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A b s t r a c t .  We consider the empirical Bayes decision problem where the com- 
ponent problem is the sequential estimation of the mean/~ of one-parameter 
exponential family of distributions with squared error loss for the estimation 
error and a cost c > 0 for each observation. The present paper studies the un- 
truncated sequential component case. In particular, an untruncated asymptot- 
ically pointwise optimal sequential procedure is employed as the component. 
With sequential components, an empirical Bayes decision procedure selects 
both a stopping time and a terminal decision rule for use in the component 
with parameter 8. The goodness of the empirical Bayes sequential procedure 
is measured by comparing the asymptotic behavior of its Bayes risk with that 
of the component procedure as the number of past data increases to infin- 
ity. Asymptotic risk equivalence of the proposed empirical Bayes sequential 
procedure to the component procedure is demonstrated. 

Key words and phrases: Empirical Bayes estimation, sequential components, 
asymptotically pointwise optimal, asymptotically optimal. 

i .  Introduction 

The empirical Bayes (EB) decision problem of Robbins (1956, 1963, 1964) 
consists of a sequence of independent repetitions of a given component decision 
problem. At the n-th stage, data from the past in addition to the present stage 
are available with which to base a decision. Specifically, consider the component 
problem with observation X ~ F~ taking values in )/, parameter w 6 f~, action 
space A, decision rules d 6 D, a loss L(w, d(X)) > O, risk R(w, d), priors G 6 G, 
Bayes risk R(G, d), Bayes rules de and minimum Bayes risk R(G). Here a; can 
represent anything, from an index for a finite set of distributions to a distribution to 
be estimated. The standard EB decision problem is usually formulated as follows: 
Let (a J1, X1) , . . . ,  (wn, Xn) , . . .  be i.i.d, with (w, X) having distribution G on w and, 

* This research was supported in part by the Natural Sciences and Engineering Research 
Council of Canada under grant GP7987. 

711 



712 ROHANA J. KARUNAMUNI 

conditional on a~, F~ on X. For each n >_ 1, ( X l , . . . ,  Xn) ~ F~ = F a x . . .  x Fa, 
where Fa denotes the G-mixture of the F~. A decision is to be made about aJn 
using ( X 1 , . . . ,  Xn) with loss L(wn, t n ( X 1 , . . . ,  X~)). A sequence {tn} is said to be 
asymptotically optimal if 

lim EL(wn, t n ( X l , . . . ,  Xn)) = R(G) 
rt-.--* o o  

for all GEG.  

Empirical Bayes problems with a wide variety of components have been treated 
in the literature; see, e.g., Berger (1985) and Maritz and Lwin (1989) for detailed 
bibliographies. The present paper deals with the sequential component case. 

In recent years EB problems with sequential components have been studied by 
several authors including Laippala (1979, 1985), Martinsek (1987), GiUiland and 
Karunamuni (1988), Ghosh and Hoekstra (1989) and Karunamuni (1985, 1988, 
1989, 1990). In the work of Laippala (1979, 1985), Gilliland and Karunamuni 
(1988) and Karunamuni (1985, 1988, 1989, 1990), the cost factor c was fixed and 
the risk of the empirical Bayes sequential decision (EBSD) procedure is compared 
with the risk of the component problem as the number of components increases. 
On the other hand, Martinsek (1987) and Ghosh and Hoekstra (1989) compare 
the risk of their respective EBSD procedures with the risk of the component pro- 
cedure as c goes to zero. Their criterion is one of "asymptotic non-deficiency" 
(for the definition see Woodroofe (1982)). The approach of the present paper is to 
study the risk of the EBSD procedure as the number of components increases (the 
cost c is fixed), i.e., asymptotically optimal EBSD procedures are studied here. 
Gilliland and Karunamuni (1988) formally defined the sequential component for 
the truncated sequential decision problem, and demonstrated asymptotically op- 
timal EBSD prodecures for some finite state components. Laippala (1979, 1985) 
and Karunamuni (1985, 1988, 1989, 1990) applied empirical Bayes methods for 
some infinite state sequential components. However, these authors considered 
again only the truncated case. In particular, they studied truncated procedures 
with myopic stopping rules of the "one-step-look-ahead" (OSLA) type in their re- 
spective component problems. Since truncated OSLA stopping rules are optimal 
or nearly optimal only in rather specialized circumstances, the Bayes risk of this 
procedure seems an inappropriate target to achieve. A goal in empirical Bayes 
theory is asymptotic optimality. For an envelope R*, this means the construction 
of a sequence of stopping rules {Nn} and decision rules {~n} where (Nn, ~n) de- 
pends upon the data from the past as well as the present such that the risk of the 
sequential procedure (Nn, 5n) converging to the envelope value R* as the number 
of components goes to infinity. The facts that the Bayes risk of a truncated OSLA 
procedure is not an envelope risk and that the truncated procedures axe not opti- 
mal in many of the most commonly considered examples are major deficiencies of 
the works of Laippala (1979, 1985) and Karunamuni (1985, 1988, 1989, 1990). 

The purpose of the present paper is to study the untruncated case and to 
achieve the most stringent envelope risk--the Bayes risk of the optimal sequential 
procedure. The latter goal is achieved under some restrictive conditions, since, as 
in the Bayesian sequential decision problem, the construction of empirical Bayes 
sequential procedures that achieve the most stringent envelope is the most difficult 
construction. The component problem that is investigated in this paper is that of 
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sequential estimation of the mean of a one-parameter exponential family of distri- 
butions with squared error loss for estimation error and a sampling cost c(> 0) for 
each observation. Further, natural conjugate prior distributions on the parameter 
are assumed although such priors are not essential; see Remark 3.3 below. An un- 
truncated asymptotically pointwise optimal procedure is employed as the sequen- 
tial component. The next section describes the sequential component problem. 
The corresponding empirical Bayes sequential estimation problem is described in 
Section 3. The asymptotic behavior of the empirical Bayes sequential procedure, 
(N,~, 5N~ ), with respect to the component procedure, (No, 5Nc), is given in Section 3 
as well. Specifically, our main result establishes that limn-~c¢ .RN,~ (Tro) ---- Rye  (~0), 
where RN,, (T0) and RNc(~ro) denote Bayes risks (w.r.t. T0) of the proposed EBSD 
and the component procedures, respectively. Some useful remarks and two ex- 
amples are also included in Section 3. Proofs of the main results are detailed in 
Section 4. 

2. The sequential component problem 

We will use the notation and the setup of Woodroofe (1981) to describe the 
component problem that is the kernel of the empirical Bayes decision problem that 
is the subject of our investigation. 

Let ~t be an interval and let {F~ : ~ E ~} denote a non-degenerate exponen- 
tial family of probability distributions on the Borel subsets of ( -co ,  oc): that is, 
suppose that  

(2.1) dF,~(x) = exp{wx - ¢(w)}d)~(x), - c ~  < x < oo, w E ~, 

where ~ is the natural parameter space of the family. We assume that 12 is open, 
say ~ -- (w,~), where - ~  < w < ~ < c~, and that A is a-finite. The distributions 
F~, w E 12 are absolutely continuous w.r. t .A. We denote the common closed 
convex support by X, and we write X ° for the interior of X. It is well known that if 
X is a r.v. with distribution F~, where w E ~, then the mean and variance of X are 
E,~(X) = ~,'(w) and Vary(X) = ¢"(w); see, e.g., Lehmann ((1986), Section 2.7). 
Of special interest to us will be the mean which we write as 

(2 .2)  o = 

throughout. 
Now let G be the class of conjugate prior distributions 7r0 (see Diaconis and 

Ylvisaker (1979)) on the Borel sets of ~; that  is, suppose 

(2.3) d~r0(w) -- [C(r0, #0)] -1 exp{ro#ow - r0¢(w)}dw, w E ft, 

where 

0 < C(r0, #0) = Sa exp{r0#0w - r0¢(w)}dw < ex), 

with r0 > 0 and #0 E X °. Now suppose that E[¢"(~)] < c~, so that 0 has fi- 
nite variance, and consider the problem of sequentially estimating 0 (see (2.2)) 
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with squared error loss for estimation error and a cost c > 0 for each observa- 
tion X1, X2 , . . . ,  where X1, X2, . . .  are conditionally i.i.d, with common distribu- 
tion F~, given w(w ~ 7r0). The Bayesian sequential decision problem is then to 
find a stopping time t (recall that  a stopping time is a r.v. t which takes values 
0, 1, 2 , . . . ,  c¢ and has the properties P{t < oc} = 1 and {t = n} e As for all 
n, where A,~ = a{X1,. . .  ,X=} denotes the a-algebra generated by X1 , . . .  ,Xn 
for n _> 1 and Ao denotes the trivial a-algebra) and an At-measurable function 
6~ = 6t(Xz, . . . ,  Xt) for which the 

(2.4) Bayes risk (t, 6t) = E{(6t - O) 2 + ct} 

is minimized. It is well known that  for any stopping time t, the Bayes risk is min- 
imized by letting 6~ = E(0 l At); see, e.g., Chapter 7 of Ferguson (1967) or Berger 
(1985). Moreover, it follows from Theorems 4.4 and 4.5 of Chow et al. (1971) 
that  an optimal stopping time, one which minimizes (2.4), exists for each c > 0. 
Although in principle the optimal stopping rule may be derived by a backward in- 
duction argument, the exact determination of the optimal stopping time appears 
to be rather difficult in practice. However, it is quite well known that  asymptot- 
ically pointwise optimal (A.P.O.) rules defined by Bickel and Yahav (1967, 1969) 
are solutions to the minimization problem as c -* 0. (See also Woodroofe (1982) 
who gives stronger optimality results in the context of sequential estimation for 
one-parameter exponential families.) In practice then for small c, A.P.O. rules are 
good approximations to the optimal stopping rules. Many procedures are reported 
in the literature which are A.P.O. in the sense of Bickel and Yahav (1967, 1969). 
In this paper we use the A.P.O. myopic stopping rule of the type of Shapiro and 
Wardrop (1980). They suggest the stopping time 

(2.5) Nc = inf{k > 1 : Uk _< crkrk+l}, 

where 

(2.6) Uk = E[~p"(w) I Ak] = / n  ¢"d rk  

with 7rk denoting the posterior distribution of w given Ak = a { X z , . . . ,  Xk}; that  
is~ 

(2.7) dTrk(w) = [C(rk, #k)] -1 exp{rkpkw -- rk~b(w) }d~, 

where C(rk, #k) = fn exp{rk#kw -- rk¢(w)}dw, 

k 

(2.8) rk = ro + k, #k = (ro#o + Sk)/rk and Sk = ~ Xi, 
i=1 

for k > 1. In this paper, we shall employ the pair 

(2.9) {Nc, 6N~) 
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as the sequential estimation procedure for the present component problem, where 
Nc is defined by (2.5) and ~gc is defined by 

(2.1o) 6No = (r0,0 + sNo)/(r0 + No) 

with SNc = ~N=~ 1 Xi. We shall assume that the cost c per observation is small 
enough to permit the sequential procedure (2.9) to represent a resonably good 
approximation to the optimal (Bayes) decision procedure. Let RNc (71"o) denote the 
Bayes risk (w.r.t. 7r0) of the procedure (N~, 6N~). Then, 

(2.11) Rgo(~ro) = E{(6Yc -- 0) 2 + cN~}. 

Let R* (Tr) denote the Bayes risk of the optimal sequential estimation proce- 
dure for the present problem. Then 

(2.12) R*(~r0) = inf{Bayes risk (s, 68) : s is any stopping time}, 

where the infimum extends over all stopping times s. We call R*(~r0) the Bayes 
envelope risk of the sequential component problem. The asymptotic optimality 
that is typically proved in the standard empirical Bayes problem is the convergence 
of the empirical Bayes risk to the envelope risk R*(lr0). 

Finally, for later use, it is important to note that {(Uk, Jtk)} is a uniformly in- 
tegrable martingale for which Uk ~ ¢"(w) w.p. 1 as k --* ~ (see, e.g., Lemma 7.6.1 
and Theorem 7.6.2 of Ash (1972)). Furthermore, in spirit of Theorem 1 of Shapiro 
and Wardrop (1980) we can state the following result. 

THEOREM 2.1. 
(i) The stopping rule (2.5) is the myopic rule. 

(ii) ENc < oc for c > O. 
(iii) / f  (rk+lrk)- luk is non-increasing in k, then (2.5) is the optimal (Bayes) 

stopping rule. 

3. The empirical Bayes problem 

Suppose now that the prior 7r0 is not completely known, that is, r0 or #0 or 
both are unknown, and consider the case where we have available sample informa- 
tion from the past. Then the EB approach of Robbins' (1956, 1963, 1964) could 
be utilized to approximate the (A.P.O.) sequential procedure (No, 6No) defined by 
(2.9) based on the sample information from the past along with the present. 

Suppose, for n > 1, 

X i = ( X i l , . . . ,  XiK,),  i •  1 , . . . ,  ( n -  1) 

denote the data available from the past, where (wi, Xij) are i.i.d, with the same 
distribution as (w, X1), and the (w~, Xij) are independent of w and the current 
data vector X = (Xl,  X2 , . . . ) ,  1 _< j < Ki, 1 < i < in - 1). If the data 
X 1 , . . . ,  X ~-1 represent information available from the past experiences of the 
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same component problem, then Ki equals the sample size Ni of the i-th experience 
of the problem, 1 <_ i <_ n -  1. If, however, one has available these data from 
some auxiliary information, then Ki's are some known fixed positive integers. In 
this case, Xi 's  are independent random vectors. The EB approach attempts to 
construct a decision procedure to estimate 0n (01,... ,  On-1 remains unobservable) 
at stage n based on the past data as well as the present data. 

In order to construct our EBSD procedure, let us suppose that 

and 

0 < eo = e o ( X ~ , . . . ,  X ~-1) 

Po = # o ( X ~ , . - - ,  X n-~) 

denote estimators of r0 and #0 respectively, based on the past data X 1, . . . ,  X ~-1. 
Based on these estimators and motivated by (2.5) and (2.10), we define our em- 
pirical Bayes estimate of On as 

(3.~) SN~ = {eo~o + SN~}{eo + N.}  - '  

and the empirical Bayes sample size Nn as 

(3.2) 

where SN, 

N~ = inf{k _> 1: Uk ~ c(~o + k)(?o + k + 1)} 

x-~N~ X. = z-,i=1 , and brk is defined by (cf. (2.6)) 

(3.3) ~]k - C(~k, f~k) ¢"(w) exp{(io/~o 

k 
with ~k = ~0 + k, Sk = Ei=l Xi, and 

+ Sk)w - ÷k¢(w)}d~ 

(3.4) RNo(~o) = E{($N. - o) ~ + cgn} ,  

where E denotes expectation w.r.t, all of the random variables involved in defining 
Nn and 6N., and w.r.t, the random variable w. As we described earlier, the 
performance of the EBSD procedure (Am,/fN~) is measured by comparing the 
risks RN.(Tro) and RNo(Tro) asymptotically, as n -~ co, where RNc(lr0) is given by 

The empirical Bayes sample size Nn is obtained sequentially and then 0n is es- 
timated by 6 ~  based on Nn. Sequential stopping times of the type above were 
initiated by Robbins (1959) and later developed by others; see, e.g., Sen (1981) 
and Woodroofe (1982). 

Let RN,~(ZrO) denote the unconditional Bayes risk (w.r.t. ~ro) of the EBSD 
procedure (Nn, 6N~) defined by (3.1) and (3.2). Then 

C(Pk,/2k) = f~ exp{(P0#0 + Sk)w -- ~k¢(w)}dw. 
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(2.11). The most natural way to compare the expressions RN, (Tro) and RN~ (Tro) 
is to show that 

lim Rg,,(TCo) ---- Rg~(Tro), 
n - " ~  0 0  

i.e., the asymptotic risk equivalence of the EBSD procedure to the component 
sequential estimation procedure (No, 6N~). The above result is established in The- 
orem 3.1 below under some assumptions on the estimators ÷0 and [to. When 
(Nc, CN~) is the optimal procedure then the asymptotic optimality of the EBSD 
procedure (Am, ~y.)  easily follows from Theorem 3.1. This result is established in 
Corollary 3.1. below. 

THEOREM 3.1. Let the pair (Yc,~Nc) be defined by (2.5) and (2.10). Let the 
EBSD procedure (N,~,~N.), defined by (3.1) and (3.2), be based on the estimators 
ro and fro satisfying the conditions 

and 

(i) E ( P 0 - r o )  2--*0 as n ~ c ¢  

(ii) E([t0-tto) 2 ~ 0  as  n ~ c ~ ,  

where E denotes expectation w.r.t, all of the random variables involved in defining 
~o and [to. Suppose that E(¢"(w))  2 < oc. Then 

(3.5) lim RN~ (Tro) = RNc (1to), 
n - - ~  o o  

where RNc(Tro) and Rg~(~ro) are defined by (2.11) and (3.4), respectively. 

COROLLARY 3.1. Suppose that the assumptions of Theorem 3.1 hold. More- 
over, suppose that (rk+lrk)-lUk + ck is non-increasing in k, where Uk and rk 
are defined by (2.6) and (2.8), respectively, k > 1. Then, limn--.o~ RNn(zCo) = 
Rgc(Tr0), and thus ( Nn , Cg~) is asymptotically optimal. 

Remark 3.1. The EBSD procedure employed in Theorem 3.1 is based on 
mean square consistent estimates/2o and P0 of #0 and r0, respectively. We now 
exhibit a class of such estimators constructed using the past data obtained from 
some auxiliary information. From (2.1), (2.2) and (2.3), we notice that  

and 

E(O) = ~ ~b"dTro = #o 

War(O) ~- E(O -/Zo) 2 - rolr 2 

where r 2 - E[¢~'(w)]. Let us denote ~r 2 = rolr 2. Then ro = r2/a 2. Now, in 
order to est imate/to and ro based on the auxiliary data X i = (Xi l , . . .  ,X~K,), 
i = 1 , . . . , n - -  1, we define m - -  ( n -  1), 
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and 

(3.7) 

m 

ft  0 ~- j = l  
m 

m-1 
j = l  

m 

j = l  

if ÷o#O 

if ÷0 = 0, 

- -  m K m w h e r e  Bj = {1 + g j ( ? ~ 0 ) - l }  - 1 ,  XKj ~- Kj 1EiK=Jl Xji , g = Ej=I  J - ( E j = I  K2)/  

m = _ _ m E i = I  (Xji - XK3)2 and M S B  = ( m -  E / : I K j ,  M S W  ( E ~ = l K i  m) - 1 E / : 1  Kj 

1) -1 ~-~?=1Kj(f~K~ -- ~ ' m )  2 with )~ m - 1  m - m = (Y~j=I Kj - m) Y~j=I KjX~:~. These 
estimators are motivated by the work of Ohosh and Lahiri (1987). Since the 
Nj's are fixed positive integers in the case of auxiliarly data, X 1 , . . . ,  X n-1 are 
independent random vectors, and (a;i, Xij) are i.i.d, with the same distribution as 
(w, X1). Therefore, the mean square consistency of r0 and f~0 can be established 
along the lines of Ghosh and Lahiri (1987). There are a number of situations 
in which one may be able to observe such types of auxiliary data; see Martinsek 
(1987) for some applications. As one of the referees pointed out, one drawback 
of such an approach in an empirical Bayes setup is that one must wait until the 
"final problem" to use the accumulated information to construct a good stopping 
rule. 

If X1 , . . .  , X  n-1 represent the data from the past experiences of the same 
component problem, then of course the independence of these random vectors is 
lost and the consistency proofs of (3.6) and (3.7) may be rather tedious. Our Monte 
Carlo studies show, however, that the estimators ÷0 and/~0 approach respective 
true values of r0 and #0 as n increases. Thus, one may expect them to be useful 
in applications. Nevertheless, one other method (not so efficient) of constructing 
consistent estimators based on the past data is as follows: It is reasonable to 
assume that 2 < Nc < oc in many applications, where Nc is defined by (2.5). Now 
re-define Nn given by (3.2) as Nn = inf{k > 2 : Uk _< c(~0 + k)(~0 + k + 1)}, 
i.e., at least two independent observations are made before making a decision. As 
a result, the random vectors consisting only with the first two observations from 
the past realizations form an independent sequence, and have the same features 
as auxiliary data. Now, these random vectors can be used in the expressions (3.6) 
and (3.7) above, and the consistency can be easily established. 

Remark 3.2. The condition that (rk+lrk)-iUk + ck is nonincreasing in k is 
known as the 'monotone' total cost case. Shapiro and Wardrop (1980) considered 
the monotone cost case for a richer class of loss functions (including the squared 
error decision loss) related to the Fisher information and linear sampling cost. 
They illustrated a number of commonly used examples to show that the monotone 
cost case (and hence the optimality of the myopic rule) can be attained. Results 
of the present paper can easily be extended to cover such cases as well, since the 
Bayes estimator of 0 and the myopic stopping rule of Shapiro and Wardrop are 
very similar to the one used here. 
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Remark 3.3. Asymptotic results of the present paper can be extended eas- 
ily to more general families of prior distributions, those which are not conjugate 
priors. However, some restrictions are needed. For example, if the posterior Bayes 
risk, based on a fixed sample of size k, can be expanded in terms of a uniformly 
integrable martingale Yk and a uniformly integrable super-martingale Zk, namely, 

Var(0 I Ak) = k - lyk  + k-2Zk, k >_ 1, 

then the overall posterior Bayes risk due to sampling cost and estimation error is 

(3.8) Rk(c) = k - lYk  + ck + k-2Zk,  k > 1 

and Rt(c) = t- lYt  + ct + t-2Zt for any stopping time t. Expression (3.8), in turn, 
suggests the myopic stopping rule 

(3.9) tc = inf{k _> 1 : Yk <_ ck(k + 1)}, c > 0 

for use in the component problem. Using the semi-martingale nature of the ex- 
pansion (3.8), Rehailia (1984) showed that stopping rules of the type of Bickel 
and Yahav (1967) are A.P.O. as c ~ 0. Following the arguments of Shapiro and 
Wardrop (1980), it may be possible to show that the stopping rule (3.9) is also 
A.P.O. as c --* 0. Details of such a result are not yet reported in the literature. The 
EB stopping rule corresponding to (3.9) can easily be defined and the asymptotic 
results will essentially be the same as those of the present paper. 

Remark 3.4. The setup of the present paper falls into the category of para- 
metric empirical Bayes. More specifically, it is in the sub-category of parametric 
empirical Bayes sequential estimation. Parametric models are becoming increas- 
ingly popular in empirical Bayes methods, due in large part to their compromising 
behavior between frequentist modelling and Bayesian modelling; see, e.g., Morris 
(1983a, 1983b). More references can be found in Berger (1985) and Maritz and 
Lwin (1989). One disadvantage of such models in applications is, however, the 
possible effects of wrong guess of the prior. Study of Bayesian analysis to possi- 
ble misspecification of the prior distribution is one of Bayesian robustness issues, 
an important element in Bayesian analysis. The most commonly used technique 
for investigating 'prior robustness' is simply to try different reasonable priors and 
see what happens. This is often called sensitivity analysis. Though of consid- 
erable interest, investigation of such a study is beyond the scope of the present 
paper. There is a huge literature on Bayesian robustness; see, e.g., Berger (1985), 
Subsection 4.7, for methodologies and references on the subject. 

Closely related to a parametric empirical Bayes procedure is the hierarchical 
Bayes procedure which models the prior distribution in stages. In the first stage, 
conditional on A, parameter w is assumed distributed according to a prior 7r0(w I A)- 
In the second stage, a prior (often improper) distribution is assigned to A. This is 
an example of a two-stage prior. The idea can be generalized to multi-stage prior; 
see, e.g., Good (1965) and Lindley and Smith (1972). For details on hierarchical 
Bayes settings of sequential estimation, see Ghosh (1991), Ghosh and Hoekstra 
(1989) and Hoekstra (1989). 
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The nature of the stopping rules Nc and Nn will now be illustrated by two 
special cases considered by Woodroofe  (1981). More examples can be provided; 
see, e.g., Shapiro and Wardrop (1980). 

Example 1. Suppose that  Fw has density f~(x)  = [wl exp(~x)  for x > 0 and 
- o c  < w < 0, w.r.t. Lebesgue measure. Then {F~ : - o c  < ~ < 0} form an 
exponential family with ¢(w) = log(I/IT[); and the mean and the variance of F~ 
are 0 = ¢ ' (w)  = 1/IT[ and ~b"(w) = 1/w 2 --- 02 for - e c  < w < 0. The conjugate 
prior distr ibutions are gamma distr ibutions for Iwl with densities 

~ro, l(w) = (r(ao))-lb~)°tw[~°-le +b°~, - o c  < w < O, 

with shape parameter  ao = r0 + 1 > 1 and scale parameter  bo = ro/#o > O. 
k Letting Sk = ~-~4 Xi,  one easily sees tha t  Uk = E[¢"(w)  I Ak] = E[02 I Ak] = 

(bo + Sk)2/(ao + k - 1)(ao + k - 2). Then, for this example the stopping t ime Nc 
defined by (2.5) takes the form 

No,1 = inf{k _> 1:  (ro#~ 1 ÷ Sk) 2 _< c(ro + 1 + k)(ro + k)2(ro + k - 1)}. 

It is easy to show tha t  E[¢"(w)] 2 < ec if and only if ao > 4. The corresponding 
EB stopping t ime is obtained by replacing ro and #o by ÷o and f~0, respectively: 

Nn,1 = inf{k > 1:  (~0~o 1 + Sk) 2 < C(÷o + 1 + k)(~o + k)2(Po + k - 1)}. 

The performance of N~,I was studied using a simulation s tudy  as n increases. 
Two separate cases were considered with the following specifications: (i) a0 -- 5, 
bo = 5, c = 0.0001, and (ii) ao = 5, b0 = 10, c = 0.01. For the chosen sample, the 
values of No,1 for the two cases (i) and (ii) were 115 and 13, respectively. Figures 1 
and 2 represent the summary  of results which exhibit the  behavior of Nn,1 for the 
cases (i) and (ii), respectively, as n ranges from 11 and 200. 

Example 2. Suppose that  X has a Bernoulli distr ibution with parameter  0, 
where 0 < 0 < 1; tha t  is, suppose tha t  X = 0 and 1 with probabili t ies 1 - 0 and 
0, where 0 is unknown. Then the distr ibutions of X form an exponential  family 
with ¢¢ = log 0 -  log(1 - 0 )  and ¢(w) = log( l / (1  - 0 ) ) .  The mean and the variance 
of X are 0 and ¢"(a~) = 0(1 - 0). The conjugate prior distr ibutions are be ta  
distributions for 0 with densities 

r(ao + bo) 0oo_1(1 _ e)bo_l 
r(ao)r(bo) 

0 < 0 < 1 ,  

where ro = ao + bo and #o = ao/(ao + bo). Letting Sk = X1 + . . .  + Xk, we find 
that  Uk = E[¢" (w)  ] Ak] = E[8(1 - O) ] Ak] = (ao + Sk)(bo ÷ k - -  Sk)/(ao ÷ bo + 
k - 1)(ao ÷ bo + k). In this case the stopping time Nc takes the form 

N~,2 = inf{k >_ 1 :(ro#o + Sk)(ro - ro#o + k - Sk) 

_< c(ro + k)2(ro + k -  1)(ro + k + 1)}. 
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: , ,  
v -  

i • 
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Fig. 1. Behaviors of Nn,1 (dotted line) and Nc,1 = 115 (solid line) for case (i). 

O ,  

o ~ ~o ,~o 

Fig. 2. Behaviors of Nn,1 (dotted line) and No,1 = 13 (solid line) for case (ii). 
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Fig. 3 . Behaviors of N,,,2 (dotted line) and N,,,2 = 134 (solid line) for case (a) .

Fig. 4 . Behaviors of N,,,2 (dotted line) and N,,j = 25 (solid line) for case (b) .
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Note that ,  in this case, E[~b"(w)] 2 < co for any a0 > 0 and bo > 0. The corre- 
sponding EB stopping t ime defined by 

Nn,2 = inf{k > 1 :(~0ft0 + Sk)(÷0 - ~0/~0 + k - Sk) 

< c(?0 + k)2(~o + k - 1)(~0 + k + 1)}. 

Again, the behavior of Nn,2 was examined using a simulation s tudy for two 
separate cases: (a) a0 = 5, b0 = 2, c = 0.0001, and (b) a0 = 2, b0 = 3, c = 0.0001. 
For the chosen sample, the values of N~,2 for the two cases (a) and (b) were 134 
and 25, respectively. Figures 3 and 4 summarize the results. 

Overall, the simulation results indicate that  the nature of convergence of 
empirical Bayes stopping times, N~'s, to corresponding component stopping times, 
No's, is fairly satisfactory for moderate values of n. For small values (n < 30), the 
convergence is slightly conservative. 

4. Proofs 

To prove Theorem 3.1 and Corollary 3.1 we need a few lemmas. For notational 
convenience, we let [A] denote the indicator function of A and the arguments of 
functions will not be exhibited whenever they are clear from the context. The basic 
idea of the proof is to decompose the difference Rgn (Tro) - RNc (Tr0) into portions 
corresponding to the cases [N~ = No], [N~ > No] and [N. < Nc], and then to 
study the asymptotic behaviors of each portion separately. By the definitions of 
N~ (see (2.5)), we first note that  for k > 1, 

(4.1) [No = k] = < 0]... < O][-k _> 0], 

where 

(4.2) ak = crkrk+l -- Uk, 

with Uk and rk axe given by (2.6) and (2.8), respectively. Similarly, using the 
definition of N~ (see (3.2)) we get for k _> 1, 

(4.3) [Nn = k] = [&l < 0]--. [&k-1 < 0][&k >_ 0], 

where 

(4.4) &k = c(~0 + k)(eo + k + I) - 0k, 

with ro is as defined in Theorem 3.1 and Uk is given by (3.3). Now observe that  
the difference RN~(Tro) -- RN¢(1ro) (see (2.11) and (3.2)) can be written as 

(4.5) RN,,(rCO) -- RNc(TrO) 
o o  o o  

= E E E [ N , ~ = i l [ N c =  j]{(hi - 0)2 - (hi - t?) 2 + c ( i - j ) }  
i = 1  j = l  

=J+R+L, 



724 R O H A N A  J. K A R U N A M U N I  

where 

(4.6) 

(4.7) 

and 

(4.8) 

o o  

J = E [ N .  = i][Nc = i]{($, - 0) 2 - ( 6 / -  0 7 } ,  
i = l  

oc j - 1  

[£ = E E E[N~ = il[Nc = j ] { ( 6 i - 0 )  2 - ( 6 j  - 0 )  2 + c ( i -  j )} ,  
j = 2  i = 1  

L = 

j - 1  

EE ENo 
j----2 i----1 

= j][Nc = i]{(6j - 0) 2 - (6i - 0) 2 + c(j - i)}, 

with E denotes expectat ion w.r.t, all of the random variables involved. We will 
show that  l i m ~ _ ~  3 = 0, l i m ~ _ ~ / <  = 0 and l i m ~ _ ~  L = 0. Before proving these 
results we first give two preliminary lemmas. Lemma 4.1 is simply a version of the 
dominated convergence theorem w.r.t, the counting measure on positive integers. 

LEMMA 4.1. For each n -- 1 , 2 , . . . ,  let {a~n),a~n),...} be a sequence of real 

numbers. If ta~")l <_ bk, for all k and n, and ~k~__l bk < co, then 

o o  o o  

(4.9) l i m  E a~n) = E l i m  a~ n). 
k----1 k----1 

^ P 
LEMMA 4.2. Under the hypotheses of Theorem 3.1, ak --* (~k as n --* co, for 

k >_ 1, where ak and &k are defined by (4.2) and (4.4), respectively, and P denotes 
convergence in probability w.r.t, the past data, conditional on the current data. 

P PROOF. Since ro--+ ro as n -~ co, it is enough to show that  /)k P Uk as 
n --* co, for k > 1. Note that  Uk and C(rk, ~k) (see circa (2.7)) are continuous 
functions of r0 and #0 by Theorem 2.9 of Lehmann (1986). Now the result follows 

P P 
from r0 --* r0 and/20 --* #0 as n --* co. [] 

LEMMA 4.3. Under the hypotheses of Theorem 3.1, 

lim ,] = 0 .  (4.10) 
~ - ' ->  O0  

PROOF. 

(4.11) 

From (4.6) we can write 

o o  

J = E E [ N , ~  = i][Nc = i ] (6{-  6{) 2 
i----1 

o o  

+ 2 E E [ N n  = il[Nc = i ] ( $ / -  ~)(5~ - 0). 
i = 1  
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Now use a conditional expectation argument to show that  the second term on the 
right hand side of (4.11) is equal to zero as follows: 

E{E([N,~ = i][Nc = i]($~ -/f i)(5i  - 0) [ Ai, X 1 , . . . ,  X ~ - I ) }  

= E[N,~ = i][Nc = i](~i - 6i)E{(~i - O) [ A~, X 1 , . . . ,  X n-1 } 

= E[Nn = i][Nc = i](6i - 5i)E{(Si - 0) I Ai} 

-----0, 

since 0 and the current information, A~, are independent of the past da ta  X 1 , . . . ,  
X ~-1 and since ~i = E(O I A i )  for i > 1. Therefore, from (4.11) we get 

o~ 

(4.12) I,][ < ~ E ( ~ i  - 5i) 2. 
i : 1  

By the definitions of ~i and 5i (see (2.10) and (3.1)), we obtain 

(4.13) E(~i - 6i) 2 <_ 3(roPo)2i-4E([~o - go) 2 + 3/2i-2E(~o - to) 2 

+ 3i -4ES2(~o - ro) 2, 

the preceding inequality is obtained by applying the trivial inequality ( a + b + c )  ~ < 
3(a2+b2+c2). Now, since Si and r0 are independent,  we obtain i - 4ES2 i (~o- ro )  2 <_ 
i - 2 E Z ~ E ( ~ o  - ro) 2 using the inequality ES~ <_ i2EZ~ .  Also E X ~  < oo, since 
E(¢"(w))  2 < oo. Combining these facts, (4.12) and (4.13) we get 

(4.14) I J I < K  E ( ~ o - # o )  2 ~ i  - 4 + E ( ~ o - r 0 )  2 i -2 , 
i----1 

where K is a positive constant. Now limn-.c¢ J = 0 follows from E(/~o - #o) 2 -~ 0 
and E(~o - ro) 2 ~ 0 as n --* oc. [] 

LEMMA 4.4. Under the hypotheses of Theorem 3.1, 

(4.15) lim /~ = 0. 
n---~ OO 

P R O O F .  W r i t e / ~  = / ~ 1  -4- g 2 ,  w h e r e  

(4.16) 

and 

c¢ j--1 

j=2  i = l  

0¢ j - 1  

j=2 i=1 

= i][Nc = j]{(Si - 0) 2 - (Sj - 0) 2 + c(i - j ) }  

= i ] [Nc  = - e )  2 - - e ) 2 } .  
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Following a similar argument that  we used to obtain (4.12), we can show that  
I/~2 ] -< )-~i~1 E(Si - 5i) 2. It can be easily shown now that  limn__,~/~2 = 0 using 
similar steps to show that  lim~__,~ J = 0. To study the asymptotic behavior of 
/~1, we define 

oo 

(4.18) Ak = E [ N c  = j] = [N~ >_ k], k > 1. 
j = k  

Then note that  Ak is Ak-1 = a { X 1 , . . . ,  Xk-1} measurable, k > 1. Using Ak we 
can re-arrange each term on the right hand side of (4.16): 

c~ j - -1  

(4.19) 

(4.20) 

and 

(4.21)  

E E  E[Nn =i][Nc = j ] ( 5 i - 0 )  2 = E E[Nn -~ildi+l(~i-0) 2, 
j = 2  i=1 i=1 

j - 1  

E E E[Nn = i][Nc = jl(Sj - 0) 2 
j----2 i=1 

= i ~  1 E[Nn = i] Aj($j - 0) 2 - Aj+I(6j - 0) 2 , 
"= j ' = i + l  j----i+1 

O0 j - - 1  O0 C~ 

c E E  E[Nn =i][Nc = j l ( i - j )  = - c  E E E[Nn =ilAj.  
j = 2  i=1 i = l  j = i + l  

Combining (4.19), (4.20) and (4.21) we can rewrite (4.16) as follows: 
oo oo 

( 4 . 2 2 )  / l ' l - - - - - - E  E E[Nn=ilAj{(SJ-O)2-(6J-I-O)2+c} 
i----1 j----i+1 
o~ oo 

= -  E E E[Nn =ilAj{E((~J -O)2 I AJ) 
i----1 j = i + l  

O0 O0 

: -  E E .E o 
i = l  j = i + l  

- E ( ( ~ _ I  - e)  2 I ~4~_1) + c}  

= i ] A j { U j / r j  - U j - 1 / r j - 1  + c} ,  

where Uk is given by (2.6), k _> 1, and the last equality in (4.22) follows from (2.6), 
(2.7), (2.8) and the fact that  Aj is Aj_l-measurable and that  5j is the Bayes rule, 
j _> 1. Now using the martingale property of {Uj}, (4.22) can be rewritten as 

oc oo 

( 4 . 2 3 )  /~1 = - -  E E 
i=1  j = i + l  

oo oo 

- - - E E  
i=1 j = / + l  

oo oo 

E[Nn = i]Aj{r;1E(Uj I Aj-1)  - r~11Uj-1 + c} 

E[Nn = ilAj{r;1Uj-1 - rj-l_lUj-1 -P c} 

= Z E ,tNo 
i=1 j = i + l  

= i]Aj {r; l r~1_ 1Uj-1 - c}, 
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since ri = r0 + i for i _> 1. Again use the martingale property of {Uj}, ri = ro + i 
and the fact that Ai >_ Ai+l for i _> 1 (see (4.18)) to obtain for i >_ 1, 

(4.24) Z IE[N~ =i lA j ( r ; l r ;  1-1Uj-1 -c) l  <- EAi+l{aUi +c},  
j=i+ l 

where a = Y~j=I(J(J + 1)) -1" Since Ai+l = [Arc >_ i + 1] by the definition, we 
obtain by the definition of Nc (see (2.5)) 

(4.25) EAi+l{au  +c} _< E[N  >_ i + llU, E[Nc >_ i + 11 
i=1 i=1 i=1 

<<_ a E E[Ui > criri+llUi -~- C ~ E[Nc >> i I. 
i----1 i----1 

The second term on the right hand side of the inequality (4.25) is equal to cENt, 
which is finite (see Theorem 2.1 above). The first term can be bounded by an 
application of Holder's inequality followed by Markov inequality as follows: 

(4.26) Z E[Ui > criri+l]Ui < Z(E[Ui  > criri+l])l/2(EU2) 1/2 
i----1 i----1 

(EU?)I/2 <_ (EU2) 1/2 
i=1 c(riri+i) 

i=1 

<<_ c-IE(¢"(w)) 2 ~ i -2 < oc, 
i=1 

since E(¢"(w)) 2 < oc and EU 2 <_ E(¢"(w)) 2 by Jensen's inequality; i.e., EU 2 = 
E{E(¢"(w) I ~ ) } 2  _< E(¢,,(w))2. Now apply Lemma 4.1 with 

a~n)= Z E[N~ =ilAi{r; lr; l_lUj_l-c} ,  i >_ 1 
j = i + l  

and 

b~ = EA~+I{aUi + c}, i >_ 1. 

Observe that la~n)l << bi from (4.24), and y~4~=l bi < ~ from (4.25) and (4.26). 
Therefore, from the conclusion of Lemma 4.1 and (4.23) we obtain 

CO 

(4.27) lim/221 = Z l irn a~ ~) 
i=1 

= ~ Z l im~E[Nn=i]Aj{r j - l r~l lUj- l -c} ,  
/=1  j = i + l  
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the last equality is obtained by applying Lemma 4.1 again with b~ = 

EAj{r;lr;21Uj_I -c} .  (It can be easily shown that  again Ejc~__i+l b~ < oo along 
the same lines used to prove that  )-~i~1 b~ < oo.) Now it is enough to study the 
limit behavior of E[Nn = i]Aj for j >_ i + 1 and i _> 1. By the definitions of Nn 
and Aj we see that  for j _> i + 1 and i _> 1, 

E[Nn = i]Aj <_ E[&~ > 0][ai < 0] 

P 
which goes to zero as n ~ c~, since &i ~ a i  as n ~ ec by Lemma 4.2. This 
completes the proof. [] 

LEMMA 4.5. Under the hypotheses of Theorem 3.1, 

(42s) lim L = 0. 
n ---~ OO 

PROOF. Write L = L1 + L2, where 

(4.29) 

and 

(4.30) 

oo j-1 
L1 = Z Z E[N~ = j][Nc = i]((6j - 0) 2 - (6~ - 0) 2 + c(j - i)} 

j=2 i--1 

0¢ j - 1  

L2 = ~ ~ E[N,~ = j][N~ =i]((6j -0 )  2 - (6 j  -0)2}. 
j = 2  i=1  

Again it is easy to show that  IL21 _< ~-]~j~l E(6j - 6j) 2 and that  limn--.o¢ L2 = 0; 

compare with (4.12) and (4.17). It is now enough to show that  limn-~oo/~1 = 0. 
First we define 

OO 

(4.31) /gk = E [ N n  = j] = INn >_ k], k >_ 1. 
j=k 

Making use of/)pc and re-arranging terms in (4.29) we can show that  (cf., (4.22)) 

(4.32) 
OO OO 

L 1 - - - - Z  E E[Nc=i]£)J((SJ-O)2-(SJ-l-O)2+c} 
i----1 j~-i+l 

OO OO 

= Z Z E[N~=i l£ ) j (c - r ; l r ;  21Uj-1}' 
i=1 j=i+l 

~ O0 

--- Z Z E[Nc > i][ai =OlDj(c-  r?lr~_l_lUj-1} 
i=1 j=i+l 

+ Z E[gc _> i]I-,> 0]bj{c- r;lr; lV _l} 
i--1 j--i+1 
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The first term on the right hand side of (4.32) is zero, since E [ a i  --- 0] = E [ U i  -~ 

criri+l] = 0 because Ui is a continuous random variable (Ui is a continuous func- 
tion of continuous random variable Si by Theorem 2.9 of Lehmann (1986)). It 
can be shown that the limit of the second term is equal to zero by an application 
of Lemma 4.1 (with suitable choice of uiAn) and bi) and using the facts that, for 

j _> i + l ,  /)j[a~ > 0] _ [~i < 0][a, > 0] P 0  a s h - - ,  oc. This completes the 
proof. [] 

PROOF OF THEOREM 3.1. Follows from (4.5) and Lemmas 4.3, 4.4 and 4.5. [] 

PROOF OF COROLLARY 3.1. Stopping rule Ne defined by (2.5) is optimal; 
see Theorem 2.1. Then the risk Rg~(zro)  of Nc becomes the Bayes envelope risk 
of the sequential component. [] 
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