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A b s t r a c t .  Assume n items are put on a life-time test, however for various 
reasons we have only observed the r l - t h , . . . ,  rk-th failure times x r l , n , . . . ,  xrk,,~ 
with 0 _< x~,~ < "'" < x~k,~ < c~. This is a multiply Type II censored 
sample. A special case where each x~,,~ goes to a particular percentile of the 
population has been studied by various authors. But for the general situation 
where the number of gaps as well as the number of unobserved values in some 
gaps goes to oo, the asymptotic properties of MLE are still not clear. In this 
paper, we derive the conditions under which the maximum likelihood estimate 
of 0 is consistent, asymptotically normal and efficient. As examples, we show 
that Weibull distribution, Gamma and Logistic distributions all satisfy these 
conditions. 

Key words and phrases: Maximum likelihood estimation, multiply Type II 
censoring, law of large numbers, central limit theorem, order statistic. 

1. Introduction 

Assume we are sampling from a popula t ion with density function f(x,O),  
where 0 is the pa ramete r  of interest  in R q. The  est imat ion of 0 has been ex- 
tensively studied bo th  for complete and censored data.  In the case of different 
censoring scheme, the maximum likelihood est imate  (MLE) has been proved to  be 
consistent,  asymptot ical ly  normal  and asymptot ical ly  efficient under  certain reg- 
ular i ty conditions, see Cramdr (1946), Halperin (1952), Basu and Ghosh (1980), 
Bha t t acha ryya  (1985), etc. 

In this paper,  we assume tha t  n i tems are pu t  on a life test ,  but  only r l - t h , . . . ,  
rk-th failures are observed, the rest are unobserved,  where r l , . . . ,  rk are considered 
to be fixed. T h a t  is, for some items, we may not  know their  exact  failure times, 
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not even their orders, but for each of these items, we have observed the ri-1- 
th  and ri-th failure times Xr,_~,n and Xri,n such that  it fails between these two 
failures. This is the multiply Type II censoring. Multiply Type II censoring 
is a generalization of Type II censoring where only the first k failure times are 
observed. It is a frequently practiced censoring scheme, particularly if one fails to 
record the failure time of every subject, only several failure times and the number 
of failures between them are recorded. For examples of such situation, see Mann 
and Fertig (1973), Balasubramanian and Balakrishnan (1992), Balakrishnan et al. 
(1992), and Fei et al. (1995). 

A special case as a simple generalization of Type II censoring has been studied 
by many authors. For instance, for 1 < rl < r2 < n, only Xrl,n _< Xr~+l,= ~ " '  _< 
X~,~ are observed. The derivation of the asymptotic properties of the MLE is 
similar as that  for Type II censored sample. This has been described by Halperin 
(1952), Bhattacharyya (1985) and others. For more general case of Multiply Type 
II censoring, it is yet unclear under what conditions the MLE of the parameters is 
consistent, asymptotically normal and asymptotically efficient. Especially, when 
some gaps of unobserved failures go to oc along with n, it is interesting to know 
under what conditions the desired properties are still valid. This is the main 
objective of the paper. For the desired properties to be still valid, we need to 
impose some extra restrictions on the density function, especially at the tails of 
the distribution. In addition, we need to restrict the speed at which the maximum 
gap goes to oc. 

Multiply Type II censoring has been studied for several special populations 
such as exponential, normal~ logistic, Weibull and extreme-value distributions. 
Various estimations such as MLE, approximate MLE, BLUE and BLIE have been 
derived and compared, see Balasubramanian and Balakrishnan (1992), 
Balakrishnan et al. (1992, 1995a, 1995b), and Fei et al. (1995). For one- and 
two-parameter exponential distributions, Fei and Kong (1994) have provided sev- 
eral approximate and accurate interval estimations for the parameters. 

The assumptions and results about the asymptotic normality and efficiency 
are stated in Section 2. In Section 3 we give some examples. The proofs are 
provided in Section 4. 

2. Assumptions and theorems 

Suppose Xr l ,n , . . . ,  Xr~,n with 0 _< Xrl,n < ' ' '  < Xrk,n < (30 is a multiply Type 
II censored sample from a population with p.d.f. , f (x,8) and c.d.f. F (x ,  8) for 
0 E R q. Since our problem is of prominence in the field of life-data analysis, here 
we make the assumption that  the random variable is defined on [0, oe) although 
this is in no way critical to our proofs. 

Denote the likelihood function of the sample as h(x, 8) = h ( x r l , n , . . . ,  Xrk,n, 8), 
then with x0,n = 0 we have 

k 

(2.1) h(x, 8) = C Y I { F ( x r , n , 8  ) - F(xr~_l,n,8)} r~-r ' - l -1 
i=1 
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k 

"{1-F(xrk, , ,O)}n-r~XIf(x~, , , ,O),  
i=1 

where C is a constant not depending on 0. The likelihood equation becomes 

(2.2) 
0 log h(x, 0) 

O0 

k 0 log{F(x~,,,~, O) - F(x~,_a,,~, 0)} 
- -  Z ( r 4  - -  r 4 - 1  - -  1) O0 

i=1 

+ (n - rk) Ol°g{1 - F(x"k'~'O)} + ~ Ologf(xr,,.,O) 
O0 O0 

4=1 

~---0. 

We shall derive the conditions under which (2.2) has a solution being consistent, 
asymptotically normal and asymptotically efficient. 

For the multiply Type II censored data, define the gap between Xr~_l,n and 
Xr~,n as r4 - r4-1 - 1, which is the total number of unobserved failures, and 

g = m.ax(ri - ri-1 - 1) 

as the maximum gap. To obtain our results, let's introduce the following assump- 
tions. To avoid the extra complexity in stating the assumptions, results and proofs, 
we present for most part one dimensional parameter case, and if it's necessary, we 
indicate the modifications for multiple parameters. 

ASSUMPTION 1. For almost all x, the derivatives 

0 4 log/(x, 0) O log/(x, o) 
004 , i = 1 , 2  and OxO0 ~ , i = 1 , 2 , 3  

exist, and are piecewise continuous for every 0 belonging to a nondegenerate in- 
terval I and x in [0, c~). 

ASSUMPTION 2. There exist positive numbers A1, A2, 7ij, i = 1,2, j = 
1 , . . . ,  5, such that when 0 is in some neighborhood of true value 00, and x is large 
enough, 

10 4 log f(x,  0) ] < Alx~l, i 1, 2, 
00~ [ - ' 

(2.3) 
0 i+1 log f(x,  O) 

~x-xO~ <_ Alx  ~1,'+2, i = 1, 2, 3, 

and when x is small enough, meaning being close enough to zero, 

I Oil°gf(x'O) < A2x -~2', i 1,2, 
004 

(2.4) 
0 i+1 log f(x,  0) 

OX00 i < A2x -~2'~+2, i = 1,2,3. 
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Also assume there exists a function H(x) that for every 0 in R, 

l0 3 log f (x ,  9) I < for H(x),  
08~ t 

and there exists M independent of 9 such that 

--0<) < X < 00, 

~ H ( x ) f ( x ,  O)dx < M < oc. 
o o  

For simplicity, we define 

and 

71 = max{2711 + 713,711 q- 714,712 -1- 713, 7"/15} 

")'2 = max{2721 q- ")'23,721 + 724,722 + 723,725}. 

ASSUMPTION 3. For x large enough, there exist positive numbers C1 and 
such that 

(2.5) f(x,O) >_ CI{1 - F(x,O)} ~. 

For x small enough, there exists a real number/3 and a positive number C2 such 
that 

(2.6) f(z, 0) > C2{F(x, 0)} 8. 

ASSUMPTION 4. For every 0 in I, the integral 

f _~  ~ O l ° g f ( x , 8 ) )  2 (2.7) M12 = ~ \ ~ f(x,t?)dx 

is finite and positive. 

The above assumptions are easy to be modified for multiple parameter case. 
Note for different parameters, the values of 3'1,3'2 could be different. Under these 
assumptions, we have the following theorems. 

THEOREM 2.1. For constants a,/3, 71, 72 defined as above, assume Assump- 
tions 1-4 are valid. Further assume there are small positive numbers D, ¢, T1 and 
T2 with 0 < ¢ < 1, such that 

(2.8) 

(2.9) 

0D{F-I (1  --Cx, O)}'nx-(a-1)dx < o0, 

f0 D{F-I[(1  --¢)x,O]}-~2x-(Z-1)dx < oc, 
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and for some positive y, 

(2.10) 
n(log n) l+n 

Y --*0. (2.11) n f l - 2 { F - l ( n ( l o g n ) l + r 2 , 0 ) } - ~ 2  

Then if the maximum gap g is always bounded the likelihood equation (2.2) has a 
solution converging in probability to the true value Oo as n ~ co. 

To derive the asymptotic normality, we only need to add very limited assump- 
tions. 

THEOREM 2.2. In Theorem 2.1, instead of conditions (2.8)-(2.11), g we 
have 

(2.12) 

(2.13) 

and 

(2.14) 

D 

o {F- l (1  - ex, O)}'nx-(C'-l/2)dx < co, 

~o D{F-I[(1 -¢)x,O]}-'~2x-(f~-l/2)dx < co, 

0)} ,1 
n( logn) l+, l ,  --* 0, 

then when g is bounded, the solution of (2.2) is an asymptotically normal and 
asymptotically efficient estimate of Oo. 

Consider the case that g --. co along with n. 

THEOREM 2.3. Under Assumptions 1-4 for the distribution, assume as n 
co, ne -(n/9)~ ---* 0 for any e > O. At  two tails of the order statistics, we assume 
(rj+l - rj - 1)/(rj - 1) on the left tail or (rj+l - rj - 1)/(n - rj+l - 1) on the 
right tail are bounded. Further, instead of (2.10) and (2.11) we have 

(2.16) n a - 2 ( n - r k ) 2 { F - l ( l  Y 0 ) }  ~1 
n(logn)l+ n , --* O, 

(2.17) n ~ - 2 r 2 { F - l ( n ( l o g n ) l + r 2 , 0 ) }  -'y2 Y ~ 0, 

and (2.8), (2.9) /n Theorem 2.1. Then the MLE is consistent. Furthermore, i f  
together with (2.12) and (2.13) in Theorem 2.2, (2.16) is modified by replacing 
a - 2 by a - 3/2 and (2.17) is modified by replacing ~ - 2 by/3 - 3/2. Then the 
derived MLE is asymptotically normal and efficient. 



736 FANHUI KONG AND HELIANG FEI 

3. Examples and discussions 

Before giving the  proofs, let 's  consider some examples .  

Example 1. First ,  consider the  G a m m a  distr ibution.  I t  has  the  densi ty func- 

t ion 

1 xk_le_x/e k > 0, 0 > 0, x > 0. (3.1) f (x ,  k, 0) - 0kr(k) 

Take k as a cons tant  and  only consider 0 as a pa ramete r ,  Assumpt ion  2 is valid 

and we h a v e ~ n  = 2, and  "/2 = 0. Choose 1 < a < 2 and  1 - 1 / k  < ~ < 2, 
bo th  Assumpt ion  3 and  condit ions (2.8)-(2.11) are satisfied. T h e o r e m  2.1 is valid. 
Fur ther  let 0 < a < 3 /2  and 1 - 1/k < /3 < 3/2,  T h e o r e m  2.2 is also valid. For 
the  case t ha t  the  m a x i m u m  gap g -~ cc under  conditions in T h e o r e m  2.3, this  

t heo rem is also valid. 

Example 2. As the  second example ,  consider the  two-pa rame te r  Weibull dis- 
t r ibut ion,  which has the  following c.d.f. 

(3.2) F(x ,O ,# )= l - exp  - , # > 0 ,  0 > 0 ,  x _ > 0 ,  

and the  log-density funct ion is 

By tak ing  derivat ives wi th  respect  to #, we find t ha t  for any e > 0 the  values of 

7 ' s  satisfying Assumpt ion  2 axe 

"/11 -- # + e, 712 = # + e, "/13 -- # -  1 + e, 

~/14 -- # -  1 + e, "/15 = # -  1 + e. 

So we have ~/1 = 3p - 1 + e. Similarly, noticing 

~¢21 ---- E, "/22 --~ 0 ,  "/23 = 1, 

~/2a = 1 -- # + e if # < 1, 724 = 0 otherwise,  

"/25 = 1 - # + e if # < 1, 725 = 0 otherwise,  

so we have "/2 = 1 + e. 
Apparent ly ,  Assumpt ion  3 is satisfied if a > 1 and 3 > 1 - 1/#.  Note  when 

# < 1,/3 could be negative.  Fur thermore ,  if a , / 3  also satisfy a < 2 and  13 < 2 - 1 / # ,  
one can find a posit ive e small enough tha t  condit ions (2.8)-(2.11) are satisfied. 
For (2.12)-(2.15) to  be  satisfied, one needs to  choose a , / 3  such t h a t  1 < a < 3/2,  
and  1 - I / #  < / 3  < 3 / 2 -  i / # .  

By  tak ing  derivat ives with respect ive to 9, we can easily de te rmine  those ~ j s  
sat isfying Assumpt ion  2. Similar as above,  we have 71 = 3p - 1 and  "/2 = 1 - # 
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if # < 1, and 72 -- 0 otherwise. For # < 1, we choose 1 < a < 2 and 1 - 1 /#  < 
< 3 - 1 / # .  For # > 1, we choose 1 < a < 2 and 1 - 1 / #  < /3 < 2. Then 

Assumption 3 and (2.8)-(2.11) are satisfied. For (2.12)-(2.15) to be satisfied, we 
further let l < a < 3 / 2 a n d  1 - 1 / # < ~ < 5 / 2 - 1 / # i f # < 1 ,  1 < a < 3 / 2 a n d  
1 - 1/#  < ~ < 3/2 if # > 1. 

Put  these together, we are able to find common values of a and ~ such that 
all the assumptions of Theorem 2.1 and Theorem 2.2 are satisfied, therefore the 
MLE of (0, #) is consistent, asymptotically normal and efficient. Theorem 2.3 is 
also valid if the gaps satisfy the assumptions there. Notice here the values of 71 
and 72 need not to be the same for different parameters, but  the values of a and 

must be the same. This can be seen in proofs. 

In the theorems, we point out that  at the upper tail of [0, c~), we can replace 
71 by some easier to obtain ~/~ although this might make the assumption more 
restrictive. For example, we can define 71 in Assumption 2 as follows: When x is 
large enough, there exists a positive number "70 that 

(3.3) Oi+Jl°gf(x'O) < Ax  ~°, i = 1,2, j = 1,2,3, 
Ox~OOJ 

and let 71 = 370. Under this modification 71 is usually larger, therefore (2.8) 
and (2.10) become more restrictive. Nevertheless, th i s  will not eliminate some 
important distributions because for many distributions F - l ( 1  - ¢x, 0) goes to oc 
at the order of (log x) m as x ~ (x), for some m > 0. So if a satisfies Assumption 
3 and (2.8), (2.10) in Theorem 2.1 and also (2.12), (2.14) in Theorem 2.2 for 71, 
it will also satisfy these conditions for 7~. But at the lower tail of [0, c~) where 
x is near zero, one needs to be much more careful. For example, for the Weibull 
distribution we have just seen, 

F - 1 ( ( 1  - ¢ ) x ,  0) = 0 ( - l o g [ 1  - (1 - ¢ ) x ] } 1 / " .  

As z --+ 0, { F - l ( ( 1  - ¢ ) x ,  0)} -x goes to ~ at the order of x -11". If we replace 
the value of 72 as we did for V1 in (3.3), then (2.9) and (2.11) will no longer be 
satisfied. 

If the r.v.'s are defined on ( - co ,  ~ ) ,  the assumptions need to be modified 
correspondingly. In this case, it is easy to see that the corresponding assumptions 
for (2.9), (2.11), (2.13) and (2.15) are derived simply by replacing -72  by 72. Let's 
take the logistic distribution as an example. 

Example 3. Consider the density function as follows 

(3.4) f(x, O) = ~e-(X-'7)/°/(l 4- e-(X-v)/°) 2, -oo < x < o~. 

Taking derivatives with respect to 0, one has Vm = V12 = 1, and Vii = 0, i -- 3, 4, 5 
in Assumption 2, so one has ~'1 = 2. Choose 1 < a < 3/2, Assumption 3 and 
(2.8), (2.10), (2.12), (2.14) in Theorem 2.1 are satisfied. By the symmetry of the 
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distribution at two tails, Assumption 3 is satisfied for 1 < ~ < 3/2, so are the 
corresponding assumptions at the lower tail of ( -oc ,  oc). At the same time, by 
taking derivatives with respective to 7, one has ~/1 = 0, ~f2 -- 0, and the values for 
c~ and ~ to satisfy Theorems 2.1 and 2.2 are 1 < c~ < 3/2 and 1 < ~ < 3/2. So for 
parameter (~,~), we can find common values of ~ and/~ that both Theorem 2.1 
and Theorem 2.2 are valid. If the gaps satisfy the assumptions in Theorem 2.3, 
this theorem is also valid. 

Note that if # is fixed then the one-parameter Weibull distribution becomes 
exponential after a power transformation. Therefore the conditions restricted on 
these two distributions should be equivalent. This is true because our theorems 
include both the family of exponential distributions and that of the Weibull dis- 
tributions for all values of #. So they are equivalent in terms of including these 
two families. 

Here we assume the natural parameter space. However, from the proofs we 
will see that the theorems are still valid if the assumptions are satisfied for 
only in a neighborhood of the true parameter 00. So if the natural parameter 
space is truncated and the assumptions are satisfied in the truncated one, then 
the theorems are also valid for ~0 inside the space. 

So for the situation where there exist some gaps between observed failure times 
in a life test experiment, we have derived the conditions under which the MLE 
is consistent, asymptotically normal and efficient. This generalizes the results of 
regularly understood multiply Type II censoring, where the last [pln] failures are 
unobserved or the first ~2n] failures are unobserved for 0 < Pl,P2 < 1, or even 
the case of several points of truncation, each being defined as a particular sample 
percentage point. In these cases, the derived MLE is not asymptotically efficient 
since part of information is totally lost. 

Besides the regularity conditions for the regular Type II censoring in Halperin 
(1952), we have introduced (2.3)-(2.6) and the assumptions included in the theo- 
rems. Although these additional conditions seem complicated and sometime diffi- 
cult to verify, they are all restrictions on the tails of the population distribution. 
Under these conditions, the scores at two tails of the order statistics do not fluc- 
tuate too dramatically such that the unobserved scores are different from the 
observed scores in a small scale. Therefore the score statistic of the incomplete 
sample is essentially equivalent to that of the complete sample. Similar assump- 
tions are used in Hall (1984) and Khashimov (1988). 

4. Derivations 

LEMMA 4.1. Let U1,. . . ,  U~ be independent r.v. 's with uniform distribution 
on (0,1). Denote 0 < Ul,n <_ ""  <_ Un,n <_ 1 as the order statistics of these 
variables. Then for any y > 0 and e :> 0, we have 

{ / (4.1) P U,~,,~ > 1 n(logn)l+~,i.o. 

and 

= 0  
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(4.2) P {U1,,~ < n( lo[n) l+~, i .o .}  = O, 

where i.o. stands for "infinitely often". 

PROOF. Notice U1, . . . ,  Us have a common distribution function F(u) = u 
for 0 < u < 1. Define us = 1 - y/[n(logn) 1+~] for any positive y and c. Then un 
is increasing and 

c~ oc 1 

(4.3) E [ 1  - F(u~)] = y E n(log n)l+~ < oc. 
2 2 

By Corollary 4.3.1 in Galambos (1978), we have proved (4.1). Similar arguments 
lead to (4.2) via using Theorem 4.3.3 in Galambos (1978). [] 

LEMMA 4.2. For 0 < 5 < 1/2 denote E~ = {Sn < i < (1 - 5)n}. Assume 
positive integers j , j  + k • En, as n ~ oo, ne -(n/k)~ ~ 0 for any e > 0, then for 
order statistics Xl ,n ~_ "'" ~_ X,~,n from a population with continuous density 

(4.4) p (j,jm~.~EE, {Zn_j+l ,n  -- Xn_j_k+l,n} ~> e ) --+0. 

PROOF. From Khashimov (1988), one has 

(4.5) Xn-j+l ,n  - X,~-j-k+l,n n -- j \ j + l  

× L f { F - l ( 1 - j / n ) }  +Op , 

where Zj's are i.i.d, standard exponential random variables. For fixed 5 > 0, and 
f continuous, there exist finite K1,/(2 > 0 such that for j, j + k • En 

n 5 \ j + l  ] 3 n 5 \5+1 

Therefore to prove (4.4), it suffices to prove that as ne -(n/k)~ ~ O, 

/ } (4.6) P m a x E Z i > n e  ~ 0 ,  
3 j + l  

~-~j+k 
for j , j  + k • En. To do that, we define Xj = z_~j+l Zi and Yn = maxl<j<nXs.  

Then Xj  has an exponential distribution with density p(x) = ~e -~/k,  and P{X1  >_ 

ne} = e -(n/k)¢. So we have 

[ } P l m a x  E Z i < _ n e  >_P{Yn <_ne} 
5 5+1 

>_ 1 -- riP{X1 >_ he} = 1 - ne -(n/k)¢ --* 1. 
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Thus we have proved (4.6) and the lemma. [] 

PROOF OF THEOREM 2.1. For simplicity let's prove a special case, where the 
sample size n is an odd number, and the observed survival times are x2,~, • •., X2k,n, 
with k = In/2]. The proof of the general case is given in the proof of Theorem 
2.3. Although this looks like a rather special case, many parts in the proof can be 
used in more general case only if the notations are modified. Denote the likelihood 
function of the sample as h(x, O) =- h(x2,,~, . . . , x2k,n, 0), then 

k 

(4.7) h(x,O) =CH{F(x2i,n,O ) - F(x2(i-1),n,O))f(x2i,,~,O), 
i=1 

where Xo,~ = 0, and C is a constant not depending on 0. The likelihood equation 
is 

(4.8) 01ogh(x, 0) 
00 

k {Olog{F(x2i,,~,O)_ooF(X2(i_l),n,O)} Ologf(x2i,n,O) } 
= ~ - - -  + O0 

i=1 
~ 0 .  

We expand 

l logh<=,0/ _1 (0logh(=,0/  + (0-00) (021ogh<x,0)  (4.9) 
n 00 n \  ~ )0o ~ \ b-~ )0o 

(0--00)2 (031ogh(x,O)) 
+ 2n 003 o* 

= B 0 + ( 0 -  Oo)U 1 + ~ ( 0 -  0o)2B2. 

Here 0* is between 0 and 0o, mad Bo, B1 are functions of the sample x2,n, . . . ,  x2k,,~ 
and 0o only. We shall prove that in probability Bo -+ 0, B1 ~ - M  2 and B2 ~ M2, 

where M 2 is defined in (2.7) and M2 is defined as E( °~ logh~,0o)003 )" 
First, let's consider Bo. For the simplicity of notation, we use 0 instead of 0o. 

~'~ { )-0 O log f (x2i,,~, O) } (4.10) Bo = 1 Olog{F(x2i,~, 0 F(x2(i_l),n , 0)) + 00 

n i=1 

Assume ~l,n, ~3,n, . . . ,  ~2k+l,n are those unobserved failure times, then 

l ~ { Ologf(Yc2i-l,n,O) Ologf(x2cn, O) } 
(4.11) Bo = n i=1 00 + 00 

l ~_l { Ol°g{F(x2i,~'O) - F(x2(i-1),'~'O)} + -  
n _  O0 

_ 0 log f(5:2i-l,n, O) 
o0 } 

: + L<='>. 
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Adding one term, L~ 1) becomes the full log-likelihood derivative, or score statistic 

of the complete sample, L~ 1)', say. By the regular law of large numbers, L~ 1)' --* 0 
in probability, so does L~ 1). So it suffices only to prove L~ 1) ~ 0 in probability. For 
multiple parameter case, Bo, L~ 1) and L~ 1) all become q dimensional vectors. The 
following proof is valid for each component of the vector, therefore the conclusion 
for/3o is valid for the q dimensional case. 

(4.12) 
IL~I)t < 1 ~ Olog{F(x2i,n,O)- F(x2(i-1),n,O)} 

- -  , , ,  i = 1  I OqO 

Olog f(x2i-l,n, O) [ 
O0 I 

_ 1 ~ Ologf(x~i,n,O) _ Ologf(~-l ,n,O) I 
- -  n I 

1 6 02 log f(x~*,n , O) 
< - / _ _ .  {x2~,. - z ~ ( i - 1 ) , . } ,  
- n i=1 OxO0 

where x*2~,n and x2~,n** are both in [x2(~-l),n, x2i,n]. For a fixed 6 small enough, we 
separate the right side of (4.12) into three parts, and according to Assumption 2, 
it becomes 

(4.13) 1 <~ k 1 +_1 
- + -  E E n n n 

• 6k<i<(1-5)k  i>(1-6)k  

<_ A2 ~ x_.y2 fx 
--n-  2(~-1),~t 2~,n - x~(~-l),~} 

i<6k 

1 k o 2 log o) 
+ - 2..., OxO0 X2(i--1),n} 

n i=6k 

+ A1 E x~l F _  
n 2 ~ , n ~ 2 ~ , n  --  Z Z ( ~ - I ) , n } ,  

i>(1-e)k 

where 0 < 6 < 1/2, The second term on the right hand side is the easiest to deal 
with, we consider it first. The value of 6 will be determined while considering the 
first and third term of (4.13). At this moment, we assume it is fixed and known. 
From Lemma 4.2, for any 5 < 1/2, on set En = {6k < i < (1 - 6)k}, as n ~ oc, 
max{ieE.} {X2i,n --X2(i-1),n} --+ 0 in probability. Therefore 

(4.14) E P f logf(x,O) i=6k a ~, ~ dx. 

Here A~, A1-6 are the 100$-th mad 100(1 - 6 ) - t h  percentile of the population 
distribution. From below, one will see that 6 can be selected uniformly for n. In 
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the light of Assumption 1, the integral (4.14) exists and is finite. So as n + c~, 
the second term of (4.13) goes to zero in probability. 

Consider the third term of (4.13). It is obvious that with possible difference 
of one term, when n is an odd number, the following equation is valid. 

(4.15) A1 ~ x~ 1 f_  
-n- 2~,n~2~,~ - x2(i-1),~) 

= A l e x ' S 1  . f -  . - -X n_2 i_ i , n } .  n _ 2 ~ + l , n ~ n  2z+l,n 
n 

If n is an even number, this equation needs some small modification, so does the 
following proof, but the conclusion is still valid. Let H(x) = F-l(e-X,O), use 
Rdnyi's representation for order statistics, we have 

where Zi's are i.i.d, standard exponential random variables. Therefore 

(4.17) x~-2i+1,~ - x~-2~-l,~ 
2i+2 

= -  Z Z j / ( n - j + l )  
j = 2 i + l  

} x H '  Z j / ( n - j + l ) + ¢ l  ~ Z j / ( n - j + l )  , 
j=2i+1 

where 0 _< ~bl _< 1. In view of Assumption 3, for small values of x, 

-H'(x)  = e-X/[f(F-l(e-x,O)}] < 1/[CI(1 - e-X) ~] < KlX -`~, 

for certain positive number K1. Similar as Hall (1984), for positive number ~, we 
define 

(4.18) for 

t j = l  

X n _ 2 i W l , n  -- X n _ 2 i _ l ,  n 

<_ K1 Zj/(n - j + 1) Zj/n 
( j = 2 i + 1  \j----1 

(v) 

(4.19) 

We may choose ~? so small such that P{Enl} > 1 - e/2, and 77 does not have to 
depend on n. On set Enl, 
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So the right hand side of (4.15) is dominated by 

(4.20) E g,~ E z j / ( n - j + l )  zj . 
n i=1 j=l \ j = 2 i + l  

2i Since Zi's are i.i.d, standard exponential random variables, ~-~'~1 (Zj - 1)/2i con- 
verges to zero almost surely as n --+ oc, that means for 0 < ¢ < 1, 

} (4.21) lim P - 1)/2i > ¢ = 0 .  
h--*c~ 

Take io large enough such that  as i _> io with 1 - e/2 probability that  

(4.22) 
2i 

~ ( z j  - 1 ) / 2 i  < ¢.  

For any such i0, define a positive integer N1 = [2i0/5], as n _> N1, for i > i0, 

(4.23) 
2i{2  } EZj/(n- j+I)->--  I + E ( z j - 1 ) / 2 i  

j = l  • 1 

k ( 1 - ¢ ) - ~  > -K6  log {1 - (1 - ¢) -~} 

_ - l o g { l -  ¢1 2i } 
n 

for some 0 < ¢1 < 1 and 2i/n <_ 5 which is satisfied by i in (4.20). Besides, we 
may let 5 and ¢ be small enough, such that ¢1 is very close to 1. Hence 

(4.24) H'rl{ 2~=lZj/(n-j+l)}<_ { F - 1  ( 1 - ¢ 1 - ~ , 0 ) }  ~1- 

For io determined as above, separate (4.20) into two terms 

io 6k 

(4.25) E + E 
i=1 i= io+1  

and only consider the second term. By (4.24), its expectation is dominated by 

(4.26) 
n 

i= io+1  
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As n ~ c~, it converges to integral 

K4~ - a / o ~ { F - l ( 1  - Cax, O) } ' 71x - (a -1 )  d x  

By (2.8), for each ~ this can be arbitrarily small simply by choosing 5 sufficiently 
small. Therefore we have proved that  for i0 fixed as earlier, as n large enough, 

(4.27) p 1 E x~l 'x x~-2i-1,~) > e  < e. n--2i+l,n[ n -2 i+ l ,n  - 
i = i o + 1  

For this io, the rest part of (4.15) is bounded by 

A1 
(4.28) x "~ f x  - Xn-2 io+l ,n} .  n,n'[ n -  l,n 

n 

On set Enl again, 

/'2,0 
(4.29) Xn_l,n - Xn_2io+l,n <_ Kb~-ana-l lj~___lZj) . 

For any positive integer n and r.v.'s X 1 , . . . ,  X~ with distribution F(x, 0), Ul,n = 
F (XI ,~ ) , . . . ,  U~,n = F(Xn,~) are the order statistics from a uniform population. 
From Lemma 4.1, for any 71 > 0, 

- n ( l o g  n )  1+'~ 
(4.30) 

That  is 

n , - , ~  ' - n ( l o g  n )  1 + ~ ' '  
n 1 

So there is an event En2 with P{En2} > 1 - e/2 and a positive integer N2, such 
that  on E~2, when n _> N2, 

(4.32) Xn,n < F -1 (1 

Combining (4.29) and (4.32), we have 

(4.33) -~x,~,,~(x~_l,,~ - Xn--2io+l,n} 

<_Kb~-~na-2{F-I(1  

Y 0) 
n(log n) l+r l '  ' 

n(log n)l+T, ,0)} Zj). 
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The expectation is dominated by 

0)) 
By (2.10) this can be arbitrarily small if n is large enough. So we have proved 
that  for i0 fixed, 

(4.35) P { @X~nl, n(Xn--l,n -- Xn--2io+l,n) > e} <_ e. 

Together with (4.27), we have proved that  the third term of (4.13) converges to 
zero in probability. 

Let's consider the first term of (4.13), which is 

(4.36) A2 ~ x_~2 rx "~ 2(i_l),nl. 2i,n -- X2( i - -1) ,n} .  
i<6k 

Let/-/1 (x) = F -1 (1 - e -~, 0). Using R~nyi's representation again, we have 

(4.37) x l , n = H 1  n - j + l )  , l = l , . . . , n ,  

where Zj's are i.i.d, standard exponential random variables. Therefore 

(4.38) x 2 i , , -  x2(~-l),n 
2i 

= E z j ( n  - j + 1) 
j=2i--1 

/2~  1) ~/ } 
xH~ Z j / ( n - j + l ) + ¢ 2  Z j / ( n - j + l )  , 

[ j=1 j=2i-1 

where 0 _< ¢2 _< I. Notice that  when x is between 0 and 1/2, x /2  < I - e -x < x is 
true, so by Assumption 3, for x _< 1/2 there are certain positive numbers C2 and 
C3, 

HI(x) = e - X / [ f { F - l ( l -  e-L 0)}] _< 1/[C~(1- e-~) ~] < Caz -~. 

Determine i0 again by (4.22), for this io, we separate summation (4.36) into two 
terms as we did in (4.25). Since H~ -~2 (x) is a nonincreasing function for 72 _> 0, 
for the second term, use (4.23) again, we have 

/ 2~  1) } { ( )} 
(4.39) HC "~2 Z j / ( n -  j + 1) _< F -1 ¢12(i - 1) -'Y2 - -  , 0  

I, j=l  n 
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for 2(i - 1)/n < 6 and some 0 < ¢1 < 1. If fi > 0, we use (4.38) and earlier 
arguments and find that  on set Enl defined in (4.18), 

(4.40) 
( ~ . ) f l - - l ( ~ )  

x2i,,~ -z2(i-1),,~ < C4~ -~ Zj , 
\j=2i-I 

for ~ defined as earlier. So the second term is dominated by 

(4.41) 
i=io + l ' ~ i J \ j=2i-1  

Taking expectation and using the same arguments as we did for (4.26), with (2.9), 
for 7/arbitrarily small, we can choose 6 small enough and n large enough such that  
(4.41) is smaller than e with 1 - e probability. If fl < 0, (4.38) leads to 

(4.42) 
2i 2i 

x2~ ,n -x2( i -1 ) ,~_C6  E Z j / ( n - j + l )  Z Z J / ( n - j + I )  . 
j=2i--1 j=l 

Instead of Enl,  we define 

(4.43) for i = 1 , . . . , n } ,  

and choose ~/large enough that  P{En3} > 1 - ¢/2. On En3, (4.42) leads to the 
same formula as (4.40). So we have an almost same formula as (4.41), and the 
conclusion is valid via (2.9). As for the first term of (4.36), using Lemma 4.1 and 
previous arguments, one can define an event En4 with P{E,~,t} > 1 - e/2, such 
that  on E,~I N E~4, 

(4.44) A2 ~ x_~2 rx 
-n- 2(~-i),,~ 2~,~ - x2(~-1),~} 

i----2 
A2 _-~2 fx 

_< 2io, - xl, } 

\ j = 2  

It converges to zero in probability according to (2.11). Put  (4.14), (4.27), (4.35), 
(4.41) and (4.44) together, we have proved that  B0 converges to zero in probability. 
Similar techniques can be used to prove the convergence of B1 and B2. However, 
both B1 and B2 are more complicated, and more assumptions have to be imposed 
to ensure the convergence. So before declaring the consistency of the MLE, let's 
clarify these conditions. 
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First, consider B1, where 

1 02 log h(x, O) 
(4.45) B1 = n 002 

1 ~k { 021ogf(~c2i_l,n,O ) + 021ogf(x2i,n,O) } 
n 7-1 002 002 

1 kid_l{ 021og{F(x2i,n,O)- F(x2(i-D,n,O)} + -  
n _ 002 

02 log f(22i-1,,~, O) "[ 
002 f 

-- L~ 2) 4- L~ 2). 

Here L~ 2) is almost the log-likelihood derivative of the complete sample. By the 
law of large numbers and Assumption 4, 

/: (4.46) L~2) " * - M 2  = -  ~ \ O0 f(x,O)dx. 

Since 

021og{F(x2i,n,O) - F(x2(i-1),n,O)} 
(4.47) 002 

F":x~ 2i,,~, O) - F"(x2(i-1),~, 0) 

F(x2i,n, O) - F(x2(i_l),n , O) 
[ F'(x2~,n,o)- F'(x2(~_l),., 0) 1. 2 
(F(x2i,~,O) F(x2(i-1),~,0) J 

-,,.(1) o) { ,  (2) }2 _ : (x2i,,. O) ] (X2i,n, 
t'(X (1) , O) ~.: (2) O) 4k 2i,n ]~X2i,n, 
"it/ (1) O) { t (1) }2 

_ : (z2~,n, O) J ~X2i,n, 
:ix(1) ,0" ~ ., (1) O) ak 2i,n ) ]~X2i,n, 

4- J ~2~,=, _ f (x2~,~ ,0) 
re/'X (1) , 0 ] ,e/X(2) , 0 ~ J\  2i,n ) ,t t, 2i,n / 
., (1) o) 02 log ]~,z2~,,~, 
002 

) (Ol°gf(x2~,.,O) 021°gf(x~3!., O) : (1) X(2) ,i 
+ 2 \ -~ OxO0 (x2i,, - 2i,n:, 

where ~.(1) ~(2) x(a) "2i,n, -2i,~, 2i,n are middle values and are all in [x2(i-1),,~, x2i,~]. So 

(4.48) ]L~2)] ~ n . E  OxO02 {x2 i , n -  X2(i--1),n} 
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2 k 01og r /x  (3) 0~ 

+ n oo  

02 log "' (3) O) 
J~'x2i"~' {x2i,,~ - x2(i-1),n}, 

x OxO0 

where x (4) is in [x2(i_l),n , x2i,n]. Previous arguments proving the convergence 2i ,n  
of (4.11) leads to the conclusion that  (4.48) converges to zero in probability. So 
B1 ~ M 2 in probability. For q dimensional parameter 0, B1 is a q × q matrix. The 
elements on the diagonal obviously satisfy (4.47) and (4.48), therefore converge to 
the corresponding elements in M~. Very similar results as (4.47) and (4.48) are 
valid for the elements off the diagonal of B1 where the derivatives are taken with 
respect to 0i, Oj. So B1 -~ M12 in probability in general. 

Finally, let's consider B2. Similar as (4.45), we separate B2 into 

(4.49) : + L?).  

By Lebesgue dominated convergence theorem, L~ 3) --* M2. To establish the con- 

vergence of L~ 3), we need to use the middle value theorem three times in the 
following expression 

(4.50) 
0 3 log{F(x2i,n, O) - F(x2(i-O,n, 0)} 

003 
''t-(1) O) ~ ~;2i,n ~ 

f t x  1) ,0) k 2i ,n 

f , ,  (2) 0 ) ~  .,,, (3) , ,  ~x2i,,~' 3 f tx2i,,~ '~t) 
¢ ( X  (2) , 0  ~ ~ ~{X (3) O) 
d ~ 2i ,n ] J k 2i n 

- , (2) 2"~  
/ (x2i,, ~, O) ] 

2 
_ J~  2i ,n ] l 

where ~(1) ~(2)  .,(3) ~2i,n, ~2~,n, ~2i,~ are different from those in (4.47), and all in [x2(i-1),n, 
xzi,n]. So (4.50) becomes 

(4.51) 
0 logf(x2~,,~,O ) Ologj~ 2i,,~ J { 0  logf(x2~,~,O ) 

+ 3 oo \ 

2 
~ 2~,n J i f  (x2~,,~,O) , (3) 

U J \  2i ,n  / k J \  2i ,n / 

] (x2i,n, J (x2i,n, 

+ ~[x(3) ,0 ~ - rfx(2) 0 ~ 
J k  2i,n ) J k  2i ,n '  J 

+ O0 - O0 
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0 a log ]~x2~,,~, ) 
= O0 a + 3 ,  ~-~ 002 

- ,  aa °)) ) 6 , O0 

(021°gf(x~4!,~,o)), (3) ~(2), 
× OXO0 (X2i,n -- ~2i,n/ 

where ~(4) x(5) "~2i,~, 2i,~ are all in [x2(i-1),n, x2i,n]. Easily we have 

(4.52) , ~--~ ' 0 ) )  ( 021°g 
3 002 ] 

- 3  Ol°gf(x2i'~'O)~ 021°gj~ 2i,n, J 
aa ] 

{Ologf(x~li!n'O)) (0310gf(x~6!n'O)~, (1) ~(3) , 

+ 3 \ ~ OxO0 [x2i,n - -  2 i , n ] ,  

where _(6) ~.(r) "2i,~, ~2i,~ are all in [x2(~-l),n,x2i,n]. The previous arguments lead to 

the conclusion that L~ a) --+ 0. That is B2 --+ Ms in probability. Just as B1, the 
proof of multidimensional case is similar with some minor modifications. Following 
precisely the arguments in Cramdr ((1946), 502-503), we have shown that under a 
special case of multiply Type II censoring where we have only observed failures of 
even order, the likelihood equation has a solution ~} which is consistent. One will 
see from the proof of Theorem 2.3 that under more general case of multiply Type 
II censoring where the biggest jump is bounded, this conclusion is still true. 

PROOF OF THEOREM 2.2. Assume 19" = O*(x2,...,X2k) is a solution of the 
likelihood equation (4.8), by the definition of B0, B1 and B2, we obtain 

(4.53) Ma v (O* - 0o) = v Bo/M1 
-B1 /M 2 - ½Bu(O* -8o)/M~" 

It follows from the proof of Theorem 2.1 that the denominator of the right hand 
side of (4.53) converges to 1 in probability. By (4.11), B0 = L~ 1) + L~ 1). Since 
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nL~ 1) is almost the full log-likelihood derivative, by the central limit theorem, 

v/-dL~ 1)/M1 has asymptotically N(0, 1) distribution. To show that  the numerator 

also has N(0, 1) distribution, it suffices to show that  v ~ L  (1) converges to zero in 
probability. Notice (4.19) can be replaced by 

(4.54) n l / 2 { X n - 2 i + l - X n - 2 i - 1 } < - K ? 7 - a ( ~ )  a 1/2 \ j=2i+lZJ " 

The previous arguments along with (2.8)-(2.11) lead to the conclusion. 
It is obvious that  0* is asymptotically efficient. 

PROOF OF THEOREM 2.3. For the general likelihood function (2.1), the like- 
lihood equation (4.8) becomes 

(4.55) 0 log h(x, O) 
O0 

- ~[(ri - ri-1 - 1) 
i:1 

Olog{F(xr,,n, O) - F(xr,_, ,n,  0)} 

O0 

Ologf(xr,.n,O)] 
+ -fig ] 

+ (n - rk) 01°g~l I - F(x"k'"' 0)} = 0. 
00 

With the same expansion as (4.9) we shall prove that  in probability B0 --* 0, 
B1 --* - M ~  and B2 ~ M2, for /141, M2 defined as earlier. In expansion (4.9), 
we again use 0 instead of 00. Suppose &r,_l+l ,n, . . . ,  Xr,-1,n for i = 1 , . . . ,  k and 
k~k+l,~, . . . ,  X~,n are those unobserved failure times, then 

1 ¢--. ~ Ologf(x~,,.,o) ~'-~ Ologf(~,,.,o) (4.56) Bo 
n i=1 O0 Z., ) + E O0 

j ~ = r i - l + l  

1 ~ Ologf(i:j~,n,o) + -  
n O0 jk:~'k + l 

+ - ri - r~-i - 1) 
n 

1 + -  
n 

(n _ rk).O l°g{ - 

- E  
j k = r k + l  

= Li + LT, 

Olog{F(xr,n, O) - F(xr,_~,n, 0)} 
O0 

j i = r i - a + l  

F(x~,.,O)} 
O0 

o log f(~j~,., o) ] 
O0 ] 
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where L~ 1) is the score statistic of the complete sample therefore goes to zero in 
probability. Using the middle value theorem twice we have the following inequality, 

~: log f(x~*,~, O) 
(4.57) iL~X)l _< 1 ~ { x ~ , , ,  - x~,_~,n} 

i t  
i=1 

n 
1 + -  
n 

t 02 

j,=~,_~+l OxO0 

02 log f(x~:,n , O) { ~ , ~  _ x~k,,} 
OxO0 

j = l  

Similar as (4.17), we have 

(4.59) x,~_,:j,. - x.~_ej+~,. 

k' k" 
1 1 1 

MO) = n ~ + n  E + 
k ' + l  % u + l  

62 
Since ~ log f ( x ,  O) is bounded when x is between 1006-th and 100(1 - 6)-th 
percentile of the distribution, using Lemma 4.2 under the condition that  ne (~/g)~ --* 
0 as n --* c¢, the second term converges to zero in probability. Consider the third 
term, it is bounded by 

k r ~ - i  

n 
i = k " + l  j i = r i - l + l  

k 
1 

< -  E x~l / r . -  1){x~,,~ x~,_l,n} n v~,n~ ~ r i - 1 -  --  
k " + l  

k _ k  H 
1 

~ X y~ [?~. . - -  ~ _ _  r~_~+~,,~k ~ - 1 + 1  - -  ~ k - j  - -  1 ) { X r ~ _ , + ~ , n  - -  ~_3,.}. 
j---1 

In order to use (4.16) more easily, let's denote 

= X r k _ j + l , n  or  i t  --  r k - j + l  = r j ,  X n - ~ , n  

then (4.58) becomes 
k - k  H 

1 ~ r~ 
2 . .  x~ l" -~ ,"~3+~ -- ej  -- 1 ) { ~ . _ ~ j , .  -- ~n_~3÷, , .} .  

~ - - -  E Zl 
n - l + l  

l=~j+2 

x H t z l  

( I=1 n - l + l  
+¢i /--" n - l + l  " 

l=~j+2 

jk~rk+l 

= M (1) + M (2), 

where x** E [xr,_l,n, x~,,n] and x~:,n E [xrk,n, xn,~] and xn,n is the unobserved Ji~n 
largest value of the order statistic. For 0 < 6 < 1/2, as n ~ oo choose rk, and rk,, 
such that  rk , /n  --* 6 and rk , , /n  --* (1 - 6). As we did in (4.13), separate M (1) into 
three parts, 
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Notice -H'(x)  <_ Klx -a on event Enl defined in (4.18), one has 

(4.60) xn-e j ,n  --Xn_~j+l,n ~K11rJ~-~ ~-1 
~, l=~j +2 

Zl 

n - l + l  } /~j+l ~-~ 

~j + 1 zz • 
\ l = f j + 2  

Pu t  all these as well as (4.16) together ,  (4.58) is bounded  by 

k _ ~  tt 

(4.61) Kr l - a  E H~'  
n 

Zl 

- -  n f f l + l  
j----1 

X \ ~ - ~ ]  \ ~j + 1 \ / = f j + 2  

< I<,-__~- Z -~ '  z~ 
- n n - - l +  1 

j= l  t, l=1 

× z l 

\ l=~j  +2 

io k - k  ~ 

:E÷ E,  
j = l  j=io+l  

z) 

where i0 is selected according to (4.22). Here we use the  assumpt ion  tha t  
( r j+l  - r j  - 1)/(~j - 1) is bounded.  Similar as (4.24), when ~j _> i0, one has 

I,I=1 n - l + 1  
<-- [ F - l { 1 - ¢ 1 ( r 3 @ ) , 0 } ]  

"/1 

To prove the  second t e rm  of (4.61) converges to zero in probability, we see its 
expecta t ion  is bounded  by 

(4.62) 
k - k "  - "(1 

M (¢j+l -- r j  - 1) 

-~ K~7-a ~o {F-1 (1  - ¢1x, O)}'~x-(a-1)dx. 
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It can be arbitrarily small as long as 6 is small enough. Consider the  first t e rm 
of (4.61). Notice the  way we choose i0 in (4.22), the first t e rm of (4.61) contains 
only finite terms of order statistics, therefore can be handled as the first te rm of 
(4.25). Finally, let's consider M (2) in (4.57). Same as (4.58), we have 

(4.63) M (2) _< l ( n -  rk)~l,~{~n,n - xrk,n }. 
n 

If n - rk is finite, it becomes (4.28) and no more assumption is needed to prove it 
converges to zero in probability. If otherwise n - rk --* cc along with n, we need 
to use similar results as (4.29) and (4.32), and derive 

1 
(4.64) - ( n -  rk)9~l,,{}n,n - x~k,, } 

n 

< K~?-~n~-2(n - rk) 

X {F-I(I n(logn)l+rz,O)}~z (n-~  +1 \ j=l Zj . 

It 's  expecta t ion is dominated by 

K~l-~na-2(n-rk)2{F-l(l n(logY)z+rz,O)} "y~ • 

With  Assumption (2.16), we can prove M (2) converges to zero in probability. All 
these can be proved for multiple parameter  case. 

The proofs for the convergence of Ba and B2 are very similar as before. As 
an illustration, let's consider B1. Jus t  as (4.45), we can separate B1 as Bz = 
L0)  + L (2) where L (z) is the  complete  yet unobserved negative Fisher information 
which converges in probabil i ty  to the true negative Fisher information, and L (2) 
is similar as (4.45). In fact, 

+ -  n-rk)  n 

r{-1 - 1) 02 log{F(x~ ,m 0) - F(x~,_~,n, 0)} 
002 

_ r~l 021ogf(Ycj,n,O)} 
r / - l + l  002  

02 log {1 - F(x~k,,, 0)} 

002 

_ ~-~ 021°gf(YeJk,n,O)] 
r~+l 002 ' 

Using similar result as (4.47), we have 

(4.66) 
k r~Z 0310gf(x~4!n,O) l 

IL(22)1 _< l E { x r , , "  _ xr{_l,,} 0x---~ 
n i : 1  r { _ a + l  
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2 k Ologf (x  (.a) ,0] 

n O0 
i = 1  

O21ogf(xS~!n,O) 
× O x O 0  { x r , , n  - x ~ _ ~ , n }  

f i  03 log¢(x (4) O) 

n OxO0 2 
r k + l  

2 Ologf(x~),n,O) 
+ - ( n  - r k  - 1) 

n O0 
2 (3) O log f(xj~,n, O) 

× O z O 0  {~ ,~ , .  - x ~ , ~  } ,  

where x(4) and x! 3) a~,n a,,n are in [Xr~_l,n, Zr~,n] and x(4) and x (.3) are in [xr k,n, Xn,n]. 
3k ,n .Tk ~n 

So we can use previous method to prove that  L~ 2) --* 0. The proof for the asymp- 
totic normality and efficiency is also the same as the proof of Theorem 2,2. 
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