >o k-1 

: Fs t "gF t "?s Iss. . .s ,  
initial repeatS_0 

:>0 <k-2  >_0 k - i  

¢(o,o) : F F  I F . . . F S I S . . . S F I F . . . F S I S S . . . S ,  

initial repe~t >0 

_>o _<k-2 _>0 k-1 

¢(1,0): S F  I F " ' F S I S ' " S F I F ' " F S I S S ' " S ,  

initial repe~t>0 

k-2  

l s . . . s  
initial ¢(1,1) : 

<k-2  >1 <k--2 >0 k-1 

J S . . . S F . . . F S [ S . . . S F ] F . . . F S ; S S . . . S .  

initial repeat>O 

From these s t ructures  we can derive the p.g.f.'s. As an example,  we do so for ¢(o,o) 
and have 

¢(o,o) = (1 + qoot + qoo2t 2 + "  ")Poot 

• qolt + Polql~t 2 + POlPllqllt 3 + "" + PolP 3qllt k- l )  

x (Plot + qloPoot 2 + qloqooPoot 3 + qloqoo2Poo t4 + "..))m] 
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x POlPnk-2t  k-~ 
Poot 

1 -qoo t  

X 

1 -  ( q ° l t + p ° 1 q n t 2 ( 1 - ( P l l t ) k - 2 ~  ( p l ° t+q l °p°° t2  1 ] ]  1-q00t  

x PolPuk-2 t  k - l ,  

which is the same as (2.6). 
(ii) By expanding the p.g.f.'s we will be able to give an expression for the 

conditional distribution of the length of the waiting time. For instance consider 
¢(0,1) and let X represent the length of the waiting time excluding the two initial 
observations. Then, we can obtain 

P ( X  = x) = polPn k-2 
{ (Xl ,X2 ):Xl + x 2 + k -  l = x  } 

L{(nl ..... n ~ - 1 ) : n 1 + 2 n 2 + . . . + (  - )nk-l=Xl} \ /tl'" 'nk-1 / 

x qm n~ (pmqu)n2+'"+nk-tpu na+2n'+'''+(k-3)n~-~ 

PlO m~ (POOqlo )m2+ma+'"qoom3+ 2m4+'" i , X 

..i 

x = k - l , k , . . . .  

Note that nl  + ' "  + n k - 1  = ml +m2 + "  " .  Denote by W, Y, N, M the number of 
S's, SF's ,  F S F ' s  and S F S ' s  respectively in a sequence (that includes the initial 
FS) .  Then, it is not difficult to derive from the above that 

P ( X  = x , Y  = y , W  = w , M  = m , N  = n) 
k 2 n y n w k 2y-i-n m y m x w 2 y + m + l  

= P o l P n  - qm (Polqn) - Pn  - - PlO (qlOPOO) - qoo - - 

X [~A (nl,..Y,~k-l)] [ B~(?'r~I,Y2,...)] ' 

where 

and 

- = : E- j = y, EY' j : + 1,m  
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A combinatorial proof: We provide an alternative combinatorial proof. In 
the typical sequence of ¢(0,1) let the repeat portion be called a subsequence. In 
a subsequence call the portion S . . .  S F  the first pattern and the last portion 
F . . .  F S  the second pattern. Let ni+l represent the number of subsequences of 

i 

the i-th type S . . .  S F  (i = O, 1 , . . . ,  k - 2) in the first pattern and mj+l  represent 
J 

the number of subsequences of the j - th  type F . . .  F S (j = 0, 1 , . . . )  in the second 
pattern. We observe the following: 

(a) Any sequence is an arrangement of ni+l subsequences of the i-th type, 
i = 0, 1 , . . . ,  k - 2, of the first pattern and an arrangement of ?ztj+ 1 subsequences 
of the j - th  type, j = 0, 1 , . . . ,  of the second pattern and is finally followed by k -  1 
S's. 

(b) The number of repetitions of a subsequence is nl + -.. + nk-1 which is 
also ml + m2 + "-'. Also each repetition creates exactly one S F  in a sequence. 
Therefore y = nl + " .  + nk-1 = m l  + m2 -4- " "  " .  

(c) F S F  in a sequence ¢==> F in the first pattern (without S). S F S  in a 
sequence ¢----> S in the second pattern (without F).  S F  in a sequence ~ Any 
subsequence of the i-th type (i = 0, 1 , . . . ,  k - 2) in the first pattern. 

Thus nl = n and ml = m. 

(d) Every subsequence of the i-th type (i = 1 , . . . ,  k - 2) in the first pattern 
contributes a factor P01qll and every subsequence of the j - th  type (j = 2, 3 , . . . )  
in the second pattern contributes a factor qloPoo. 

In the probability expression, p00pn k-2 comes from the last k - 1 S's. From 
(b), (c) and (d) we get qoln(POlqli) y -n  and Plom(qloPOO) y-re. Noting that the 
number of S's is w and the number of F ' s  is x - w, the exponents of p n  and qo0 
are easily checked. The two multinomial coefficients come from the arrangements 
as described in (a). Finally, that ~-~jnj and Y ~ j m j  represent the number of 
S's and the number of F ' s  in y subsequences gives rise to ~":~jnj = w - k and 

j m j  = x - w - 1. This completes the proof. 

Once we have an appreciation of some of the combinatorial structures of the 
problem, we do not intend to present these in further derivations. 

(iii) In Theorem 2.1, we studied the waiting time for the first consecutive k 
successes in X - i ,  X0, X1, X2, . . . .  However, if you want to know the waiting time 
for the first consecutive k successes in X1,X2, X 3 , . . . ,  you can modify Theorem 
2.1 easily. 

Let e (x,y) (t) be the p.g.f, of the conditional distribution of the waiting time 
for the first "l"-run of length k in X1, X2, X3,. • • given that X-1  = x and Xo = y. 
Let ¢~ (t) be the p.g.f, of the conditional distribution of the waiting time from X2 
for the first "l"-run of length k in X 1 , X 2 , X 3 , . . .  given that X0 = 1 and X1 = 1. 

It is easy to see that  

e(0.0) = ¢(o,o), c(1,0) = ¢(1,0), 

and 
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e (°'1) = polt¢~ + qolt¢ (1'°), ~(1,1) = P11t¢~ + qllt¢ (1'°), 

¢~ = pzlt¢(L1) + q11t¢ (L°). 

Since ¢(o,0), ¢(1,o), ¢(o,1) and ¢(1,1) have already been given, then e(°,°), e (1'°), 
e (°'1) and e (1,1) can be solved easily. Therefore, we have 

COROLLARY 2.1. The p.g.f, of the distribution of the waiting time for the 
first " l" - run  of length k in X1, X2, X3 , . . .  is given as 

7ro0 £(0'0) (t) + ~'01 ~(0'1) (t) "4- ~TIO £(1'0) (t) ~- 7rll E(1'1) (t) .  

Next, we consider the sooner waiting time problem. Let r be a given positive 
integer greater than 2. We denote by E1 a " l"-run of length k and by E0 a 
"0"-run of length r. We derive the p.g.f, of the waiting time for the sooner run 
between E1 and Eo. The sooner and later waiting t ime problems were investigated 
by Ebneshahrashoob and Sobel (1990) in independent trials and were studied by 
Balasubramanian et al. (1993) and Aki and Hirano (1993) in the first order Maxkov 
chain. 

Let ~(x,y)(t) be the p.g.f, of the conditional distribution of the waiting time 
for the sooner run between E1 and E0 in X - l ,  Xo, X1, X2 , . . .  given that  X-1 = x 
and X0 = y. Suppose we have currently " l ' - run  of length i. Then ~( t )  denotes 
the p.g.f, of the conditional distribution of the waiting time from this t ime for the 
sooner run. Suppose we have currently "0"-run of length j .  Then yj(t) denotes 
the p.g.f, of the conditional distribution of the waiting time from this t ime for the 
sooner run. From the definition, we see that  ~1 = ~(o,1), ~2 = ~(1,1) 771 = ~(1,0), 
72 = ~(o,o). 

THEOREM 2.2. The p.g.f, of the distribution of the waiting time for the 
sooner run between E1 and Eo in X - ; , X o , X 1 , X 2 , . . .  is given as 

7rO0~ (0'0) (t) -~- 7r01~ (0'1) (t) -~ 7r10~ (1'0) (t) -~- 7r11~ (1'1) (t) ,  

where 

~(0,1) -~ ~1 

1 - (Pllt) k-2 -2~ (qo: + po, ql :  ) qloqoor-2t r-1 + polPllk-2t k-1 

1_ (qolt + 1 -  (pllt)k-2 .2"~ (PlOt+ "i --p---~lt Polq]l~ ) qlo t" 

(poot)(1 (qoot) ~-2) 
~(0,0) : ?72 = -- " E1 -~- (qoot) r-2, 

1 - qoot 

(Poot)(1 (qoot) ~-~) 
: I]1 ---- --( plot -~- qlot'  1 ~q~ot-- /I ~ ~1  o,o) 

and 

(v®t)(1 - (qoot) r-2) 

qloqoor- 2t r-1 , 
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~(1,1) ----- ~2 ---- qllt(1 - (Pllt) k-2) 

t - p l ~ t  
" TI1 + ( P l l t )  k -2 `  

Since it is not so difficult to prove the theorem by solving the corresponding 
system of 4 equations given in Proposition 3.2 in Section 3, we omit the proof. 

Similarly as Corollary 2.1, we consider the waiting time corresponding to the 
sequence X1, )(2, . . . .  

Let ~(x,v)(t) be the p.g.f, of the conditional distribution of the waiting time 
for the sooner run in X1, X2, . . .  given that X-1 = x and X0 = y. Then we have 

COROLLARY 2.2. The p.g.f, of the distribution of the waiting time for the 
sooner run in X1, X2, X 3 , . . .  is given as 

7roo(~ (0'0) (t) + 7rOl(~ (0'1) (t) + 7i"1o ~(1'0) (t) + 7r11(~ (1'1) (t) ,  

where 

and 

6 (°'°) = Poot~ (°A) + qootr/~, 

6 (1'0) = PlOt~ (0'1) + qlotrl~, 

~ = Pllt~(1,1) + qllt¢ (1'°), 

6 (1'1) = P l l t ~  + qllt~ (1'0) 

5(o,1) = Pol t~  + q01t~ (1'0) 

~ = Poot~(°,z) + qo0t~ (°'°). 

In the last of this section, we study the later waiting time problem. Let 
¢(x,y) (t) be the p.g.f, of the conditional distribution of the later run between Ez 
and E0 in X - 1 , X o ,  X 1 , X 2 , . . .  given that X-1 = x and X0 = y. Suppose we 
have currently "l"-run of length i. And the sooner run has not yet occurred. 
Then we denote by ¢i the p.g.f, of the conditional distribution of the waiting time 
from this time for the later run. Suppose we have currently "0"-run of length j .  
And the sooner run has not yet occurred. Then we denote by wj the p.g.f, of the 
conditional distribution of the waiting time from this time for the later run. Note 
that  ¢1 = •(o,1), ¢2 = ~2(1,1), 021 : ~ ( 1 , o )  and w2 = ¢(o,o). 

Before giving the recurrence relations for ¢'s, we need some preparations. Let 
~(x,v) (t) be the conditional distribution of the waiting time for the first "0"-run of 
length r in X - 1 , X o ,  X 1 , X 2 , . . .  given that X-z  = x and X0 = y. Suppose we have 
currently "0"-run of length j .  Then we denote by c~3 the p.g.f, of the conditional 
distribution of the waiting time from this time for the first "0"-run of length r. 
By changing the roles of "1" and "0" in Theorem 2.1, we obtain 

LEMMA 2.1. The conditional p.g.f. 's are given as 

o~(O,O) --- 1 - P l l t ]  ] 

1 qlopo0 2)l plltj q0o  
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and 

0(1,  0) = 

a(o ,  1) = 

O~(1,1) _ 
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qloqOOr-2t r- 1 

_ (qmt + qllpmt2~ ( pl°t + l - ~ ] 1 - qoot "ql°p°°t2) ' 

qloqoor-2t r-1 (q01t + -l ~ l l t  Jqllp°lt2~ 

_ ( q m t + q ] l P ° ] t 2 ) @  l ° t + l  - Pllt 1 - (qoot) )' 
1 - qoot "ql°p°°t2 

qloqoor_2tr_ 1 qllt 
1 --p~lt 

1_  (qolt+qllPolt2~ (PlOt+ 1--(qoot)r-2 )" 
1 - p~i t /  -1 Z qoo--- [ " ql°p°°t2 

THEOREM 2.3. The p.g.f. 's of the conditional distributions of the waiting 
time:for the later run, ~(o,o)¢(o,1), ¢(Lo)¢(1,1), ¢i, i = 3 ,4 , . . . ,  k -  1, and wj, 
j = 3, 4 , . . . ,  r - 1 satisfy the following system of equations: 

@o,o) = Poot¢l + qootw3 

{ 1 = polt¢2 + qmtwl 
~2 = Ptlt¢3 + qlltw~ 

~k-~ = p n t a  0'~) + qlCWl 

Wl = Plot~bl + qlotw2 
w2 = Poot¢l + qootw3 

[ ; ;_l  = Poot~bl + qootdP (°'°) 

PROOF. Though the sooner waiting time stops when either E0 or E1 comes 
first, the later waiting time continues after the sooner run comes. And, after the 
sooner waiting time, we wait for the run which did not come sooner. For example, 
if E1 comes first, we wait for Eo after the sooner waiting time. Then, we can see 
the result clearly. This completes the proof. 

Remark 2.3. In independent trials, Ebneshahrashoob and Sobel (1990) in- 
troduced generalized p.g.f, with marker and showed the relationship between the 
sooner waiting time and the later waiting time. Theorem 2.3 is an extension of 
their result to a case of dependent trials. 

W e  can solve the above equations by using Theorem 2.2, Lemma 2.1 and 
Theorem 2.1. We have 

¢(0,1) = ~1 

(qm t + 1 .po, l. ) qloqoo~-2tr-1. ¢(0,o) + PolP11 k-2tk-1 " (~(1,1) 

1 -p11~ / 1 - ~  ) 
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where 

and 

Po1Pllk_2tk_ 1 Poot 
1 - qoot 

(~(0,0) = ( POOqlOt2~ ( qOlt~- - - -  'POlqllt2) 1 - ( P l l t )  k - 2  

1 -  P l o t +  1 -  qoot ] 1 -  p u  

qloqoor-2tr-1 q llt 
a(1,1) = 1 - p u t  

( q11Po1t2~ (PlOt~ 1-- (qoot)r--2 .qlOPOOt2 ) " 1 
- \ q m t  + -1--~11t]  1 --qoo---tt 

The other ¢ 's  are easily derived since they are liner function of ¢1. 

3. Waiting time problems in the higher order Markov chain 

As we have seen in the previous section, final expressions of the p.g.f.'s of the 
distributions of the waiting times are rather messy even in the case of the second 
order dependency. As for the case of more higher order Markov chain (say the 
case of the m-th order Markov chain)~ we can give the systems of equations of 
the conditional p.g.f.'s of the waiting times. Fortunately, the systems are linear 
with respect to the conditional p.g.f.'s, and hence we can solve them. When m is 
large, number of linear equations become very large (2m), so we recommend the 
use of computer algebra systems to obtain the final expressions of the conditional 
p.g.f.'s. The usages of computer algerbra is quite simple and straightforward. 

Let m be a positive integer less than min(k, r). This assumption is only to 
avoid the case that  the waiting time becomes negative. 

Let X- m+1 ,  X - m + 2 , . . - ,  X0, X1, X2, . .  • be {0, 1}-valued m-th order Markov 
chain with 

7rxl ..... xm = P ( X - m + I  = x l , X - , ~ + 2  = x 2 , . . . , X o  = xm),  

Pxl ..... xm = P(X~ = 1 I X i - 1  = Xm, X i - 2  = X m - 1 , . . . ,  X i - m  = xl) ,  

for X l , . . . , x m  = 0,1 a n d i  = 1 ,2 , . . . .  For X l , . . . , X m  = 0,1, we assume that 
0<px~  ..... ~,~,q~l ..... ~m < 1 .  

Let ¢(xl ..... xm) be the p.g.f, of the conditional distribution of the waiting time 
for the first "1"-run of length k given that X-m+1 = x l ,  X - m + 2  = x 2 , . . . ,  Xo  = 
xm. From similar arguments in Remark 2.1, we see that the distribution of the 
waiting time is proper distribution. 

Similarly as the proof of Theorem 2.1, we have 

PROPOSITION 3.1. The p.g.f. 's of the conditional distributions of the wait- 

ing t ime for the first " r ' - run  of length k satisfy the following linear system of 
equations: 

{ ¢(Xl ..... xm) = p ~  ..... ~,~t¢(x2 ..... xm,1) +q~l ..... ~mt¢ (x~ ..... xm,0), 

if (Zl,...,xm) # (1,1,..., 1), 
¢(1 ..... 1) = A(t)¢(1 ..... 1,o) + (Pl ..... it) k-m, 
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where A( t )  = ql ..... i t(1 - (Pl ..... i t ) k - m ) / ( 1  -- P l  ..... l t) .  

Remark 3.1. When  m is small, the explicit solution of the system of equa- 
tions given in Proposi t ion 3.1 can be written. Indeed, the solution for m = 3 is 
not so messy. 

Let a ( x l ' ' ' ' ' x m )  be the p.g.f, of the conditional distr ibution of the  waiting time 
for the first "0"-run of length r given that  X-m+1  = x l ,  X - m + 2  = x2, . .  •, Xo -- 
xm. By changing the roles of "1" and "0" in Proposi t ion 3.1, we have 

COROLLARY 3.1. The p.g.f. 's of the conditional distributions of the waiting 
time for the first  "0"-run of length r satisfy the following linear system of equa- 
tions: 

a(xl ..... xm) = p~l ..... ~m ta(x2 ..... xm,1) +q~l  ..... x.~ ta(~2'''' '~m'°), 

if ¢ (o,o,...,o), 
a(o ..... o) = B( t )a (o  ..... o,1) + (qo ..... ot) ~-'~, 

where B( t )  = po ..... o t ( 1 -  (q0 ..... o t )~ -m) / (  1 -  qo ..... ot). 

Next,  we s tudy the sooner waiting time problem. As in the previous section, 
E1 and E0 denote a " l " - run  of length k and "0"-run of length r, respectively. Let 
~(~ ..... ~m) (t) be the p.g.f, of the conditional distr ibution of the waiting time for 
the sooner run between E1 and Eo in X - m + 1 ,  X-m+2, . . . .  XO, X1, X 2 , . . .  given 
that  X-m+1 = x l , X - m + 2  = x 2 , . . . , X o  = Xm. 

PROPOSITION 3.2. The conditional p.g.f. 's satisfy the following linear sys- 
tem of equations: 

{~(z~ ..... x~) ~ t;(~2,...,~,~,1) + q ~  ..... ~ t~(~2,...,~m,o) 
: FX l~ . . .~Xm % 

i f  ( X l , . . . ,  Xm) ~ (1 . . . .  , 1 )  and (Xl . . . . .  Xm) ~ (0 . . . .  ,0), 
k - -  77~ ~(1 ..... 1) = A(t)~(1 ..... 1,o) + (pl, . . , l t)  , 

~(0 ..... 0) = B(t)~(o ..... o,1) + (qo  ..... ot) ~-'~. 

PROOF. Suppose that  we have currently " l"- run of length i. ~i(t) denotes 
the p.g.f, of the conditional distr ibution of the waiting t ime from this time for the 
sooner run. Suppose that  we have currently "0"-run of length j .  ~j(t)  denotes 
the p.g.f, of the conditional distr ibution of the waiting time from this t ime for the 

sooner run. From these definitions we see tha t  for i _ m, ~i = ~(o ..... o,1 ..... 1), and 

~i = ~(1 ..... 1 , ~ ) .  Then, by considering the condition of one-step ahead in t ime 
carefully, we see the following. 

{~(xl  ..... xm) - tr(x2,'",x~, 1) o t~(x~ ..... ~m,0) 
~ X l , . . . , X m  ~ ~-  ~ X l , . . - , X m  ~% 

if ( X l , . . . , X m ) ¢ ( 1 , . . . , 1 )  and ( X l , . . . , x m )  5 ( O  . . . . .  0), 
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/ ~(1 . . . . .  1) = ~m ---- Pl ..... l t ~ m + l  + ql . . . . .  lt~ (1'''''1'0) 

(3.1) ~m+l ~- P l  ..... l t ~ m + 2  -P q l , . . . , l t~  (1 ..... 1,0) 

~k-1 =-Pl ..... l t" l + q l  ..... lt~ (1 ..... 1,0) 

and 

/ ~(o,.,.,o) = 7Ira = qo ot~lm+l + Po ot~ (° ..... o,1) 

(3.2) I ~..+1 = qo ..... ot~lm+2 Jr- PO ..... o t ~  (0 ..... 0 , 1 )  . 

/ 
( ~1~-1 = qo,...,ot " 1 + po, ,ot~ (° ..... o,1) 

From (3.1) and (3.2), we have the desired result, which completes the proof. 

Now, we study the later waiting time problem. 
Let ¢ ( ~ , , ~ m ) ( t )  be the p.g.f, of the conditional distribution of the waiting 

time for the later run between E1 and Eo in X - m + l , X - m + 2 , . . .  ,Xo,  X 1 , X 2 , . . .  
given that X - m + 1  = X l ,X-~+9 .  = x9., . . .  ,Xo = Xm. 

PROPOSITION 3.3. The conditional p.g.f. 's satisfy the following linear sys- 
tem of equations: 

( ~1,(xl '''''x'n ) -- ~ t~l,(X2'""Xm , 1) -I- . t~l,(X2,'",xm ,O ) 
W - -  F ~ C l ~ . . . ~ X m  ~?" - -  ' t X l ~ . . . ~ Z  m ~'~ , 

i f  ( X l , . . . , X m ) ~ ( 1 , . . . , 1 )  and ( X l , . . . , X m )  ~ (O, . . . ,O) ,  
¢(1 ..... 1) = A(t)~(1 ..... 1,o) + (pl ..... l t ) k - ~ a  (1 ..... 1), 

~(o ..... o) = B(t)~(o ..... o,1) + (qo ..... 0t)~-m¢ (° ..... 0) 

PROOF. Suppose we have currently "1"-run of length i. And the sooner run 
has not yet occurred. Then, ¢i (t) denotes the p.g.f, of the conditional distribution 
of the waiting time from this time for the later run. Suppose we have currently "0"- 
run of length j .  And the sooner run has not yet occurred. Then, wj (t) denotes the 
p.g.f, of the conditional distribution of the waiting time from this time for the later 

i i 

run. Note that f o r i < m , ¢ i  = ¢ ( °  ..... 0,1 ..... 1 ) , a n d w i = ¢ ( 1  ..... 1 , ~ .  Then, by 
considering the condition of one-step ahead in time carefully, we see the following. 

{ ¢(xl ..... xm) =pxl  ..... x,~t¢ (x~ ..... x.~,l) +qx l  ..... xmt¢ (~2 ..... ~m,0), 

if ( x t , . . . , x m )  ~ (1 , . . . ,1 )  and (Xl, . . . ,Xm) ~ ( 0 , . . . , 0 ) ,  

(3.3) 

and 

¢(1 ..... 1) : Cm : Pl,...,ltCm+l + ql ..... lt~ 2(1'''''1'0) 

C m + l  = P l  ..... lt~)m+2 + ql ..... l t ¢  (1 ..... 1,o) 

¢k-1 : P l , , . . , l t ' a  (1 ..... 1 )+q l  ..... l t ¢  (1 ..... 1,o) 
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(3.4) 

¢(0,...,0) = w m =  qo ..... 0t0;m+l + P 0  ..... 0 t ¢  (° ..... 0,1) 

Wm+l  -- q0,...,0twm+2 + p 0 , . . , 0 t ¢  (° ..... 0,1) 

w ~ - l = q o  ..... o t . ¢ ( °  ..... O ) + p o  ..... o r e  (° ..... o,1) 

F r o m  (3.3) and (3.4), we ob ta in  the  desi red resul t ,  which  comple tes  the  proof.  
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